195 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			195 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <?xml version="1.0" encoding="utf-8"?>
 | |
| <?xml version="1.0" encoding="utf-8"?>
 | |
| <?xml version="1.0" encoding="utf-8"?>
 | |
| <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 | |
| "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 | |
| <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 | |
| <head>
 | |
| <!-- 2020-05-05 mar. 10:34 -->
 | |
| <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 | |
| <title>Centrifugal Forces</title>
 | |
| <meta name="generator" content="Org mode" />
 | |
| <meta name="author" content="Dehaeze Thomas" />
 | |
| <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
 | |
| <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
 | |
| <script src="./js/jquery.min.js"></script>
 | |
| <script src="./js/bootstrap.min.js"></script>
 | |
| <script src="./js/jquery.stickytableheaders.min.js"></script>
 | |
| <script src="./js/readtheorg.js"></script>
 | |
| <script>MathJax = {
 | |
|           tex: {
 | |
|             tags: 'ams',
 | |
|             macros: {bm: ["\\boldsymbol{#1}",1],}
 | |
|             }
 | |
|           };
 | |
|           </script>
 | |
|           <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
 | |
| </head>
 | |
| <body>
 | |
| <div id="org-div-home-and-up">
 | |
|  <a accesskey="h" href="./index.html"> UP </a>
 | |
|  |
 | |
|  <a accesskey="H" href="./index.html"> HOME </a>
 | |
| </div><div id="content">
 | |
| <h1 class="title">Centrifugal Forces</h1>
 | |
| <div id="table-of-contents">
 | |
| <h2>Table of Contents</h2>
 | |
| <div id="text-table-of-contents">
 | |
| <ul>
 | |
| <li><a href="#org49834ed">1. Parameters</a></li>
 | |
| <li><a href="#org4b7747e">2. Centrifugal forces for light and heavy sample</a></li>
 | |
| <li><a href="#org92c9f54">3. Centrifugal forces as a function of the rotation speed</a></li>
 | |
| <li><a href="#orgb7f1acf">4. Maximum rotation speed as a function of the mass</a></li>
 | |
| </ul>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| In this document, we wish to estimate the centrifugal forces due to the spindle’s rotation when the sample’s center of mass is off-centered with respect to the rotation axis.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| This is the case then the sample is moved by the micro-hexapod.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| The centrifugal forces are defined as represented Figure <a href="#orgd84fe6e">1</a> where:
 | |
| </p>
 | |
| <ul class="org-ul">
 | |
| <li>\(M\) is the total mass of the rotating elements in \([kg]\)</li>
 | |
| <li>\(\omega\) is the rotation speed in \([rad/s]\)</li>
 | |
| <li>\(r\) is the distance to the rotation axis in \([m]\)</li>
 | |
| </ul>
 | |
| 
 | |
| 
 | |
| <div id="orgd84fe6e" class="figure">
 | |
| <p><img src="./figs/centrifugal.png" alt="centrifugal.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 1: </span>Centrifugal forces</p>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org49834ed" class="outline-2">
 | |
| <h2 id="org49834ed"><span class="section-number-2">1</span> Parameters</h2>
 | |
| <div class="outline-text-2" id="text-1">
 | |
| <p>
 | |
| We define some parameters for the computation.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| The mass of the sample can vary from \(1\,kg\) to \(50\,kg\) to which is added to mass of the metrology reflector and the nano-hexapod’s top platform (here set to \(15\,kg\)).
 | |
| </p>
 | |
| 
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">M_light = 16; % mass of excentred parts mooving [kg]
 | |
| M_heavy = 65; % [kg]
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| For the light mass, the rotation speed is 60rpm whereas for the heavy mass, it is equal to 1rpm.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">w_light = 2*pi; % rotational speed [rad/s]
 | |
| w_heavy = 2*pi/60; % rotational speed [rad/s]
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| Finally, we consider a mass eccentricity of \(10\,mm\).
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">R = 0.1; % Excentricity [m]
 | |
| </pre>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org4b7747e" class="outline-2">
 | |
| <h2 id="org4b7747e"><span class="section-number-2">2</span> Centrifugal forces for light and heavy sample</h2>
 | |
| <div class="outline-text-2" id="text-2">
 | |
| <p>
 | |
| From the formula \(F_c = m \omega^2 r\), we obtain the values shown below.
 | |
| </p>
 | |
| 
 | |
| <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
 | |
| 
 | |
| 
 | |
| <colgroup>
 | |
| <col  class="org-left" />
 | |
| 
 | |
| <col  class="org-right" />
 | |
| </colgroup>
 | |
| <thead>
 | |
| <tr>
 | |
| <th scope="col" class="org-left"> </th>
 | |
| <th scope="col" class="org-right">Force [N]</th>
 | |
| </tr>
 | |
| </thead>
 | |
| <tbody>
 | |
| <tr>
 | |
| <td class="org-left">light</td>
 | |
| <td class="org-right">63.2</td>
 | |
| </tr>
 | |
| 
 | |
| <tr>
 | |
| <td class="org-left">heavy</td>
 | |
| <td class="org-right">0.1</td>
 | |
| </tr>
 | |
| </tbody>
 | |
| </table>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org92c9f54" class="outline-2">
 | |
| <h2 id="org92c9f54"><span class="section-number-2">3</span> Centrifugal forces as a function of the rotation speed</h2>
 | |
| <div class="outline-text-2" id="text-3">
 | |
| <p>
 | |
| The centrifugal forces as a function of the rotation speed for light and heavy sample is shown on Figure <a href="#orgfaf795f">2</a>.
 | |
| </p>
 | |
| 
 | |
| 
 | |
| <div id="orgfaf795f" class="figure">
 | |
| <p><img src="figs/centrifugal_forces_rpm.png" alt="centrifugal_forces_rpm.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 2: </span>Centrifugal forces function of the rotation speed</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-orgb7f1acf" class="outline-2">
 | |
| <h2 id="orgb7f1acf"><span class="section-number-2">4</span> Maximum rotation speed as a function of the mass</h2>
 | |
| <div class="outline-text-2" id="text-4">
 | |
| <p>
 | |
| We plot the maximum rotation speed as a function of the mass for different maximum force that we can use to counteract the centrifugal forces (Figure <a href="#org6ee8f38">3</a>).
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| From a specified maximum allowed centrifugal force (here set to \(100\,[N]\)), the maximum rotation speed as a function of the sample’s mass is shown in Figure <a href="#org6ee8f38">3</a>.
 | |
| </p>
 | |
| 
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">F_max = 100; % Maximum accepted centrifugal forces [N]
 | |
| 
 | |
| R = 0.1;
 | |
| 
 | |
| M_sample = 0:1:100;
 | |
| M_reflector = 15;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <div id="org6ee8f38" class="figure">
 | |
| <p><img src="figs/max_force_rpm.png" alt="max_force_rpm.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 3: </span>Maximum rotation speed as a function of the sample mass for an allowed centrifugal force of \(100\,[N]\)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| <div id="postamble" class="status">
 | |
| <p class="author">Author: Dehaeze Thomas</p>
 | |
| <p class="date">Created: 2020-05-05 mar. 10:34</p>
 | |
| </div>
 | |
| </body>
 | |
| </html>
 |