162 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			162 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <?xml version="1.0" encoding="utf-8"?>
 | |
| <?xml version="1.0" encoding="utf-8"?>
 | |
| <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 | |
| "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 | |
| <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 | |
| <head>
 | |
| <!-- 2020-04-17 ven. 09:35 -->
 | |
| <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 | |
| <title>Motion and Force Requirements for the Nano-Hexapod</title>
 | |
| <meta name="generator" content="Org mode" />
 | |
| <meta name="author" content="Dehaeze Thomas" />
 | |
| <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
 | |
| <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
 | |
| <script src="./js/jquery.min.js"></script>
 | |
| <script src="./js/bootstrap.min.js"></script>
 | |
| <script src="./js/jquery.stickytableheaders.min.js"></script>
 | |
| <script src="./js/readtheorg.js"></script>
 | |
| <script>MathJax = {
 | |
|           tex: {
 | |
|             tags: 'ams',
 | |
|             macros: {bm: ["\\boldsymbol{#1}",1],}
 | |
|             }
 | |
|           };
 | |
|           </script>
 | |
|           <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
 | |
| </head>
 | |
| <body>
 | |
| <div id="org-div-home-and-up">
 | |
|  <a accesskey="h" href="./index.html"> UP </a>
 | |
|  |
 | |
|  <a accesskey="H" href="./index.html"> HOME </a>
 | |
| </div><div id="content">
 | |
| <h1 class="title">Motion and Force Requirements for the Nano-Hexapod</h1>
 | |
| <div id="table-of-contents">
 | |
| <h2>Table of Contents</h2>
 | |
| <div id="text-table-of-contents">
 | |
| <ul>
 | |
| <li><a href="#org70e526c">1. Soft Hexapod</a>
 | |
| <ul>
 | |
| <li><a href="#org3326d69">1.1. Example</a></li>
 | |
| </ul>
 | |
| </li>
 | |
| </ul>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org70e526c" class="outline-2">
 | |
| <h2 id="org70e526c"><span class="section-number-2">1</span> Soft Hexapod</h2>
 | |
| <div class="outline-text-2" id="text-1">
 | |
| <p>
 | |
| As the nano-hexapod is in series with the other stages, it must apply all the force required to move the sample.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| If the nano-hexapod is soft (voice coil), its actuator must apply all the force such that the sample has the wanted motion.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| In some sense, it does not use the fact that the other stage are participating to the displacement of the sample.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Let’s take two examples:
 | |
| </p>
 | |
| <ul class="org-ul">
 | |
| <li>Sinus Ty translation at 1Hz with an amplitude of 5mm</li>
 | |
| <li>Long stroke hexapod has an offset of 10mm in X and the spindle is rotating
 | |
| Thus the wanted motion is a circle with a radius of 10mm
 | |
| If the sample if light (30Kg) => 60rpm
 | |
| If the sample if heavy (100Kg) => 1rpm</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| From the motion, we compute the required acceleration by derive the displacement two times.
 | |
| Then from the Newton’s second law: \(m \vec{a} = \sum \vec{F}\) we can compute the required force.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org3326d69" class="outline-3">
 | |
| <h3 id="org3326d69"><span class="section-number-3">1.1</span> Example</h3>
 | |
| <div class="outline-text-3" id="text-1-1">
 | |
| <p>
 | |
| The wanted motion is:
 | |
| </p>
 | |
| \begin{align*}
 | |
|   x &= d \cos(\omega t) \\
 | |
|   y &= d \sin(\omega t)
 | |
| \end{align*}
 | |
| 
 | |
| <p>
 | |
| The corresponding acceleration is thus:
 | |
| </p>
 | |
| \begin{align*}
 | |
|   \ddot{x} &= - d \omega^2 \cos(\omega t) \\
 | |
|   \ddot{y} &= - d \omega^2 \sin(\omega t)
 | |
| \end{align*}
 | |
| 
 | |
| <p>
 | |
| From the Newton’s second law:
 | |
| </p>
 | |
| \begin{align*}
 | |
|   m \ddot{x} &= F_x \\
 | |
|   m \ddot{y} &= F_y
 | |
| \end{align*}
 | |
| 
 | |
| <p>
 | |
| Thus the applied forces should be:
 | |
| </p>
 | |
| \begin{align*}
 | |
|   F_x &= - m d \omega^2 \cos(\omega t) \\
 | |
|   F_y &= - m d \omega^2 \sin(\omega t)
 | |
| \end{align*}
 | |
| 
 | |
| <p>
 | |
| And the norm of the force is:
 | |
| \[ |F| = \sqrt{F_x^2 + F_y^2} = m d \omega^2 \ [N] \]
 | |
| </p>
 | |
| 
 | |
| 
 | |
| <p>
 | |
| For a Light sample:
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">m = 30;
 | |
| d = 10e<span class="org-type">-</span>3;
 | |
| w = 2<span class="org-type">*</span><span class="org-constant">pi</span>;
 | |
| F = m<span class="org-type">*</span>d<span class="org-type">*</span>w<span class="org-type">^</span>2;
 | |
| <span class="org-constant">ans</span> = F
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <pre class="example">
 | |
| 11.844
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <p>
 | |
| For the Heavy sample:
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">m = 80;
 | |
| d = 10e<span class="org-type">-</span>3;
 | |
| w = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">/</span>60;
 | |
| F = m<span class="org-type">*</span>d<span class="org-type">*</span>w<span class="org-type">^</span>2
 | |
| <span class="org-constant">ans</span> = F
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <pre class="example">
 | |
| 0.008773
 | |
| </pre>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| <div id="postamble" class="status">
 | |
| <p class="author">Author: Dehaeze Thomas</p>
 | |
| <p class="date">Created: 2020-04-17 ven. 09:35</p>
 | |
| </div>
 | |
| </body>
 | |
| </html>
 |