1302 lines
67 KiB
HTML
1302 lines
67 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
|
<head>
|
|
<!-- 2021-02-20 sam. 23:08 -->
|
|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
|
<title>Control of the NASS with Voice coil actuators</title>
|
|
<meta name="generator" content="Org mode" />
|
|
<meta name="author" content="Dehaeze Thomas" />
|
|
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
|
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
|
<script>
|
|
MathJax = {
|
|
svg: {
|
|
scale: 1,
|
|
fontCache: "global"
|
|
},
|
|
tex: {
|
|
tags: "ams",
|
|
multlineWidth: "%MULTLINEWIDTH",
|
|
tagSide: "right",
|
|
macros: {bm: ["\\boldsymbol{#1}",1],},
|
|
tagIndent: ".8em"
|
|
}
|
|
};
|
|
</script>
|
|
<script id="MathJax-script" async
|
|
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
|
|
</head>
|
|
<body>
|
|
<div id="org-div-home-and-up">
|
|
<a accesskey="h" href="./index.html"> UP </a>
|
|
|
|
|
<a accesskey="H" href="../../index.html"> HOME </a>
|
|
</div><div id="content">
|
|
<h1 class="title">Control of the NASS with Voice coil actuators</h1>
|
|
<div id="table-of-contents">
|
|
<h2>Table of Contents</h2>
|
|
<div id="text-table-of-contents">
|
|
<ul>
|
|
<li><a href="#org6be66c8">1. HAC-LAC + Cascade Control Topology</a>
|
|
<ul>
|
|
<li><a href="#org2460d55">1.1. Initialization</a></li>
|
|
<li><a href="#orgc286bc8">1.2. Low Authority Control - Integral Force Feedback \(\bm{K}_\text{IFF}\)</a>
|
|
<ul>
|
|
<li><a href="#orgdf9408c">1.2.1. Identification</a></li>
|
|
<li><a href="#orgf30ebf5">1.2.2. Plant</a></li>
|
|
<li><a href="#org75a46c4">1.2.3. Root Locus</a></li>
|
|
<li><a href="#org1de078a">1.2.4. Controller and Loop Gain</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org67ce27e">1.3. High Authority Control in the joint space - \(\bm{K}_\mathcal{L}\)</a>
|
|
<ul>
|
|
<li><a href="#org3483d53">1.3.1. Identification of the damped plant</a></li>
|
|
<li><a href="#org5ae9c6f">1.3.2. Obtained Plant</a></li>
|
|
<li><a href="#orgcaea664">1.3.3. Controller Design and Loop Gain</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#orgad027ff">1.4. Primary Controller in the task space - \(\bm{K}_\mathcal{X}\)</a>
|
|
<ul>
|
|
<li><a href="#orgf5c092a">1.4.1. Identification of the linearized plant</a></li>
|
|
<li><a href="#orgab76ff4">1.4.2. Obtained Plant</a></li>
|
|
<li><a href="#org6cf4594">1.4.3. Controller Design</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org1e0ce86">1.5. Simulation</a></li>
|
|
<li><a href="#org95222f2">1.6. Results</a>
|
|
<ul>
|
|
<li><a href="#orgd48ac26">1.6.1. Load the simulation results</a></li>
|
|
<li><a href="#org5c1a980">1.6.2. Control effort</a></li>
|
|
<li><a href="#org1925325">1.6.3. Load the simulation results</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org75df314">1.7. Compliance of the nano-hexapod</a>
|
|
<ul>
|
|
<li><a href="#org90e3591">1.7.1. Identification</a></li>
|
|
<li><a href="#org551690b">1.7.2. Obtained Compliance</a></li>
|
|
<li><a href="#org5bb25e6">1.7.3. Comparison with Piezo</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org1714267">1.8. Robustness to Payload Variability</a>
|
|
<ul>
|
|
<li><a href="#orge46eb9a">1.8.1. Initialization</a></li>
|
|
<li><a href="#org164b889">1.8.2. Low Authority Control</a></li>
|
|
<li><a href="#org31d435c">1.8.3. High Authority Control</a></li>
|
|
<li><a href="#org81ced5e">1.8.4. Primary Plant</a></li>
|
|
<li><a href="#orgf70d92f">1.8.5. Simulation</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#orgc5b4ff7">2. Other analysis</a>
|
|
<ul>
|
|
<li><a href="#org0c25923">2.1. Robustness to Payload Variability</a></li>
|
|
<li><a href="#orgab21563">2.2. Direct HAC control in the task space - \(\bm{K}_\mathcal{X}\)</a>
|
|
<ul>
|
|
<li><a href="#orgdf14eef">2.2.1. Identification</a></li>
|
|
<li><a href="#org22cbe37">2.2.2. Obtained Plant in the Task Space</a></li>
|
|
<li><a href="#orgde17d6e">2.2.3. Obtained Plant in the Joint Space</a></li>
|
|
<li><a href="#org1164b66">2.2.4. Controller Design in the Joint Space</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#orgf91d5cc">2.3. On the usefulness of the High Authority Control loop / Linearization loop</a>
|
|
<ul>
|
|
<li><a href="#org40e4287">2.3.1. Identification</a></li>
|
|
<li><a href="#orge35a7ca">2.3.2. Plant in the Task space</a></li>
|
|
<li><a href="#org01b3e07">2.3.3. Plant in the Leg’s space</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org7a785de">2.4. DVF instead of IFF?</a>
|
|
<ul>
|
|
<li><a href="#orgb5656fe">2.4.1. Initialization and Identification</a></li>
|
|
<li><a href="#org84acb61">2.4.2. Obtained Plant</a></li>
|
|
<li><a href="#orgcc6deb3">2.4.3. Controller</a></li>
|
|
<li><a href="#org1494957">2.4.4. HAC Identification</a></li>
|
|
<li><a href="#org6504f5b">2.4.5. Conclusion</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org6be66c8" class="outline-2">
|
|
<h2 id="org6be66c8"><span class="section-number-2">1</span> HAC-LAC + Cascade Control Topology</h2>
|
|
<div class="outline-text-2" id="text-1">
|
|
|
|
<div id="org1f813a3" class="figure">
|
|
<p><img src="figs/cascade_control_architecture.png" alt="cascade_control_architecture.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 1: </span>Cascaded Control consisting of (from inner to outer loop): IFF, Linearization Loop, Tracking Control in the frame of the Legs</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org2460d55" class="outline-3">
|
|
<h3 id="org2460d55"><span class="section-number-3">1.1</span> Initialization</h3>
|
|
<div class="outline-text-3" id="text-1-1">
|
|
<p>
|
|
We initialize all the stages with the default parameters.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeGround();
|
|
initializeGranite();
|
|
initializeTy();
|
|
initializeRy();
|
|
initializeRz();
|
|
initializeMicroHexapod();
|
|
initializeAxisc();
|
|
initializeMirror();
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
The nano-hexapod is a voice coil based hexapod and the sample has a mass of 1kg.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'lorentz'</span>);
|
|
initializeSample(<span class="org-string">'mass'</span>, 1);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We set the references that corresponds to a tomography experiment.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeReferences(<span class="org-string">'Rz_type'</span>, <span class="org-string">'rotating'</span>, <span class="org-string">'Rz_period'</span>, 1);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeDisturbances();
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeController(<span class="org-string">'type'</span>, <span class="org-string">'cascade-hac-lac'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeSimscapeConfiguration(<span class="org-string">'gravity'</span>, <span class="org-constant">true</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We log the signals.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeLoggingConfiguration(<span class="org-string">'log'</span>, <span class="org-string">'all'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> Kp = tf(zeros(6));
|
|
Kl = tf(zeros(6));
|
|
Kiff = tf(zeros(6));
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgc286bc8" class="outline-3">
|
|
<h3 id="orgc286bc8"><span class="section-number-3">1.2</span> Low Authority Control - Integral Force Feedback \(\bm{K}_\text{IFF}\)</h3>
|
|
<div class="outline-text-3" id="text-1-2">
|
|
<p>
|
|
<a id="org65530b4"></a>
|
|
</p>
|
|
</div>
|
|
<div id="outline-container-orgdf9408c" class="outline-4">
|
|
<h4 id="orgdf9408c"><span class="section-number-4">1.2.1</span> Identification</h4>
|
|
<div class="outline-text-4" id="text-1-2-1">
|
|
<p>
|
|
Let’s first identify the plant for the IFF controller.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Fnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensors</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G_iff = linearize(mdl, io, 0);
|
|
G_iff.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
G_iff.OutputName = {<span class="org-string">'Fnlm1'</span>, <span class="org-string">'Fnlm2'</span>, <span class="org-string">'Fnlm3'</span>, <span class="org-string">'Fnlm4'</span>, <span class="org-string">'Fnlm5'</span>, <span class="org-string">'Fnlm6'</span>};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgf30ebf5" class="outline-4">
|
|
<h4 id="orgf30ebf5"><span class="section-number-4">1.2.2</span> Plant</h4>
|
|
<div class="outline-text-4" id="text-1-2-2">
|
|
<p>
|
|
The obtained plant for IFF is shown in Figure <a href="#org1f2ef95">2</a>.
|
|
</p>
|
|
|
|
|
|
<div id="org1f2ef95" class="figure">
|
|
<p><img src="figs/cascade_vc_iff_plant.png" alt="cascade_vc_iff_plant.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 2: </span>IFF Plant (<a href="./figs/cascade_vc_iff_plant.png">png</a>, <a href="./figs/cascade_vc_iff_plant.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org75a46c4" class="outline-4">
|
|
<h4 id="org75a46c4"><span class="section-number-4">1.2.3</span> Root Locus</h4>
|
|
<div class="outline-text-4" id="text-1-2-3">
|
|
<p>
|
|
As seen in the root locus (Figure <a href="#orgfcdbb47">3</a>, no damping can be added to modes corresponding to the resonance of the micro-station.
|
|
</p>
|
|
|
|
<p>
|
|
However, critical damping can be achieve for the resonances of the nano-hexapod as shown in the zoomed part of the root (Figure <a href="#orgfcdbb47">3</a>, left part).
|
|
The maximum damping is obtained for a control gain of \(\approx 70\).
|
|
</p>
|
|
|
|
|
|
<div id="orgfcdbb47" class="figure">
|
|
<p><img src="figs/cascade_vc_iff_root_locus.png" alt="cascade_vc_iff_root_locus.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 3: </span>Root Locus for the IFF control (<a href="./figs/cascade_vc_iff_root_locus.png">png</a>, <a href="./figs/cascade_vc_iff_root_locus.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org1de078a" class="outline-4">
|
|
<h4 id="org1de078a"><span class="section-number-4">1.2.4</span> Controller and Loop Gain</h4>
|
|
<div class="outline-text-4" id="text-1-2-4">
|
|
<p>
|
|
We create the \(6 \times 6\) diagonal Integral Force Feedback controller.
|
|
The obtained loop gain is shown in Figure <a href="#org52cef28">4</a>.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> Kiff = <span class="org-type">-</span>70<span class="org-type">/</span>s<span class="org-type">*</span>eye(6);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org52cef28" class="figure">
|
|
<p><img src="figs/cascade_vc_iff_loop_gain.png" alt="cascade_vc_iff_loop_gain.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 4: </span>Obtained Loop gain the IFF Control (<a href="./figs/cascade_vc_iff_loop_gain.png">png</a>, <a href="./figs/cascade_vc_iff_loop_gain.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org67ce27e" class="outline-3">
|
|
<h3 id="org67ce27e"><span class="section-number-3">1.3</span> High Authority Control in the joint space - \(\bm{K}_\mathcal{L}\)</h3>
|
|
<div class="outline-text-3" id="text-1-3">
|
|
<p>
|
|
<a id="orgddf67ee"></a>
|
|
</p>
|
|
</div>
|
|
<div id="outline-container-org3483d53" class="outline-4">
|
|
<h4 id="org3483d53"><span class="section-number-4">1.3.1</span> Identification of the damped plant</h4>
|
|
<div class="outline-text-4" id="text-1-3-1">
|
|
<p>
|
|
Let’s identify the dynamics from \(\bm{\tau}^\prime\) to \(d\bm{\mathcal{L}}\) as shown in Figure <a href="#org1f813a3">1</a>.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'output'</span>, [], <span class="org-string">'Dnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Leg Displacement</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gl = linearize(mdl, io, 0);
|
|
Gl.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
Gl.OutputName = {<span class="org-string">'Dnlm1'</span>, <span class="org-string">'Dnlm2'</span>, <span class="org-string">'Dnlm3'</span>, <span class="org-string">'Dnlm4'</span>, <span class="org-string">'Dnlm5'</span>, <span class="org-string">'Dnlm6'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
There are some unstable poles in the Plant with very small imaginary parts.
|
|
These unstable poles are probably not physical, and they disappear when taking the minimum realization of the plant.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> isstable(Gl)
|
|
Gl = minreal(Gl);
|
|
isstable(Gl)
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org5ae9c6f" class="outline-4">
|
|
<h4 id="org5ae9c6f"><span class="section-number-4">1.3.2</span> Obtained Plant</h4>
|
|
<div class="outline-text-4" id="text-1-3-2">
|
|
<p>
|
|
The obtained dynamics is shown in Figure <a href="#orgb3bf97f">5</a>.
|
|
</p>
|
|
|
|
<p>
|
|
Few things can be said on the dynamics:
|
|
</p>
|
|
<ul class="org-ul">
|
|
<li>the dynamics of the diagonal elements are almost all the same</li>
|
|
<li>the system is well decoupled below the resonances of the nano-hexapod (1Hz)</li>
|
|
<li>the dynamics of the diagonal elements are almost equivalent to a critically damped mass-spring-system with some spurious resonances above 50Hz corresponding to the resonances of the micro-station</li>
|
|
</ul>
|
|
|
|
|
|
<div id="orgb3bf97f" class="figure">
|
|
<p><img src="figs/cascade_vc_hac_joint_plant.png" alt="cascade_vc_hac_joint_plant.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 5: </span>Plant for the High Authority Control in the Joint Space (<a href="./figs/cascade_vc_hac_joint_plant.png">png</a>, <a href="./figs/cascade_vc_hac_joint_plant.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgcaea664" class="outline-4">
|
|
<h4 id="orgcaea664"><span class="section-number-4">1.3.3</span> Controller Design and Loop Gain</h4>
|
|
<div class="outline-text-4" id="text-1-3-3">
|
|
<p>
|
|
As the plant is well decoupled, a diagonal plant is designed.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10; <span class="org-comment">% Bandwidth Bandwidth [rad/s]</span>
|
|
|
|
h = 2; <span class="org-comment">% Lead parameter</span>
|
|
|
|
Kl = (s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>1)<span class="org-type">/</span>s;
|
|
|
|
<span class="org-comment">% Normalization of the gain of have a loop gain of 1 at frequency wc</span>
|
|
Kl = Kl<span class="org-type">.*</span>diag(1<span class="org-type">./</span>diag(abs(freqresp(Gl<span class="org-type">*</span>Kl, wc))));
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgad027ff" class="outline-3">
|
|
<h3 id="orgad027ff"><span class="section-number-3">1.4</span> Primary Controller in the task space - \(\bm{K}_\mathcal{X}\)</h3>
|
|
<div class="outline-text-3" id="text-1-4">
|
|
<p>
|
|
<a id="org78c42ce"></a>
|
|
</p>
|
|
</div>
|
|
<div id="outline-container-orgf5c092a" class="outline-4">
|
|
<h4 id="orgf5c092a"><span class="section-number-4">1.4.1</span> Identification of the linearized plant</h4>
|
|
<div class="outline-text-4" id="text-1-4-1">
|
|
<p>
|
|
We know identify the dynamics between \(\bm{r}_{\mathcal{X}_n}\) and \(\bm{r}_\mathcal{X}\).
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller/Cascade-HAC-LAC/Kp'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gp = linearize(mdl, io, 0);
|
|
Gp.InputName = {<span class="org-string">'rl1'</span>, <span class="org-string">'rl2'</span>, <span class="org-string">'rl3'</span>, <span class="org-string">'rl4'</span>, <span class="org-string">'rl5'</span>, <span class="org-string">'rl6'</span>};
|
|
Gp.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
A minus sign is added because the minus sign is already included in the plant identification.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> isstable(Gp)
|
|
Gp = <span class="org-type">-</span>minreal(Gp);
|
|
isstable(Gp)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/stages.mat'</span>, <span class="org-string">'nano_hexapod'</span>);
|
|
Gpx = Gp<span class="org-type">*</span>inv(nano_hexapod.kinematics.J<span class="org-type">'</span>);
|
|
Gpx.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
|
|
|
|
Gpl = nano_hexapod.kinematics.J<span class="org-type">*</span>Gp;
|
|
Gpl.OutputName = {<span class="org-string">'El1'</span>, <span class="org-string">'El2'</span>, <span class="org-string">'El3'</span>, <span class="org-string">'El4'</span>, <span class="org-string">'El5'</span>, <span class="org-string">'El6'</span>};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgab76ff4" class="outline-4">
|
|
<h4 id="orgab76ff4"><span class="section-number-4">1.4.2</span> Obtained Plant</h4>
|
|
<div class="outline-text-4" id="text-1-4-2">
|
|
|
|
<div id="orga593b06" class="figure">
|
|
<p><img src="figs/primary_plant_voice_coil_X.png" alt="primary_plant_voice_coil_X.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 6: </span>Obtained Primary plant in the Task space (<a href="./figs/primary_plant_voice_coil_X.png">png</a>, <a href="./figs/primary_plant_voice_coil_X.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="orga953a31" class="figure">
|
|
<p><img src="figs/primary_plant_voice_coil_L.png" alt="primary_plant_voice_coil_L.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 7: </span>Obtained Primary plant in the frame of the legs (<a href="./figs/primary_plant_voice_coil_L.png">png</a>, <a href="./figs/primary_plant_voice_coil_L.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div id="outline-container-org6cf4594" class="outline-4">
|
|
<h4 id="org6cf4594"><span class="section-number-4">1.4.3</span> Controller Design</h4>
|
|
<div class="outline-text-4" id="text-1-4-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>200; <span class="org-comment">% Bandwidth Bandwidth [rad/s]</span>
|
|
|
|
h = 2; <span class="org-comment">% Lead parameter</span>
|
|
|
|
Kp = (1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...
|
|
(1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h); <span class="org-comment">% For Piezo</span>
|
|
<span class="org-comment">% Kp = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * (s + 2*pi*10)/s * (s + 2*pi*1)/s ; % For voice coil</span>
|
|
|
|
<span class="org-comment">% Normalization of the gain of have a loop gain of 1 at frequency wc</span>
|
|
Kp = Kp<span class="org-type">.*</span>diag(1<span class="org-type">./</span>diag(abs(freqresp(Gpx<span class="org-type">*</span>Kp, wc))));
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org3b9c090" class="figure">
|
|
<p><img src="figs/loop_gain_primary_voice_coil_X.png" alt="loop_gain_primary_voice_coil_X.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 8: </span>Obtained Loop gain for the primary controller in the Task space (<a href="./figs/loop_gain_primary_voice_coil_X.png">png</a>, <a href="./figs/loop_gain_primary_voice_coil_X.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
|
|
<p>
|
|
And now we include the Jacobian inside the controller.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> Kp = inv(nano_hexapod.kinematics.J<span class="org-type">'</span>)<span class="org-type">*</span>Kp;
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org1e0ce86" class="outline-3">
|
|
<h3 id="org1e0ce86"><span class="section-number-3">1.5</span> Simulation</h3>
|
|
<div class="outline-text-3" id="text-1-5">
|
|
<p>
|
|
Let’s first save the 3 controllers for further analysis:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> save(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kiff'</span>, <span class="org-string">'Kl'</span>, <span class="org-string">'Kp'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/conf_simulink.mat'</span>);
|
|
<span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simulink</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'2'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
And we simulate the system.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-simulink-keyword">sim</span>(<span class="org-string">'nass_model'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> cascade_hac_lac_lorentz = simout;
|
|
save(<span class="org-string">'./mat/cascade_hac_lac.mat'</span>, <span class="org-string">'cascade_hac_lac_lorentz'</span>, <span class="org-string">'-append'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org95222f2" class="outline-3">
|
|
<h3 id="org95222f2"><span class="section-number-3">1.6</span> Results</h3>
|
|
<div class="outline-text-3" id="text-1-6">
|
|
</div>
|
|
<div id="outline-container-orgd48ac26" class="outline-4">
|
|
<h4 id="orgd48ac26"><span class="section-number-4">1.6.1</span> Load the simulation results</h4>
|
|
<div class="outline-text-4" id="text-1-6-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'./mat/experiment_tomography.mat'</span>, <span class="org-string">'tomo_align_dist'</span>);
|
|
load(<span class="org-string">'./mat/cascade_hac_lac.mat'</span>, <span class="org-string">'cascade_hac_lac'</span>, <span class="org-string">'cascade_hac_lac_lorentz'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org5c1a980" class="outline-4">
|
|
<h4 id="org5c1a980"><span class="section-number-4">1.6.2</span> Control effort</h4>
|
|
<div class="outline-text-4" id="text-1-6-2">
|
|
|
|
<div id="orgbd46834" class="figure">
|
|
<p><img src="figs/actuator_force_torques_tomography_voice_coil.png" alt="actuator_force_torques_tomography_voice_coil.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 9: </span>Actuator Action during a tomography experiment when using Voice Coil actuators (<a href="./figs/actuator_force_torques_tomography_voice_coil.png">png</a>, <a href="./figs/actuator_force_torques_tomography_voice_coil.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org1925325" class="outline-4">
|
|
<h4 id="org1925325"><span class="section-number-4">1.6.3</span> Load the simulation results</h4>
|
|
<div class="outline-text-4" id="text-1-6-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> n_av = 4;
|
|
han_win = hanning(ceil(length(cascade_hac_lac.Em.En.Data(<span class="org-type">:</span>,1))<span class="org-type">/</span>n_av));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> t = cascade_hac_lac.Em.En.Time;
|
|
Ts = t(2)<span class="org-type">-</span>t(1);
|
|
|
|
[pxx_ol, f] = pwelch(tomo_align_dist.Em.En.Data, han_win, [], [], 1<span class="org-type">/</span>Ts);
|
|
[pxx_ca, <span class="org-type">~</span>] = pwelch(cascade_hac_lac.Em.En.Data, han_win, [], [], 1<span class="org-type">/</span>Ts);
|
|
[pxx_vc, <span class="org-type">~</span>] = pwelch(cascade_hac_lac_lorentz.Em.En.Data, han_win, [], [], 1<span class="org-type">/</span>Ts);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgee79219" class="figure">
|
|
<p><img src="figs/exp_tomography_voice_coil_psd_pos_error.png" alt="exp_tomography_voice_coil_psd_pos_error.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 10: </span>Power Spectral Density of the position error during a tomography experiment when using Voice Coil based nano-hexapod (<a href="./figs/exp_tomography_voice_coil_psd_pos_error.png">png</a>, <a href="./figs/exp_tomography_voice_coil_psd_pos_error.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
|
|
<div id="orgded92ba" class="figure">
|
|
<p><img src="figs/exp_tomography_voice_coil_cap_pos_error.png" alt="exp_tomography_voice_coil_cap_pos_error.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 11: </span>Cumulative Amplitude Spectrum of the position error during a tomography experiment when using Voice Coil based nano-hexapod (<a href="./figs/exp_tomography_voice_coil_cap_pos_error.png">png</a>, <a href="./figs/exp_tomography_voice_coil_cap_pos_error.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
|
|
<div id="orgb4390be" class="figure">
|
|
<p><img src="figs/exp_tomography_voice_coil_time_domain.png" alt="exp_tomography_voice_coil_time_domain.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 12: </span>Position error during a tomography experiment when using Voice Coil based nano-hexapod (<a href="./figs/exp_tomography_voice_coil_time_domain.png">png</a>, <a href="./figs/exp_tomography_voice_coil_time_domain.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div id="outline-container-org75df314" class="outline-3">
|
|
<h3 id="org75df314"><span class="section-number-3">1.7</span> Compliance of the nano-hexapod</h3>
|
|
<div class="outline-text-3" id="text-1-7">
|
|
</div>
|
|
<div id="outline-container-org90e3591" class="outline-4">
|
|
<h4 id="org90e3591"><span class="section-number-4">1.7.1</span> Identification</h4>
|
|
<div class="outline-text-4" id="text-1-7-1">
|
|
<p>
|
|
Let’s identify the Compliance of the NASS:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/Fd'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Direct Forces/Torques applied on the sample</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
First in open-loop:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> Kp = tf(zeros(6));
|
|
Kl = tf(zeros(6));
|
|
Kiff = tf(zeros(6));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gc_ol = linearize(mdl, io, 0);
|
|
Gc_ol.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
|
Gc_ol.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Then with the IFF control.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kiff'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gc_iff = linearize(mdl, io, 0);
|
|
Gc_iff.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
|
Gc_iff.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
With the HAC control added
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kl'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gc_hac = linearize(mdl, io, 0);
|
|
Gc_hac.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
|
Gc_hac.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Finally with the primary controller
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kp'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gc_pri = linearize(mdl, io, 0);
|
|
Gc_pri.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
|
Gc_pri.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org551690b" class="outline-4">
|
|
<h4 id="org551690b"><span class="section-number-4">1.7.2</span> Obtained Compliance</h4>
|
|
<div class="outline-text-4" id="text-1-7-2">
|
|
|
|
<div id="org134ae9a" class="figure">
|
|
<p><img src="figs/compliance_evolution_vc_cascade_control.png" alt="compliance_evolution_vc_cascade_control.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 13: </span>Evolution of the NASS compliance with each control loop added (<a href="./figs/compliance_evolution_vc_cascade_control.png">png</a>, <a href="./figs/compliance_evolution_vc_cascade_control.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org5bb25e6" class="outline-4">
|
|
<h4 id="org5bb25e6"><span class="section-number-4">1.7.3</span> Comparison with Piezo</h4>
|
|
<div class="outline-text-4" id="text-1-7-3">
|
|
<p>
|
|
Let’s initialize a nano-hexapod with piezoelectric actuators.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We don’t use any controller.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> Kp = tf(zeros(6));
|
|
Kl = tf(zeros(6));
|
|
Kiff = tf(zeros(6));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gc_pz = linearize(mdl, io, 0);
|
|
Gc_pz.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
|
Gc_pz.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgbe6ef3b" class="figure">
|
|
<p><img src="figs/compliance_comp_pz_vc_cascade.png" alt="compliance_comp_pz_vc_cascade.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 14: </span>Comparison of the compliance using the open-loop piezo-nano hexapod and the voice coil nano-hexapod with the cascade control topology (<a href="./figs/compliance_comp_pz_vc_cascade.png">png</a>, <a href="./figs/compliance_comp_pz_vc_cascade.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div id="outline-container-org1714267" class="outline-3">
|
|
<h3 id="org1714267"><span class="section-number-3">1.8</span> Robustness to Payload Variability</h3>
|
|
<div class="outline-text-3" id="text-1-8">
|
|
</div>
|
|
<div id="outline-container-orge46eb9a" class="outline-4">
|
|
<h4 id="orge46eb9a"><span class="section-number-4">1.8.1</span> Initialization</h4>
|
|
<div class="outline-text-4" id="text-1-8-1">
|
|
<p>
|
|
Let’s change the payload mass, and see if the controller design for a payload mass of 1 still gives good performance.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeSample(<span class="org-string">'mass'</span>, 50);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> Kp = tf(zeros(6));
|
|
Kl = tf(zeros(6));
|
|
Kiff = tf(zeros(6));
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org164b889" class="outline-4">
|
|
<h4 id="org164b889"><span class="section-number-4">1.8.2</span> Low Authority Control</h4>
|
|
<div class="outline-text-4" id="text-1-8-2">
|
|
<p>
|
|
Let’s first identify the transfer function for the Low Authority control.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Fnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensors</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G_iff_m = linearize(mdl, io, 0);
|
|
G_iff_m.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
G_iff_m.OutputName = {<span class="org-string">'Fnlm1'</span>, <span class="org-string">'Fnlm2'</span>, <span class="org-string">'Fnlm3'</span>, <span class="org-string">'Fnlm4'</span>, <span class="org-string">'Fnlm5'</span>, <span class="org-string">'Fnlm6'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
The obtained dynamics is compared when using a payload of 1Kg in Figure <a href="#org7f0d9ef">15</a>.
|
|
</p>
|
|
|
|
|
|
<div id="org7f0d9ef" class="figure">
|
|
<p><img src="figs/voice_coil_variability_mass_iff.png" alt="voice_coil_variability_mass_iff.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 15: </span>Dynamics of the LAC plant when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (<a href="./figs/voice_coil_variability_mass_iff.png">png</a>, <a href="./figs/voice_coil_variability_mass_iff.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
<p>
|
|
A gain of 50 will here suffice to obtain critical damping of the nano-hexapod modes.
|
|
</p>
|
|
|
|
<p>
|
|
Let’s load the IFF controller designed when the payload has a mass of 1Kg.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kiff'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgad356a7" class="figure">
|
|
<p><img src="figs/voice_coil_variability_mass_iff_loop_gain.png" alt="voice_coil_variability_mass_iff_loop_gain.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 16: </span>Loop gain for the IFF Control when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (<a href="./figs/voice_coil_variability_mass_iff_loop_gain.png">png</a>, <a href="./figs/voice_coil_variability_mass_iff_loop_gain.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org31d435c" class="outline-4">
|
|
<h4 id="org31d435c"><span class="section-number-4">1.8.3</span> High Authority Control</h4>
|
|
<div class="outline-text-4" id="text-1-8-3">
|
|
<p>
|
|
We use the Integral Force Feedback developed with a mass of 1Kg and we identify the dynamics for the High Authority Controller in the case of the 50Kg payload
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'output'</span>, [], <span class="org-string">'Dnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Leg Displacement</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gl_m = linearize(mdl, io, 0);
|
|
Gl_m.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
Gl_m.OutputName = {<span class="org-string">'Dnlm1'</span>, <span class="org-string">'Dnlm2'</span>, <span class="org-string">'Dnlm3'</span>, <span class="org-string">'Dnlm4'</span>, <span class="org-string">'Dnlm5'</span>, <span class="org-string">'Dnlm6'</span>};
|
|
|
|
isstable(Gl_m)
|
|
Gl_m = minreal(Gl_m);
|
|
isstable(Gl_m)
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgd1640d1" class="figure">
|
|
<p><img src="figs/voice_coil_variability_mass_hac_plant.png" alt="voice_coil_variability_mass_hac_plant.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 17: </span>Dynamics of the HAC plant when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (<a href="./figs/voice_coil_variability_mass_hac_plant.png">png</a>, <a href="./figs/voice_coil_variability_mass_hac_plant.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
<p>
|
|
We load the HAC controller design when the payload has a mass of 1Kg.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kl'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org6511912" class="figure">
|
|
<p><img src="figs/voice_coil_variability_mass_hac_lool_gain.png" alt="voice_coil_variability_mass_hac_lool_gain.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 18: </span>Loop Gain of the HAC when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (<a href="./figs/voice_coil_variability_mass_hac_lool_gain.png">png</a>, <a href="./figs/voice_coil_variability_mass_hac_lool_gain.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org81ced5e" class="outline-4">
|
|
<h4 id="org81ced5e"><span class="section-number-4">1.8.4</span> Primary Plant</h4>
|
|
<div class="outline-text-4" id="text-1-8-4">
|
|
<p>
|
|
We use the Low Authority Controller developed with a mass of 1Kg and we identify the dynamics for the Primary controller in the case of the 50Kg payload.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller/Cascade-HAC-LAC/Kp'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gp_m = linearize(mdl, io, 0);
|
|
Gp_m.InputName = {<span class="org-string">'rl1'</span>, <span class="org-string">'rl2'</span>, <span class="org-string">'rl3'</span>, <span class="org-string">'rl4'</span>, <span class="org-string">'rl5'</span>, <span class="org-string">'rl6'</span>};
|
|
Gp_m.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
A minus sign is added to cancel the minus sign already included in the identified plant.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> isstable(Gp_m)
|
|
Gp_m = <span class="org-type">-</span>minreal(Gp_m);
|
|
isstable(Gp_m)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/stages.mat'</span>, <span class="org-string">'nano_hexapod'</span>);
|
|
Gpx_m = Gp_m<span class="org-type">*</span>inv(nano_hexapod.kinematics.J<span class="org-type">'</span>);
|
|
Gpx_m.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
|
|
|
|
Gpl_m = nano_hexapod.kinematics.J<span class="org-type">*</span>Gp_m;
|
|
Gpl_m.OutputName = {<span class="org-string">'El1'</span>, <span class="org-string">'El2'</span>, <span class="org-string">'El3'</span>, <span class="org-string">'El4'</span>, <span class="org-string">'El5'</span>, <span class="org-string">'El6'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="important" id="orgf81c3d0">
|
|
<p>
|
|
There are two zeros with positive real part for the plant in the y direction at about 100Hz.
|
|
This is problematic as it limits the bandwidth to be less than \(\approx 50\ \text{Hz}\).
|
|
</p>
|
|
|
|
<p>
|
|
It is important here to physically understand why such “positive” zero appears.
|
|
</p>
|
|
|
|
<p>
|
|
If we make a “rigid” 50kg paylaod, the positive zero disappears.
|
|
</p>
|
|
|
|
</div>
|
|
|
|
|
|
<div id="org6e8faf0" class="figure">
|
|
<p><img src="figs/voice_coil_variability_mass_primary_plant.png" alt="voice_coil_variability_mass_primary_plant.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 19: </span>Dynamics of the Primary plant when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (<a href="./figs/voice_coil_variability_mass_primary_plant.png">png</a>, <a href="./figs/voice_coil_variability_mass_primary_plant.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
<p>
|
|
We load the primary controller that was design when the payload has a mass of 1Kg.
|
|
</p>
|
|
|
|
<p>
|
|
We load the HAC controller design when the payload has a mass of 1Kg.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kp'</span>)
|
|
Kp_x = nano_hexapod.kinematics.J<span class="org-type">'*</span>Kp;
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>50; <span class="org-comment">% Bandwidth Bandwidth [rad/s]</span>
|
|
|
|
h = 2; <span class="org-comment">% Lead parameter</span>
|
|
|
|
Kp = (1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...
|
|
(1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...
|
|
(s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>1)<span class="org-type">/</span>s <span class="org-type">*</span> ...
|
|
1<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span>wc); <span class="org-comment">% For Piezo</span>
|
|
|
|
<span class="org-comment">% Normalization of the gain of have a loop gain of 1 at frequency wc</span>
|
|
Kp = Kp<span class="org-type">.*</span>diag(1<span class="org-type">./</span>diag(abs(freqresp(Gpx_m<span class="org-type">*</span>Kp, wc))));
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org8df5a24" class="figure">
|
|
<p><img src="figs/voice_coil_variability_mass_primary_lool_gain.png" alt="voice_coil_variability_mass_primary_lool_gain.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 20: </span>Loop Gain of the Primary loop when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (<a href="./figs/voice_coil_variability_mass_primary_lool_gain.png">png</a>, <a href="./figs/voice_coil_variability_mass_primary_lool_gain.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgf70d92f" class="outline-4">
|
|
<h4 id="orgf70d92f"><span class="section-number-4">1.8.5</span> Simulation</h4>
|
|
<div class="outline-text-4" id="text-1-8-5">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/conf_simulink.mat'</span>);
|
|
<span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simulink</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'2'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
And we simulate the system.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-simulink-keyword">sim</span>(<span class="org-string">'nass_model'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> cascade_hac_lac_lorentz_high_mass = simout;
|
|
save(<span class="org-string">'./mat/cascade_hac_lac.mat'</span>, <span class="org-string">'cascade_hac_lac_lorentz_high_mass'</span>, <span class="org-string">'-append'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'./mat/experiment_tomography.mat'</span>, <span class="org-string">'tomo_align_dist'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgc5b4ff7" class="outline-2">
|
|
<h2 id="orgc5b4ff7"><span class="section-number-2">2</span> Other analysis</h2>
|
|
<div class="outline-text-2" id="text-2">
|
|
</div>
|
|
<div id="outline-container-org0c25923" class="outline-3">
|
|
<h3 id="org0c25923"><span class="section-number-3">2.1</span> Robustness to Payload Variability</h3>
|
|
<div class="outline-text-3" id="text-2-1">
|
|
<ul class="org-ul">
|
|
<li class="off"><code>[ ]</code> For 3/masses (1kg, 10kg, 50kg), plot each of the 3 plants</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgab21563" class="outline-3">
|
|
<h3 id="orgab21563"><span class="section-number-3">2.2</span> Direct HAC control in the task space - \(\bm{K}_\mathcal{X}\)</h3>
|
|
<div class="outline-text-3" id="text-2-2">
|
|
|
|
<div id="orgd3ea404" class="figure">
|
|
<p><img src="figs/control_architecture_hac_iff_pos_X.png" alt="control_architecture_hac_iff_pos_X.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 21: </span>Control Architecture containing an IFF controller and a Controller in the task space</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgdf14eef" class="outline-4">
|
|
<h4 id="orgdf14eef"><span class="section-number-4">2.2.1</span> Identification</h4>
|
|
<div class="outline-text-4" id="text-2-2-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeController(<span class="org-string">'type'</span>, <span class="org-string">'hac-iff'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller/HAC-IFF/Kx'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Control input</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G = linearize(mdl, io, 0);
|
|
G.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
G.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> isstable(G)
|
|
G = <span class="org-type">-</span>minreal(G);
|
|
isstable(G)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/stages.mat'</span>, <span class="org-string">'nano_hexapod'</span>);
|
|
Gx = G<span class="org-type">*</span>inv(nano_hexapod.kinematics.J<span class="org-type">'</span>);
|
|
Gx.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
|
|
|
|
Gl = nano_hexapod.kinematics.J<span class="org-type">*</span>G;
|
|
Gl.OutputName = {<span class="org-string">'El1'</span>, <span class="org-string">'El2'</span>, <span class="org-string">'El3'</span>, <span class="org-string">'El4'</span>, <span class="org-string">'El5'</span>, <span class="org-string">'El6'</span>};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org22cbe37" class="outline-4">
|
|
<h4 id="org22cbe37"><span class="section-number-4">2.2.2</span> Obtained Plant in the Task Space</h4>
|
|
</div>
|
|
<div id="outline-container-orgde17d6e" class="outline-4">
|
|
<h4 id="orgde17d6e"><span class="section-number-4">2.2.3</span> Obtained Plant in the Joint Space</h4>
|
|
</div>
|
|
<div id="outline-container-org1164b66" class="outline-4">
|
|
<h4 id="org1164b66"><span class="section-number-4">2.2.4</span> Controller Design in the Joint Space</h4>
|
|
<div class="outline-text-4" id="text-2-2-4">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>200; <span class="org-comment">% Bandwidth Bandwidth [rad/s]</span>
|
|
|
|
h = 2; <span class="org-comment">% Lead parameter</span>
|
|
|
|
Kx = (1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...<span class="org-comment"> % Lead</span>
|
|
(1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...<span class="org-comment"> % Lead</span>
|
|
(s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10)<span class="org-type">/</span>s <span class="org-type">*</span> ...<span class="org-comment"> % Pseudo Integrator</span>
|
|
1<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>500); <span class="org-comment">% Low pass Filter</span>
|
|
|
|
<span class="org-comment">% Normalization of the gain of have a loop gain of 1 at frequency wc</span>
|
|
Kx = Kx<span class="org-type">.*</span>diag(1<span class="org-type">./</span>diag(abs(freqresp(Gx<span class="org-type">*</span>Kx, wc))));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>200; <span class="org-comment">% Bandwidth Bandwidth [rad/s]</span>
|
|
|
|
h = 2; <span class="org-comment">% Lead parameter</span>
|
|
|
|
Kl = (1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...<span class="org-comment"> % Lead</span>
|
|
(1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...<span class="org-comment"> % Lead</span>
|
|
(s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>1)<span class="org-type">/</span>s <span class="org-type">*</span> ...<span class="org-comment"> % Pseudo Integrator</span>
|
|
(s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10)<span class="org-type">/</span>s <span class="org-type">*</span> ...<span class="org-comment"> % Pseudo Integrator</span>
|
|
1<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>500); <span class="org-comment">% Low pass Filter</span>
|
|
|
|
<span class="org-comment">% Normalization of the gain of have a loop gain of 1 at frequency wc</span>
|
|
Kl = Kl<span class="org-type">.*</span>diag(1<span class="org-type">./</span>diag(abs(freqresp(Gl<span class="org-type">*</span>Kl, wc))));
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgf91d5cc" class="outline-3">
|
|
<h3 id="orgf91d5cc"><span class="section-number-3">2.3</span> On the usefulness of the High Authority Control loop / Linearization loop</h3>
|
|
<div class="outline-text-3" id="text-2-3">
|
|
<p>
|
|
Let’s see what happens is we omit the HAC loop and we directly try to control the damped plant using the measurement of the sample with respect to the granite \(\bm{\mathcal{X}}\).
|
|
</p>
|
|
|
|
<p>
|
|
We can do that in two different ways:
|
|
</p>
|
|
<ul class="org-ul">
|
|
<li>in the task space as shown in Figure <a href="#org1e85d5f">22</a></li>
|
|
<li>in the space of the legs as shown in Figure <a href="#orgd6fe9fc">23</a></li>
|
|
</ul>
|
|
|
|
|
|
<div id="org1e85d5f" class="figure">
|
|
<p><img src="figs/control_architecture_iff_X.png" alt="control_architecture_iff_X.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 22: </span>IFF control + primary controller in the task space</p>
|
|
</div>
|
|
|
|
|
|
<div id="orgd6fe9fc" class="figure">
|
|
<p><img src="figs/control_architecture_iff_L.png" alt="control_architecture_iff_L.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 23: </span>HAC-LAC control architecture in the frame of the legs</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org40e4287" class="outline-4">
|
|
<h4 id="org40e4287"><span class="section-number-4">2.3.1</span> Identification</h4>
|
|
<div class="outline-text-4" id="text-2-3-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeController(<span class="org-string">'type'</span>, <span class="org-string">'hac-iff'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller/HAC-IFF/Kx'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G = linearize(mdl, io, 0);
|
|
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
|
G.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> isstable(G)
|
|
G = <span class="org-type">-</span>minreal(G);
|
|
isstable(G)
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orge35a7ca" class="outline-4">
|
|
<h4 id="orge35a7ca"><span class="section-number-4">2.3.2</span> Plant in the Task space</h4>
|
|
<div class="outline-text-4" id="text-2-3-2">
|
|
<p>
|
|
The obtained plant is shown in Figure
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> Gx = G<span class="org-type">*</span>inv(nano_hexapod.kinematics.J<span class="org-type">'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org01b3e07" class="outline-4">
|
|
<h4 id="org01b3e07"><span class="section-number-4">2.3.3</span> Plant in the Leg’s space</h4>
|
|
<div class="outline-text-4" id="text-2-3-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> Gl = nano_hexapod.kinematics.J<span class="org-type">*</span>G;
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org7a785de" class="outline-3">
|
|
<h3 id="org7a785de"><span class="section-number-3">2.4</span> DVF instead of IFF?</h3>
|
|
<div class="outline-text-3" id="text-2-4">
|
|
</div>
|
|
<div id="outline-container-orgb5656fe" class="outline-4">
|
|
<h4 id="orgb5656fe"><span class="section-number-4">2.4.1</span> Initialization and Identification</h4>
|
|
<div class="outline-text-4" id="text-2-4-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeController(<span class="org-string">'type'</span>, <span class="org-string">'hac-dvf'</span>);
|
|
Kdvf = tf(zeros(6));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Dnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Displacement Sensors</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G_dvf = linearize(mdl, io, 0);
|
|
G_dvf.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
G_dvf.OutputName = {<span class="org-string">'Dlm1'</span>, <span class="org-string">'Dlm2'</span>, <span class="org-string">'Dlm3'</span>, <span class="org-string">'Dlm4'</span>, <span class="org-string">'Dlm5'</span>, <span class="org-string">'Dlm6'</span>};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org84acb61" class="outline-4">
|
|
<h4 id="org84acb61"><span class="section-number-4">2.4.2</span> Obtained Plant</h4>
|
|
</div>
|
|
<div id="outline-container-orgcc6deb3" class="outline-4">
|
|
<h4 id="orgcc6deb3"><span class="section-number-4">2.4.3</span> Controller</h4>
|
|
<div class="outline-text-4" id="text-2-4-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> Kdvf = <span class="org-type">-</span>850<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>1000)<span class="org-type">*</span>eye(6);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div id="outline-container-org1494957" class="outline-4">
|
|
<h4 id="org1494957"><span class="section-number-4">2.4.4</span> HAC Identification</h4>
|
|
<div class="outline-text-4" id="text-2-4-4">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller/HAC-DVF/Kx'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Control input</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G = linearize(mdl, io, 0);
|
|
G.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
G.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> isstable(G)
|
|
G = <span class="org-type">-</span>minreal(G);
|
|
isstable(G)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/stages.mat'</span>, <span class="org-string">'nano_hexapod'</span>);
|
|
Gx = G<span class="org-type">*</span>inv(nano_hexapod.kinematics.J<span class="org-type">'</span>);
|
|
Gx.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
|
|
|
|
Gl = nano_hexapod.kinematics.J<span class="org-type">*</span>G;
|
|
Gl.OutputName = {<span class="org-string">'El1'</span>, <span class="org-string">'El2'</span>, <span class="org-string">'El3'</span>, <span class="org-string">'El4'</span>, <span class="org-string">'El5'</span>, <span class="org-string">'El6'</span>};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org6504f5b" class="outline-4">
|
|
<h4 id="org6504f5b"><span class="section-number-4">2.4.5</span> Conclusion</h4>
|
|
<div class="outline-text-4" id="text-2-4-5">
|
|
<div class="important" id="org1b02bb2">
|
|
<p>
|
|
DVF can be used instead of IFF.
|
|
</p>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div id="postamble" class="status">
|
|
<p class="author">Author: Dehaeze Thomas</p>
|
|
<p class="date">Created: 2021-02-20 sam. 23:08</p>
|
|
</div>
|
|
</body>
|
|
</html>
|