371 lines
14 KiB
HTML
371 lines
14 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
|
<head>
|
|
<!-- 2021-02-20 sam. 23:08 -->
|
|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
|
<title>Kinematics of the station</title>
|
|
<meta name="generator" content="Org mode" />
|
|
<meta name="author" content="Dehaeze Thomas" />
|
|
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
|
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
|
<script>
|
|
MathJax = {
|
|
svg: {
|
|
scale: 1,
|
|
fontCache: "global"
|
|
},
|
|
tex: {
|
|
tags: "ams",
|
|
multlineWidth: "%MULTLINEWIDTH",
|
|
tagSide: "right",
|
|
macros: {bm: ["\\boldsymbol{#1}",1],},
|
|
tagIndent: ".8em"
|
|
}
|
|
};
|
|
</script>
|
|
<script id="MathJax-script" async
|
|
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
|
|
</head>
|
|
<body>
|
|
<div id="org-div-home-and-up">
|
|
<a accesskey="h" href="./index.html"> UP </a>
|
|
|
|
|
<a accesskey="H" href="../../index.html"> HOME </a>
|
|
</div><div id="content">
|
|
<h1 class="title">Kinematics of the station</h1>
|
|
<div id="table-of-contents">
|
|
<h2>Table of Contents</h2>
|
|
<div id="text-table-of-contents">
|
|
<ul>
|
|
<li><a href="#org4ed4783">1. Micro Hexapod</a>
|
|
<ul>
|
|
<li><a href="#org129001c">1.1. How the Symetrie Hexapod is controlled on the micro station</a></li>
|
|
<li><a href="#org310b222">1.2. Control of the Micro-Hexapod using Simscape</a>
|
|
<ul>
|
|
<li><a href="#org8a60dbb">1.2.1. Using Bushing Joint</a></li>
|
|
<li><a href="#org207d470">1.2.2. Using Inverse Kinematics and Leg Actuators</a>
|
|
<ul>
|
|
<li><a href="#org1f70ebc">1.2.2.1. Theory</a></li>
|
|
<li><a href="#org8974896">1.2.2.2. Matlab Implementation</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
<p>
|
|
In this document, we discuss the way the motion of each stage is defined.
|
|
</p>
|
|
|
|
<div id="outline-container-org4ed4783" class="outline-2">
|
|
<h2 id="org4ed4783"><span class="section-number-2">1</span> Micro Hexapod</h2>
|
|
<div class="outline-text-2" id="text-1">
|
|
</div>
|
|
<div id="outline-container-org129001c" class="outline-3">
|
|
<h3 id="org129001c"><span class="section-number-3">1.1</span> How the Symetrie Hexapod is controlled on the micro station</h3>
|
|
<div class="outline-text-3" id="text-1-1">
|
|
<p>
|
|
For the Micro-Hexapod, the convention for the angles are defined in <code>MAN_A_Software API_4.0.150918_EN.pdf</code> on page 13 (section 2.4 - Rotation Vectors):
|
|
</p>
|
|
|
|
<blockquote>
|
|
<p>
|
|
The <b>Euler type II convention</b> is used to express the rotation vector.
|
|
This convention is mainly used in the aeronautics field (standard ISO 1151 concerning flight mechanics).
|
|
</p>
|
|
|
|
<p>
|
|
This convention uses the concepts of rotation of vehicles (ship, car and plane).
|
|
Generally, we consider that the main movement of the vehicle is following the X-axis and the Z-axis is parallel to the axis of gravity (at the initial position).
|
|
The roll rotation is around the X-axis, the pitch is around the Y-axis and yaw is the rotation around the Z-axis.
|
|
<b>The order of rotation is: Rx, Ry and then Rz.</b>
|
|
</p>
|
|
|
|
<p>
|
|
In most case, rotations are related to a reference with fixed axis; thus we say the rotations are around fixed axes.
|
|
The combination of these three rotations enables to write a rotation matrix.
|
|
This writing is unique and equal to:
|
|
\[ \bm{R} = \bm{R}_z(\gamma) \cdot \bm{R}_y(\beta) \cdot \bm{R}_x(\alpha) \]
|
|
</p>
|
|
|
|
<p>
|
|
The Euler type II convention corresponding to the <b>succession of rotations with respect to fixed axes</b>: first around X0, then Y0 and Z0.
|
|
This is equivalent to the succession of rotations with respect to mobile axes: first around Z0, then Y1’ and X2’.
|
|
</p>
|
|
</blockquote>
|
|
|
|
<p>
|
|
More generally on the Control of the Micro-Hexapod:
|
|
</p>
|
|
<blockquote>
|
|
<p>
|
|
Note that for all control modes, <b>the rotation center coincides with Object coordinate system origin</b>.
|
|
Moreover, the movements are controlled with <b>translation components at first</b> (Tx, Ty, Tz) <b>then rotation components</b> (Rx, Ry, Rz).
|
|
</p>
|
|
</blockquote>
|
|
|
|
<p>
|
|
Thus, it does the translations and then the rotation around the new translated frame.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org310b222" class="outline-3">
|
|
<h3 id="org310b222"><span class="section-number-3">1.2</span> Control of the Micro-Hexapod using Simscape</h3>
|
|
<div class="outline-text-3" id="text-1-2">
|
|
<p>
|
|
We can think of two main ways to position the Micro-Hexapod using Simscape.
|
|
</p>
|
|
|
|
<p>
|
|
The first one is to use only one Bushing Joint between the base and the mobile platform.
|
|
The advantage is that it is very easy to impose the wanted displacement, however, we loose the dynamical properties of the Hexapod.
|
|
</p>
|
|
|
|
<p>
|
|
The second way is to specify the wanted length of the legs of the Hexapod in order to have the wanted position of the mobile platform.
|
|
This require a little bit more of mathematical derivations but this is the chosen solution.
|
|
</p>
|
|
</div>
|
|
|
|
<div id="outline-container-org8a60dbb" class="outline-4">
|
|
<h4 id="org8a60dbb"><span class="section-number-4">1.2.1</span> Using Bushing Joint</h4>
|
|
<div class="outline-text-4" id="text-1-2-1">
|
|
<p>
|
|
In the documentation of the Bushing Joint (<code>doc "Bushing Joint"</code>) that is used to position the Hexapods, it is mention that the following frame is positioned with respect to the base frame in a way shown in figure <a href="#org0c4632e">1</a>.
|
|
</p>
|
|
|
|
|
|
<div id="org0c4632e" class="figure">
|
|
<p><img src="figs/bushing_joint_transform.png" alt="bushing_joint_transform.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 1: </span>Joint Transformation Sequence for the Bushing Joint</p>
|
|
</div>
|
|
|
|
<p>
|
|
Basically, it performs the translations, and then the rotation along the X, Y and Z axis of the moving frame.
|
|
The three rotations that we define thus corresponds to the Euler U-V-W angles.
|
|
</p>
|
|
|
|
<p>
|
|
We should have the <b>same behavior</b> for the Micro-Hexapod on Simscape (same inputs at least).
|
|
However, the Bushing Joint makes rotations around mobiles axes (X, Y’ and then Z’’) and not fixed axes (X, Y and Z).
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org207d470" class="outline-4">
|
|
<h4 id="org207d470"><span class="section-number-4">1.2.2</span> Using Inverse Kinematics and Leg Actuators</h4>
|
|
<div class="outline-text-4" id="text-1-2-2">
|
|
<p>
|
|
Here, we can use the Inverse Kinematic of the Hexapod to determine the length of each leg in order to obtain some defined translation and rotation of the mobile platform.
|
|
</p>
|
|
|
|
<p>
|
|
The advantages are:
|
|
</p>
|
|
<ul class="org-ul">
|
|
<li>we can position the Hexapod as we want by specifying a rotation matrix</li>
|
|
<li>the hexapod keeps its full flexibility as we don’t specify any wanted displacements, only leg’s rest position</li>
|
|
</ul>
|
|
|
|
<p>
|
|
However:
|
|
</p>
|
|
<ul class="org-ul">
|
|
<li>even though the rest position of each leg (the position where the stiffness force is zero) is set correctly, the hexapod will we deflected due to gravity</li>
|
|
</ul>
|
|
|
|
<p>
|
|
Thus, for this simulation, we <b>remove the gravity</b>.
|
|
</p>
|
|
</div>
|
|
|
|
<div id="outline-container-org1f70ebc" class="outline-5">
|
|
<h5 id="org1f70ebc"><span class="section-number-5">1.2.2.1</span> Theory</h5>
|
|
<div class="outline-text-5" id="text-1-2-2-1">
|
|
<p>
|
|
For inverse kinematic analysis, it is assumed that the position \({}^A\bm{P}\) and orientation of the moving platform \({}^A\bm{R}_B\) are given and the problem is to obtain the joint variables, namely, \(\bm{L} = [l_1, l_2, \dots, l_6]^T\).
|
|
</p>
|
|
|
|
<p>
|
|
From the geometry of the manipulator, the loop closure for each limb, \(i = 1, 2, \dots, 6\) can be written as
|
|
</p>
|
|
\begin{align*}
|
|
l_i {}^A\hat{\bm{s}}_i &= {}^A\bm{A} + {}^A\bm{b}_i - {}^A\bm{a}_i \\
|
|
&= {}^A\bm{A} + {}^A\bm{R}_b {}^B\bm{b}_i - {}^A\bm{a}_i
|
|
\end{align*}
|
|
|
|
<p>
|
|
To obtain the length of each actuator and eliminate \(\hat{\bm{s}}_i\), it is sufficient to dot multiply each side by itself:
|
|
</p>
|
|
\begin{equation}
|
|
l_i^2 \left[ {}^A\hat{\bm{s}}_i^T {}^A\hat{\bm{s}}_i \right] = \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]^T \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]
|
|
\end{equation}
|
|
|
|
<p>
|
|
Hence, for \(i = 1, 2, \dots, 6\), each limb length can be uniquely determined by:
|
|
</p>
|
|
\begin{equation}
|
|
l_i = \sqrt{{}^A\bm{P}^T {}^A\bm{P} + {}^B\bm{b}_i^T {}^B\bm{b}_i + {}^A\bm{a}_i^T {}^A\bm{a}_i - 2 {}^A\bm{P}^T {}^A\bm{a}_i + 2 {}^A\bm{P}^T \left[{}^A\bm{R}_B {}^B\bm{b}_i\right] - 2 \left[{}^A\bm{R}_B {}^B\bm{b}_i\right]^T {}^A\bm{a}_i}
|
|
\end{equation}
|
|
|
|
<p>
|
|
If the position and orientation of the moving platform lie in the feasible workspace of the manipulator, one unique solution to the limb length is determined by the above equation.
|
|
Otherwise, when the limbs’ lengths derived yield complex numbers, then the position or orientation of the moving platform is not reachable.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org8974896" class="outline-5">
|
|
<h5 id="org8974896"><span class="section-number-5">1.2.2.2</span> Matlab Implementation</h5>
|
|
<div class="outline-text-5" id="text-1-2-2-2">
|
|
<p>
|
|
We open the Simulink file.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> open(<span class="org-string">'nass_model.slx'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We load the configuration and set a small <code>StopTime</code>.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> load(<span class="org-string">'mat/conf_simulink.mat'</span>);
|
|
<span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simulink</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'0.1'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We define the wanted position/orientation of the Hexapod under study.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> tx = 0.05; <span class="org-comment">% [rad]</span>
|
|
ty = 0.1; <span class="org-comment">% [rad]</span>
|
|
tz = 0.02; <span class="org-comment">% [rad]</span>
|
|
|
|
Rx = [1 0 0;
|
|
0 cos(tx) <span class="org-type">-</span>sin(tx);
|
|
0 sin(tx) cos(tx)];
|
|
|
|
Ry = [ cos(ty) 0 sin(ty);
|
|
0 1 0;
|
|
<span class="org-type">-</span>sin(ty) 0 cos(ty)];
|
|
|
|
Rz = [cos(tz) <span class="org-type">-</span>sin(tz) 0;
|
|
sin(tz) cos(tz) 0;
|
|
0 0 1];
|
|
|
|
ARB = Rz<span class="org-type">*</span>Ry<span class="org-type">*</span>Rx;
|
|
AP = [0.1; 0.005; 0.01]; <span class="org-comment">% [m]</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> initializeSimscapeConfiguration(<span class="org-string">'gravity'</span>, <span class="org-constant">false</span>);
|
|
initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
|
initializeGranite(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
|
initializeTy(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
|
initializeRy(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
|
initializeRz(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
|
initializeMicroHexapod(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'AP'</span>, AP, <span class="org-string">'ARB'</span>, ARB);
|
|
initializeAxisc(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
|
initializeMirror(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
|
initializeNanoHexapod(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
|
initializeSample(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
|
initializeLoggingConfiguration(<span class="org-string">'log'</span>, <span class="org-string">'all'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We run the simulation.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> <span class="org-matlab-simulink-keyword">sim</span>(<span class="org-string">'nass_model'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
And we verify that we indeed succeed to go to the wanted position.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> [simout.Dhm.x.Data(end) ; simout.Dhm.y.Data(end) ; simout.Dhm.z.Data(end)] <span class="org-type">-</span> AP
|
|
</pre>
|
|
</div>
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
<colgroup>
|
|
<col class="org-right" />
|
|
</colgroup>
|
|
<tbody>
|
|
<tr>
|
|
<td class="org-right">8.4655e-16</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">1.5586e-15</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">-2.1337e-16</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> simout.Dhm.R.Data(<span class="org-type">:</span>, <span class="org-type">:</span>, end)<span class="org-type">-</span>ARB
|
|
</pre>
|
|
</div>
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
<colgroup>
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
</colgroup>
|
|
<tbody>
|
|
<tr>
|
|
<td class="org-right">-1.1102e-16</td>
|
|
<td class="org-right">-1.36e-15</td>
|
|
<td class="org-right">4.2744e-15</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">1.0651e-15</td>
|
|
<td class="org-right">6.6613e-16</td>
|
|
<td class="org-right">5.1278e-15</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">-4.2882e-15</td>
|
|
<td class="org-right">-4.9336e-15</td>
|
|
<td class="org-right">1.1102e-16</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div id="postamble" class="status">
|
|
<p class="author">Author: Dehaeze Thomas</p>
|
|
<p class="date">Created: 2021-02-20 sam. 23:08</p>
|
|
</div>
|
|
</body>
|
|
</html>
|