1300 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1300 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <?xml version="1.0" encoding="utf-8"?>
 | |
| <?xml version="1.0" encoding="utf-8"?>
 | |
| <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 | |
| "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 | |
| <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 | |
| <head>
 | |
| <!-- 2020-04-17 ven. 09:36 -->
 | |
| <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 | |
| <title>Active Damping with an uni-axial model</title>
 | |
| <meta name="generator" content="Org mode" />
 | |
| <meta name="author" content="Dehaeze Thomas" />
 | |
| <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
 | |
| <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
 | |
| <script src="./js/jquery.min.js"></script>
 | |
| <script src="./js/bootstrap.min.js"></script>
 | |
| <script src="./js/jquery.stickytableheaders.min.js"></script>
 | |
| <script src="./js/readtheorg.js"></script>
 | |
| <script>MathJax = {
 | |
|           tex: {
 | |
|             tags: 'ams',
 | |
|             macros: {bm: ["\\boldsymbol{#1}",1],}
 | |
|             }
 | |
|           };
 | |
|           </script>
 | |
|           <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
 | |
| </head>
 | |
| <body>
 | |
| <div id="org-div-home-and-up">
 | |
|  <a accesskey="h" href="./index.html"> UP </a>
 | |
|  |
 | |
|  <a accesskey="H" href="./index.html"> HOME </a>
 | |
| </div><div id="content">
 | |
| <h1 class="title">Active Damping with an uni-axial model</h1>
 | |
| <div id="table-of-contents">
 | |
| <h2>Table of Contents</h2>
 | |
| <div id="text-table-of-contents">
 | |
| <ul>
 | |
| <li><a href="#org7b64a90">1. Undamped System</a>
 | |
| <ul>
 | |
| <li><a href="#org7409841">1.1. Init</a></li>
 | |
| <li><a href="#org7514f31">1.2. Identification</a></li>
 | |
| <li><a href="#org5ffc5f1">1.3. Sensitivity to disturbances</a></li>
 | |
| <li><a href="#orgdda82c0">1.4. Undamped Plant</a></li>
 | |
| </ul>
 | |
| </li>
 | |
| <li><a href="#org5a3389e">2. Integral Force Feedback</a>
 | |
| <ul>
 | |
| <li><a href="#orgbe39d04">2.1. One degree-of-freedom example</a>
 | |
| <ul>
 | |
| <li><a href="#orgdb4e3a8">2.1.1. Equations</a></li>
 | |
| <li><a href="#orgeec7ed9">2.1.2. Matlab Example</a></li>
 | |
| </ul>
 | |
| </li>
 | |
| <li><a href="#org767264d">2.2. Control Design</a></li>
 | |
| <li><a href="#org945fe08">2.3. Identification of the damped plant</a></li>
 | |
| <li><a href="#orgfd53164">2.4. Sensitivity to disturbances</a></li>
 | |
| <li><a href="#org685bc2a">2.5. Damped Plant</a></li>
 | |
| <li><a href="#org6b26d75">2.6. Conclusion</a></li>
 | |
| </ul>
 | |
| </li>
 | |
| <li><a href="#orgc4ca1b5">3. Relative Motion Control</a>
 | |
| <ul>
 | |
| <li><a href="#org54d13d6">3.1. One degree-of-freedom example</a>
 | |
| <ul>
 | |
| <li><a href="#org54758f7">3.1.1. Equations</a></li>
 | |
| <li><a href="#org31ae910">3.1.2. Matlab Example</a></li>
 | |
| </ul>
 | |
| </li>
 | |
| <li><a href="#orga66a259">3.2. Control Design</a></li>
 | |
| <li><a href="#org6a2522d">3.3. Identification of the damped plant</a></li>
 | |
| <li><a href="#org164a6e3">3.4. Sensitivity to disturbances</a></li>
 | |
| <li><a href="#org5f7ca3b">3.5. Damped Plant</a></li>
 | |
| <li><a href="#org7e0c0fc">3.6. Conclusion</a></li>
 | |
| </ul>
 | |
| </li>
 | |
| <li><a href="#org3cc03b0">4. Direct Velocity Feedback</a>
 | |
| <ul>
 | |
| <li><a href="#org77792c1">4.1. One degree-of-freedom example</a>
 | |
| <ul>
 | |
| <li><a href="#org82cc039">4.1.1. Equations</a></li>
 | |
| <li><a href="#org935ed32">4.1.2. Matlab Example</a></li>
 | |
| </ul>
 | |
| </li>
 | |
| <li><a href="#org6a45963">4.2. Control Design</a></li>
 | |
| <li><a href="#org9b2a9e2">4.3. Identification of the damped plant</a></li>
 | |
| <li><a href="#org7d01fa7">4.4. Sensitivity to disturbances</a></li>
 | |
| <li><a href="#org91db5e4">4.5. Damped Plant</a></li>
 | |
| <li><a href="#org228bb9f">4.6. Conclusion</a></li>
 | |
| </ul>
 | |
| </li>
 | |
| <li><a href="#org21441bc">5. Comparison</a>
 | |
| <ul>
 | |
| <li><a href="#orgbe907b4">5.1. Load the plants</a></li>
 | |
| <li><a href="#orgde6308d">5.2. Sensitivity to Disturbance</a></li>
 | |
| <li><a href="#org1de78b5">5.3. Damped Plant</a></li>
 | |
| </ul>
 | |
| </li>
 | |
| <li><a href="#org1ff0703">6. Conclusion</a></li>
 | |
| </ul>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| First, in section <a href="#orgbf3f2ef">1</a>, we will looked at the undamped system.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Then, we will compare three active damping techniques:
 | |
| </p>
 | |
| <ul class="org-ul">
 | |
| <li>In section <a href="#org5797b2c">2</a>: the integral force feedback is used</li>
 | |
| <li>In section <a href="#org8dc40dc">3</a>: the relative motion control is used</li>
 | |
| <li>In section <a href="#orge3322d7">4</a>: the direct velocity feedback is used</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| For each of the active damping technique, we will:
 | |
| </p>
 | |
| <ul class="org-ul">
 | |
| <li>Compare the sensitivity from disturbances</li>
 | |
| <li>Look at the damped plant</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| The disturbances are:
 | |
| </p>
 | |
| <ul class="org-ul">
 | |
| <li>Ground motion</li>
 | |
| <li>Direct forces</li>
 | |
| <li>Motion errors of all the stages</li>
 | |
| </ul>
 | |
| 
 | |
| <div id="outline-container-org7b64a90" class="outline-2">
 | |
| <h2 id="org7b64a90"><span class="section-number-2">1</span> Undamped System</h2>
 | |
| <div class="outline-text-2" id="text-1">
 | |
| <p>
 | |
| <a id="orgbf3f2ef"></a>
 | |
| </p>
 | |
| <div class="note">
 | |
| <p>
 | |
| All the files (data and Matlab scripts) are accessible <a href="data/undamped_system.zip">here</a>.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| <p>
 | |
| We first look at the undamped system.
 | |
| The performance of this undamped system will be compared with the damped system using various techniques.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org7409841" class="outline-3">
 | |
| <h3 id="org7409841"><span class="section-number-3">1.1</span> Init</h3>
 | |
| <div class="outline-text-3" id="text-1-1">
 | |
| <p>
 | |
| We initialize all the stages with the default parameters.
 | |
| The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
 | |
| </p>
 | |
| 
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">initializeReferences();
 | |
| initializeGround();
 | |
| initializeGranite();
 | |
| initializeTy();
 | |
| initializeRy();
 | |
| initializeRz();
 | |
| initializeMicroHexapod();
 | |
| initializeAxisc();
 | |
| initializeMirror();
 | |
| initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
 | |
| initializeSample(<span class="org-string">'mass'</span>, 50);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| All the controllers are set to 0.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">K = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
 | |
| K_iff = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
 | |
| K_rmc = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
 | |
| K_dvf = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
 | |
| </pre>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org7514f31" class="outline-3">
 | |
| <h3 id="org7514f31"><span class="section-number-3">1.2</span> Identification</h3>
 | |
| <div class="outline-text-3" id="text-1-2">
 | |
| <p>
 | |
| We identify the various transfer functions of the system
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">G = identifyPlant();
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| And we save it for further analysis.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">save(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>, <span class="org-string">'-append'</span>);
 | |
| </pre>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org5ffc5f1" class="outline-3">
 | |
| <h3 id="org5ffc5f1"><span class="section-number-3">1.3</span> Sensitivity to disturbances</h3>
 | |
| <div class="outline-text-3" id="text-1-3">
 | |
| <p>
 | |
| The sensitivity to disturbances are shown on figure <a href="#orgcf7fa15">1</a>.
 | |
| </p>
 | |
| 
 | |
| 
 | |
| <div id="orgcf7fa15" class="figure">
 | |
| <p><img src="figs/sensitivity_dist_undamped.png" alt="sensitivity_dist_undamped.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 1: </span>Undamped sensitivity to disturbances (<a href="./figs/sensitivity_dist_undamped.png">png</a>, <a href="./figs/sensitivity_dist_undamped.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <div id="org5f406f3" class="figure">
 | |
| <p><img src="figs/sensitivity_dist_stages.png" alt="sensitivity_dist_stages.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 2: </span>Sensitivity to force disturbances in various stages (<a href="./figs/sensitivity_dist_stages.png">png</a>, <a href="./figs/sensitivity_dist_stages.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-orgdda82c0" class="outline-3">
 | |
| <h3 id="orgdda82c0"><span class="section-number-3">1.4</span> Undamped Plant</h3>
 | |
| <div class="outline-text-3" id="text-1-4">
 | |
| <p>
 | |
| The “plant” (transfer function from forces applied by the nano-hexapod to the measured displacement of the sample with respect to the granite) bode plot is shown on figure <a href="#orgcf7fa15">1</a>.
 | |
| </p>
 | |
| 
 | |
| 
 | |
| <div id="orgae47083" class="figure">
 | |
| <p><img src="figs/plant_undamped.png" alt="plant_undamped.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 3: </span>Transfer Function from cartesian forces to displacement for the undamped plant (<a href="./figs/plant_undamped.png">png</a>, <a href="./figs/plant_undamped.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org5a3389e" class="outline-2">
 | |
| <h2 id="org5a3389e"><span class="section-number-2">2</span> Integral Force Feedback</h2>
 | |
| <div class="outline-text-2" id="text-2">
 | |
| <p>
 | |
| <a id="org5797b2c"></a>
 | |
| </p>
 | |
| <div class="note">
 | |
| <p>
 | |
| All the files (data and Matlab scripts) are accessible <a href="data/iff.zip">here</a>.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| <p>
 | |
| Integral Force Feedback is applied.
 | |
| In section <a href="#org7f37ded">2.1</a>, IFF is applied on a uni-axial system to understand its behavior.
 | |
| Then, it is applied on the simscape model.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-orgbe39d04" class="outline-3">
 | |
| <h3 id="orgbe39d04"><span class="section-number-3">2.1</span> One degree-of-freedom example</h3>
 | |
| <div class="outline-text-3" id="text-2-1">
 | |
| <p>
 | |
| <a id="org7f37ded"></a>
 | |
| </p>
 | |
| </div>
 | |
| <div id="outline-container-orgdb4e3a8" class="outline-4">
 | |
| <h4 id="orgdb4e3a8"><span class="section-number-4">2.1.1</span> Equations</h4>
 | |
| <div class="outline-text-4" id="text-2-1-1">
 | |
| 
 | |
| <div id="org1acdc30" class="figure">
 | |
| <p><img src="figs/iff_1dof.png" alt="iff_1dof.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 4: </span>Integral Force Feedback applied to a 1dof system</p>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The dynamic of the system is described by the following equation:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   ms^2x = F_d - kx - csx + kw + csw + F
 | |
| \end{equation}
 | |
| <p>
 | |
| The measured force \(F_m\) is:
 | |
| </p>
 | |
| \begin{align}
 | |
|   F_m &= F - kx - csx + kw + csw \\
 | |
|       &= ms^2 x - F_d
 | |
| \end{align}
 | |
| <p>
 | |
| The Integral Force Feedback controller is \(K = -\frac{g}{s}\), and thus the applied force by this controller is:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   F_{\text{IFF}} = -\frac{g}{s} F_m = -\frac{g}{s} (ms^2 x - F_d)
 | |
| \end{equation}
 | |
| <p>
 | |
| Once the IFF is applied, the new dynamics of the system is:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   ms^2x = F_d + F - kx - csx + kw + csw - \frac{g}{s} (ms^2x - F_d)
 | |
| \end{equation}
 | |
| 
 | |
| <p>
 | |
| And finally:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   x = F_d \frac{1 + \frac{g}{s}}{ms^2 + (mg + c)s + k} + F \frac{1}{ms^2 + (mg + c)s + k} +  w \frac{k + cs}{ms^2 + (mg + c)s + k}
 | |
| \end{equation}
 | |
| 
 | |
| <p>
 | |
| We can see that this:
 | |
| </p>
 | |
| <ul class="org-ul">
 | |
| <li>adds damping to the system by a value \(mg\)</li>
 | |
| <li>lower the compliance as low frequency by a factor: \(1 + g/s\)</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| If we want critical damping:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   \xi = \frac{1}{2} \frac{c + gm}{\sqrt{km}} = \frac{1}{2}
 | |
| \end{equation}
 | |
| 
 | |
| <p>
 | |
| This is attainable if we have:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   g = \frac{\sqrt{km} - c}{m}
 | |
| \end{equation}
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-orgeec7ed9" class="outline-4">
 | |
| <h4 id="orgeec7ed9"><span class="section-number-4">2.1.2</span> Matlab Example</h4>
 | |
| <div class="outline-text-4" id="text-2-1-2">
 | |
| <p>
 | |
| Let define the system parameters.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">m = 50; <span class="org-comment">% [kg]</span>
 | |
| k = 1e6; <span class="org-comment">% [N/m]</span>
 | |
| c = 1e3; <span class="org-comment">% [N/(m/s)]</span>
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The state space model of the system is defined below.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">A = [<span class="org-type">-</span>c<span class="org-type">/</span>m <span class="org-type">-</span>k<span class="org-type">/</span>m;
 | |
|      1     0];
 | |
| 
 | |
| B = [1<span class="org-type">/</span>m 1<span class="org-type">/</span>m <span class="org-type">-</span>1;
 | |
|      0   0    0];
 | |
| 
 | |
| C = [ 0  1;
 | |
|      <span class="org-type">-</span>c <span class="org-type">-</span>k];
 | |
| 
 | |
| D = [0 0 0;
 | |
|      1 0 0];
 | |
| 
 | |
| sys = ss(A, B, C, D);
 | |
| sys.InputName = {<span class="org-string">'F'</span>, <span class="org-string">'Fd'</span>, <span class="org-string">'wddot'</span>};
 | |
| sys.OutputName = {<span class="org-string">'d'</span>, <span class="org-string">'Fm'</span>};
 | |
| sys.StateName = {<span class="org-string">'ddot'</span>, <span class="org-string">'d'</span>};
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The controller \(K_\text{IFF}\) is:
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">Kiff = <span class="org-type">-</span>((sqrt(k<span class="org-type">*</span>m)<span class="org-type">-</span>c)<span class="org-type">/</span>m)<span class="org-type">/</span>s;
 | |
| Kiff.InputName = {<span class="org-string">'Fm'</span>};
 | |
| Kiff.OutputName = {<span class="org-string">'F'</span>};
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| And the closed loop system is computed below.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">sys_iff = feedback(sys, Kiff, <span class="org-string">'name'</span>, <span class="org-type">+</span>1);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <div id="org92c6747" class="figure">
 | |
| <p><img src="figs/iff_1dof_sensitivitiy.png" alt="iff_1dof_sensitivitiy.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 5: </span>Sensitivity to disturbance when IFF is applied on the 1dof system (<a href="./figs/iff_1dof_sensitivitiy.png">png</a>, <a href="./figs/iff_1dof_sensitivitiy.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org767264d" class="outline-3">
 | |
| <h3 id="org767264d"><span class="section-number-3">2.2</span> Control Design</h3>
 | |
| <div class="outline-text-3" id="text-2-2">
 | |
| <p>
 | |
| Let’s load the undamped plant:
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">load(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| Let’s look at the transfer function from actuator forces in the nano-hexapod to the force sensor in the nano-hexapod legs for all 6 pairs of actuator/sensor (figure <a href="#org644e078">6</a>).
 | |
| </p>
 | |
| 
 | |
| 
 | |
| <div id="org644e078" class="figure">
 | |
| <p><img src="figs/iff_plant.png" alt="iff_plant.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 6: </span>Transfer function from forces applied in the legs to force sensor (<a href="./figs/iff_plant.png">png</a>, <a href="./figs/iff_plant.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The controller for each pair of actuator/sensor is:
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">K_iff = <span class="org-type">-</span>1000<span class="org-type">/</span>s;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The corresponding loop gains are shown in figure <a href="#org36e3a94">7</a>.
 | |
| </p>
 | |
| 
 | |
| 
 | |
| <div id="org36e3a94" class="figure">
 | |
| <p><img src="figs/iff_open_loop.png" alt="iff_open_loop.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 7: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/iff_open_loop.png">png</a>, <a href="./figs/iff_open_loop.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org945fe08" class="outline-3">
 | |
| <h3 id="org945fe08"><span class="section-number-3">2.3</span> Identification of the damped plant</h3>
 | |
| <div class="outline-text-3" id="text-2-3">
 | |
| <p>
 | |
| Let’s initialize the system prior to identification.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">initializeReferences();
 | |
| initializeGround();
 | |
| initializeGranite();
 | |
| initializeTy();
 | |
| initializeRy();
 | |
| initializeRz();
 | |
| initializeMicroHexapod();
 | |
| initializeAxisc();
 | |
| initializeMirror();
 | |
| initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
 | |
| initializeSample(<span class="org-string">'mass'</span>, 50);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| All the controllers are set to 0.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">K = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
 | |
| K_iff = <span class="org-type">-</span>K_iff<span class="org-type">*</span>eye(6);
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
 | |
| K_rmc = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
 | |
| K_dvf = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| We identify the system dynamics now that the IFF controller is ON.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">G_iff = identifyPlant();
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| And we save the damped plant for further analysis
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">save(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'-append'</span>);
 | |
| </pre>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-orgfd53164" class="outline-3">
 | |
| <h3 id="orgfd53164"><span class="section-number-3">2.4</span> Sensitivity to disturbances</h3>
 | |
| <div class="outline-text-3" id="text-2-4">
 | |
| <p>
 | |
| As shown on figure <a href="#org38217ee">8</a>:
 | |
| </p>
 | |
| <ul class="org-ul">
 | |
| <li>The top platform of the nano-hexapod how behaves as a “free-mass”.</li>
 | |
| <li>The transfer function from direct forces \(F_s\) to the relative displacement \(D\) is equivalent to the one of an isolated mass.</li>
 | |
| <li>The transfer function from ground motion \(D_g\) to the relative displacement \(D\) tends to the transfer function from \(D_g\) to the displacement of the granite (the sample is being isolated thanks to IFF).
 | |
| However, as the goal is to make the relative displacement \(D\) as small as possible (e.g. to make the sample motion follows the granite motion), this is not a good thing.</li>
 | |
| </ul>
 | |
| 
 | |
| 
 | |
| <div id="org38217ee" class="figure">
 | |
| <p><img src="figs/sensitivity_dist_iff.png" alt="sensitivity_dist_iff.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 8: </span>Sensitivity to disturbance once the IFF controller is applied to the system (<a href="./figs/sensitivity_dist_iff.png">png</a>, <a href="./figs/sensitivity_dist_iff.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| <div class="warning">
 | |
| <p>
 | |
| The order of the models are very high and thus the plots may be wrong.
 | |
| For instance, the plots are not the same when using <code>minreal</code>.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <div id="orga9bd11d" class="figure">
 | |
| <p><img src="figs/sensitivity_dist_stages_iff.png" alt="sensitivity_dist_stages_iff.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 9: </span>Sensitivity to force disturbances in various stages when IFF is applied (<a href="./figs/sensitivity_dist_stages_iff.png">png</a>, <a href="./figs/sensitivity_dist_stages_iff.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org685bc2a" class="outline-3">
 | |
| <h3 id="org685bc2a"><span class="section-number-3">2.5</span> Damped Plant</h3>
 | |
| <div class="outline-text-3" id="text-2-5">
 | |
| <p>
 | |
| Now, look at the new damped plant to control.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| It damps the plant (resonance of the nano hexapod as well as other resonances) as shown in figure <a href="#orgd7333dd">10</a>.
 | |
| </p>
 | |
| 
 | |
| 
 | |
| <div id="orgd7333dd" class="figure">
 | |
| <p><img src="figs/plant_iff_damped.png" alt="plant_iff_damped.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 10: </span>Damped Plant after IFF is applied (<a href="./figs/plant_iff_damped.png">png</a>, <a href="./figs/plant_iff_damped.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| However, it increases coupling at low frequency (figure <a href="#org8017b2f">11</a>).
 | |
| </p>
 | |
| 
 | |
| <div id="org8017b2f" class="figure">
 | |
| <p><img src="figs/plant_iff_coupling.png" alt="plant_iff_coupling.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 11: </span>Coupling induced by IFF (<a href="./figs/plant_iff_coupling.png">png</a>, <a href="./figs/plant_iff_coupling.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org6b26d75" class="outline-3">
 | |
| <h3 id="org6b26d75"><span class="section-number-3">2.6</span> Conclusion</h3>
 | |
| <div class="outline-text-3" id="text-2-6">
 | |
| <div class="important">
 | |
| <p>
 | |
| Integral Force Feedback:
 | |
| </p>
 | |
| <ul class="org-ul">
 | |
| <li>Robust (guaranteed stability)</li>
 | |
| <li>Acceptable Damping</li>
 | |
| <li>Increase the sensitivity to disturbances at low frequencies</li>
 | |
| </ul>
 | |
| 
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-orgc4ca1b5" class="outline-2">
 | |
| <h2 id="orgc4ca1b5"><span class="section-number-2">3</span> Relative Motion Control</h2>
 | |
| <div class="outline-text-2" id="text-3">
 | |
| <p>
 | |
| <a id="org8dc40dc"></a>
 | |
| </p>
 | |
| <div class="note">
 | |
| <p>
 | |
| All the files (data and Matlab scripts) are accessible <a href="data/rmc.zip">here</a>.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| <p>
 | |
| In the Relative Motion Control (RMC), a derivative feedback is applied between the measured actuator displacement to the actuator force input.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org54d13d6" class="outline-3">
 | |
| <h3 id="org54d13d6"><span class="section-number-3">3.1</span> One degree-of-freedom example</h3>
 | |
| <div class="outline-text-3" id="text-3-1">
 | |
| <p>
 | |
| <a id="org6f16e09"></a>
 | |
| </p>
 | |
| </div>
 | |
| <div id="outline-container-org54758f7" class="outline-4">
 | |
| <h4 id="org54758f7"><span class="section-number-4">3.1.1</span> Equations</h4>
 | |
| <div class="outline-text-4" id="text-3-1-1">
 | |
| 
 | |
| <div id="org64900ec" class="figure">
 | |
| <p><img src="figs/rmc_1dof.png" alt="rmc_1dof.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 12: </span>Relative Motion Control applied to a 1dof system</p>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The dynamic of the system is:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   ms^2x = F_d - kx - csx + kw + csw + F
 | |
| \end{equation}
 | |
| <p>
 | |
| In terms of the stage deformation \(d = x - w\):
 | |
| </p>
 | |
| \begin{equation}
 | |
|   (ms^2 + cs + k) d = -ms^2 w + F_d + F
 | |
| \end{equation}
 | |
| <p>
 | |
| The relative motion control law is:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   K = -g s
 | |
| \end{equation}
 | |
| <p>
 | |
| Thus, the applied force is:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   F = -g s d
 | |
| \end{equation}
 | |
| <p>
 | |
| And the new dynamics will be:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   d = w \frac{-ms^2}{ms^2 + (c + g)s + k} + F_d \frac{1}{ms^2 + (c + g)s + k} + F \frac{1}{ms^2 + (c + g)s + k}
 | |
| \end{equation}
 | |
| 
 | |
| <p>
 | |
| And thus damping is added.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| If critical damping is wanted:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   \xi = \frac{1}{2}\frac{c + g}{\sqrt{km}} = \frac{1}{2}
 | |
| \end{equation}
 | |
| <p>
 | |
| This corresponds to a gain:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   g = \sqrt{km} - c
 | |
| \end{equation}
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org31ae910" class="outline-4">
 | |
| <h4 id="org31ae910"><span class="section-number-4">3.1.2</span> Matlab Example</h4>
 | |
| <div class="outline-text-4" id="text-3-1-2">
 | |
| <p>
 | |
| Let define the system parameters.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">m = 50; <span class="org-comment">% [kg]</span>
 | |
| k = 1e6; <span class="org-comment">% [N/m]</span>
 | |
| c = 1e3; <span class="org-comment">% [N/(m/s)]</span>
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The state space model of the system is defined below.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">A = [<span class="org-type">-</span>c<span class="org-type">/</span>m <span class="org-type">-</span>k<span class="org-type">/</span>m;
 | |
|      1     0];
 | |
| 
 | |
| B = [1<span class="org-type">/</span>m 1<span class="org-type">/</span>m <span class="org-type">-</span>1;
 | |
|      0   0    0];
 | |
| 
 | |
| C = [ 0  1;
 | |
|      <span class="org-type">-</span>c <span class="org-type">-</span>k];
 | |
| 
 | |
| D = [0 0 0;
 | |
|      1 0 0];
 | |
| 
 | |
| sys = ss(A, B, C, D);
 | |
| sys.InputName = {<span class="org-string">'F'</span>, <span class="org-string">'Fd'</span>, <span class="org-string">'wddot'</span>};
 | |
| sys.OutputName = {<span class="org-string">'d'</span>, <span class="org-string">'Fm'</span>};
 | |
| sys.StateName = {<span class="org-string">'ddot'</span>, <span class="org-string">'d'</span>};
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The controller \(K_\text{RMC}\) is:
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">Krmc = <span class="org-type">-</span>(sqrt(k<span class="org-type">*</span>m)<span class="org-type">-</span>c)<span class="org-type">*</span>s;
 | |
| Krmc.InputName = {<span class="org-string">'d'</span>};
 | |
| Krmc.OutputName = {<span class="org-string">'F'</span>};
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| And the closed loop system is computed below.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">sys_rmc = feedback(sys, Krmc, <span class="org-string">'name'</span>, <span class="org-type">+</span>1);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <div id="orgaedc5af" class="figure">
 | |
| <p><img src="figs/rmc_1dof_sensitivitiy.png" alt="rmc_1dof_sensitivitiy.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 13: </span>Sensitivity to disturbance when RMC is applied on the 1dof system (<a href="./figs/rmc_1dof_sensitivitiy.png">png</a>, <a href="./figs/rmc_1dof_sensitivitiy.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-orga66a259" class="outline-3">
 | |
| <h3 id="orga66a259"><span class="section-number-3">3.2</span> Control Design</h3>
 | |
| <div class="outline-text-3" id="text-3-2">
 | |
| <p>
 | |
| Let’s load the undamped plant:
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">load(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| Let’s look at the transfer function from actuator forces in the nano-hexapod to the measured displacement of the actuator for all 6 pairs of actuator/sensor (figure <a href="#orga93b3b1">14</a>).
 | |
| </p>
 | |
| 
 | |
| 
 | |
| <div id="orga93b3b1" class="figure">
 | |
| <p><img src="figs/rmc_plant.png" alt="rmc_plant.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 14: </span>Transfer function from forces applied in the legs to leg displacement sensor (<a href="./figs/rmc_plant.png">png</a>, <a href="./figs/rmc_plant.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The Relative Motion Controller is defined below.
 | |
| A Low pass Filter is added to make the controller transfer function proper.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">K_rmc = s<span class="org-type">*</span>50000<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10000);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The obtained loop gains are shown in figure <a href="#orga5b8f12">15</a>.
 | |
| </p>
 | |
| 
 | |
| 
 | |
| <div id="orga5b8f12" class="figure">
 | |
| <p><img src="figs/rmc_open_loop.png" alt="rmc_open_loop.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 15: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/rmc_open_loop.png">png</a>, <a href="./figs/rmc_open_loop.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org6a2522d" class="outline-3">
 | |
| <h3 id="org6a2522d"><span class="section-number-3">3.3</span> Identification of the damped plant</h3>
 | |
| <div class="outline-text-3" id="text-3-3">
 | |
| <p>
 | |
| Let’s initialize the system prior to identification.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">initializeReferences();
 | |
| initializeGround();
 | |
| initializeGranite();
 | |
| initializeTy();
 | |
| initializeRy();
 | |
| initializeRz();
 | |
| initializeMicroHexapod();
 | |
| initializeAxisc();
 | |
| initializeMirror();
 | |
| initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
 | |
| initializeSample(<span class="org-string">'mass'</span>, 50);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| And initialize the controllers.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">K = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
 | |
| K_iff = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
 | |
| K_rmc = <span class="org-type">-</span>K_rmc<span class="org-type">*</span>eye(6);
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
 | |
| K_dvf = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| We identify the system dynamics now that the RMC controller is ON.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">G_rmc = identifyPlant();
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| And we save the damped plant for further analysis.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">save(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G_rmc'</span>, <span class="org-string">'-append'</span>);
 | |
| </pre>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org164a6e3" class="outline-3">
 | |
| <h3 id="org164a6e3"><span class="section-number-3">3.4</span> Sensitivity to disturbances</h3>
 | |
| <div class="outline-text-3" id="text-3-4">
 | |
| <p>
 | |
| As shown in figure <a href="#org58aec78">16</a>, RMC control succeed in lowering the sensitivity to disturbances near resonance of the system.
 | |
| </p>
 | |
| 
 | |
| 
 | |
| <div id="org58aec78" class="figure">
 | |
| <p><img src="figs/sensitivity_dist_rmc.png" alt="sensitivity_dist_rmc.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 16: </span>Sensitivity to disturbance once the RMC controller is applied to the system (<a href="./figs/sensitivity_dist_rmc.png">png</a>, <a href="./figs/sensitivity_dist_rmc.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <div id="org72cd54b" class="figure">
 | |
| <p><img src="figs/sensitivity_dist_stages_rmc.png" alt="sensitivity_dist_stages_rmc.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 17: </span>Sensitivity to force disturbances in various stages when RMC is applied (<a href="./figs/sensitivity_dist_stages_rmc.png">png</a>, <a href="./figs/sensitivity_dist_stages_rmc.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org5f7ca3b" class="outline-3">
 | |
| <h3 id="org5f7ca3b"><span class="section-number-3">3.5</span> Damped Plant</h3>
 | |
| <div class="outline-text-3" id="text-3-5">
 | |
| 
 | |
| <div id="org2267bd4" class="figure">
 | |
| <p><img src="figs/plant_rmc_damped.png" alt="plant_rmc_damped.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 18: </span>Damped Plant after RMC is applied (<a href="./figs/plant_rmc_damped.png">png</a>, <a href="./figs/plant_rmc_damped.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org7e0c0fc" class="outline-3">
 | |
| <h3 id="org7e0c0fc"><span class="section-number-3">3.6</span> Conclusion</h3>
 | |
| <div class="outline-text-3" id="text-3-6">
 | |
| <div class="important">
 | |
| <p>
 | |
| Relative Motion Control:
 | |
| </p>
 | |
| <ul class="org-ul">
 | |
| <li></li>
 | |
| </ul>
 | |
| 
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org3cc03b0" class="outline-2">
 | |
| <h2 id="org3cc03b0"><span class="section-number-2">4</span> Direct Velocity Feedback</h2>
 | |
| <div class="outline-text-2" id="text-4">
 | |
| <p>
 | |
| <a id="orge3322d7"></a>
 | |
| </p>
 | |
| <div class="note">
 | |
| <p>
 | |
| All the files (data and Matlab scripts) are accessible <a href="data/dvf.zip">here</a>.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| <p>
 | |
| In the Relative Motion Control (RMC), a feedback is applied between the measured velocity of the platform to the actuator force input.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org77792c1" class="outline-3">
 | |
| <h3 id="org77792c1"><span class="section-number-3">4.1</span> One degree-of-freedom example</h3>
 | |
| <div class="outline-text-3" id="text-4-1">
 | |
| <p>
 | |
| <a id="org3a699cb"></a>
 | |
| </p>
 | |
| </div>
 | |
| <div id="outline-container-org82cc039" class="outline-4">
 | |
| <h4 id="org82cc039"><span class="section-number-4">4.1.1</span> Equations</h4>
 | |
| <div class="outline-text-4" id="text-4-1-1">
 | |
| 
 | |
| <div id="org93ae6e4" class="figure">
 | |
| <p><img src="figs/dvf_1dof.png" alt="dvf_1dof.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 19: </span>Direct Velocity Feedback applied to a 1dof system</p>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The dynamic of the system is:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   ms^2x = F_d - kx - csx + kw + csw + F
 | |
| \end{equation}
 | |
| <p>
 | |
| In terms of the stage deformation \(d = x - w\):
 | |
| </p>
 | |
| \begin{equation}
 | |
|   (ms^2 + cs + k) d = -ms^2 w + F_d + F
 | |
| \end{equation}
 | |
| <p>
 | |
| The direct velocity feedback law shown in figure <a href="#org93ae6e4">19</a> is:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   K = -g
 | |
| \end{equation}
 | |
| <p>
 | |
| Thus, the applied force is:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   F = -g \dot{x}
 | |
| \end{equation}
 | |
| <p>
 | |
| And the new dynamics will be:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   d = w \frac{-ms^2 - gs}{ms^2 + (c + g)s + k} + F_d \frac{1}{ms^2 + (c + g)s + k} + F \frac{1}{ms^2 + (c + g)s + k}
 | |
| \end{equation}
 | |
| 
 | |
| <p>
 | |
| And thus damping is added.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| If critical damping is wanted:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   \xi = \frac{1}{2}\frac{c + g}{\sqrt{km}} = \frac{1}{2}
 | |
| \end{equation}
 | |
| <p>
 | |
| This corresponds to a gain:
 | |
| </p>
 | |
| \begin{equation}
 | |
|   g = \sqrt{km} - c
 | |
| \end{equation}
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org935ed32" class="outline-4">
 | |
| <h4 id="org935ed32"><span class="section-number-4">4.1.2</span> Matlab Example</h4>
 | |
| <div class="outline-text-4" id="text-4-1-2">
 | |
| <p>
 | |
| Let define the system parameters.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">m = 50; <span class="org-comment">% [kg]</span>
 | |
| k = 1e6; <span class="org-comment">% [N/m]</span>
 | |
| c = 1e3; <span class="org-comment">% [N/(m/s)]</span>
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The state space model of the system is defined below.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">A = [<span class="org-type">-</span>c<span class="org-type">/</span>m <span class="org-type">-</span>k<span class="org-type">/</span>m;
 | |
|      1     0];
 | |
| 
 | |
| B = [1<span class="org-type">/</span>m 1<span class="org-type">/</span>m <span class="org-type">-</span>1;
 | |
|      0   0    0];
 | |
| 
 | |
| C = [1 0;
 | |
|      0 1;
 | |
|      0 0];
 | |
| 
 | |
| D = [0 0 0;
 | |
|      0 0 0;
 | |
|      0 0 1];
 | |
| 
 | |
| sys = ss(A, B, C, D);
 | |
| sys.InputName = {<span class="org-string">'F'</span>, <span class="org-string">'Fd'</span>, <span class="org-string">'wddot'</span>};
 | |
| sys.OutputName = {<span class="org-string">'ddot'</span>, <span class="org-string">'d'</span>, <span class="org-string">'wddot'</span>};
 | |
| sys.StateName = {<span class="org-string">'ddot'</span>, <span class="org-string">'d'</span>};
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| Because we need \(\dot{x}\) for feedback, we compute it from the outputs
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">G_xdot = [1, 0, 1<span class="org-type">/</span>s;
 | |
|           0, 1, 0];
 | |
| G_xdot.InputName = {<span class="org-string">'ddot'</span>, <span class="org-string">'d'</span>, <span class="org-string">'wddot'</span>};
 | |
| G_xdot.OutputName = {<span class="org-string">'xdot'</span>, <span class="org-string">'d'</span>};
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| Finally, the system is described by <code>sys</code> as defined below.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">sys = series(sys, G_xdot, [1 2 3], [1 2 3]);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The controller \(K_\text{DVF}\) is:
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">Kdvf = tf(<span class="org-type">-</span>(sqrt(k<span class="org-type">*</span>m)<span class="org-type">-</span>c));
 | |
| Kdvf.InputName = {<span class="org-string">'xdot'</span>};
 | |
| Kdvf.OutputName = {<span class="org-string">'F'</span>};
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| And the closed loop system is computed below.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">sys_dvf = feedback(sys, Kdvf, <span class="org-string">'name'</span>, <span class="org-type">+</span>1);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The obtained sensitivity to disturbances is shown in figure <a href="#org1c3277a">20</a>.
 | |
| </p>
 | |
| 
 | |
| <div id="org1c3277a" class="figure">
 | |
| <p><img src="figs/dvf_1dof_sensitivitiy.png" alt="dvf_1dof_sensitivitiy.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 20: </span>Sensitivity to disturbance when DVF is applied on the 1dof system (<a href="./figs/dvf_1dof_sensitivitiy.png">png</a>, <a href="./figs/dvf_1dof_sensitivitiy.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org6a45963" class="outline-3">
 | |
| <h3 id="org6a45963"><span class="section-number-3">4.2</span> Control Design</h3>
 | |
| <div class="outline-text-3" id="text-4-2">
 | |
| <p>
 | |
| Let’s load the undamped plant:
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">load(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| Let’s look at the transfer function from actuator forces in the nano-hexapod to the measured velocity of the nano-hexapod platform in the direction of the corresponding actuator for all 6 pairs of actuator/sensor (figure <a href="#org0e1d7de">21</a>).
 | |
| </p>
 | |
| 
 | |
| 
 | |
| <div id="org0e1d7de" class="figure">
 | |
| <p><img src="figs/dvf_plant.png" alt="dvf_plant.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 21: </span>Transfer function from forces applied in the legs to leg velocity sensor (<a href="./figs/dvf_plant.png">png</a>, <a href="./figs/dvf_plant.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The controller is defined below and the obtained loop gain is shown in figure <a href="#org1e696e9">22</a>.
 | |
| </p>
 | |
| 
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">K_dvf = tf(3e4);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <div id="org1e696e9" class="figure">
 | |
| <p><img src="figs/dvf_open_loop_gain.png" alt="dvf_open_loop_gain.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 22: </span>Loop Gain for DVF (<a href="./figs/dvf_open_loop_gain.png">png</a>, <a href="./figs/dvf_open_loop_gain.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org9b2a9e2" class="outline-3">
 | |
| <h3 id="org9b2a9e2"><span class="section-number-3">4.3</span> Identification of the damped plant</h3>
 | |
| <div class="outline-text-3" id="text-4-3">
 | |
| <p>
 | |
| Let’s initialize the system prior to identification.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">initializeReferences();
 | |
| initializeGround();
 | |
| initializeGranite();
 | |
| initializeTy();
 | |
| initializeRy();
 | |
| initializeRz();
 | |
| initializeMicroHexapod();
 | |
| initializeAxisc();
 | |
| initializeMirror();
 | |
| initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
 | |
| initializeSample(<span class="org-string">'mass'</span>, 50);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| And initialize the controllers.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">K = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
 | |
| K_iff = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
 | |
| K_rmc = tf(zeros(6));
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
 | |
| K_dvf = <span class="org-type">-</span>K_dvf<span class="org-type">*</span>eye(6);
 | |
| save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| We identify the system dynamics now that the RMC controller is ON.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">G_dvf = identifyPlant();
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| And we save the damped plant for further analysis.
 | |
| </p>
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">save(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G_dvf'</span>, <span class="org-string">'-append'</span>);
 | |
| </pre>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org7d01fa7" class="outline-3">
 | |
| <h3 id="org7d01fa7"><span class="section-number-3">4.4</span> Sensitivity to disturbances</h3>
 | |
| <div class="outline-text-3" id="text-4-4">
 | |
| 
 | |
| <div id="org2558226" class="figure">
 | |
| <p><img src="figs/sensitivity_dist_dvf.png" alt="sensitivity_dist_dvf.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 23: </span>Sensitivity to disturbance once the DVF controller is applied to the system (<a href="./figs/sensitivity_dist_dvf.png">png</a>, <a href="./figs/sensitivity_dist_dvf.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| 
 | |
| <div id="org649f2c8" class="figure">
 | |
| <p><img src="figs/sensitivity_dist_stages_dvf.png" alt="sensitivity_dist_stages_dvf.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 24: </span>Sensitivity to force disturbances in various stages when DVF is applied (<a href="./figs/sensitivity_dist_stages_dvf.png">png</a>, <a href="./figs/sensitivity_dist_stages_dvf.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org91db5e4" class="outline-3">
 | |
| <h3 id="org91db5e4"><span class="section-number-3">4.5</span> Damped Plant</h3>
 | |
| <div class="outline-text-3" id="text-4-5">
 | |
| 
 | |
| <div id="org2fa3671" class="figure">
 | |
| <p><img src="figs/plant_dvf_damped.png" alt="plant_dvf_damped.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 25: </span>Damped Plant after DVF is applied (<a href="./figs/plant_dvf_damped.png">png</a>, <a href="./figs/plant_dvf_damped.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org228bb9f" class="outline-3">
 | |
| <h3 id="org228bb9f"><span class="section-number-3">4.6</span> Conclusion</h3>
 | |
| <div class="outline-text-3" id="text-4-6">
 | |
| <div class="important">
 | |
| <p>
 | |
| Direct Velocity Feedback:
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org21441bc" class="outline-2">
 | |
| <h2 id="org21441bc"><span class="section-number-2">5</span> Comparison</h2>
 | |
| <div class="outline-text-2" id="text-5">
 | |
| <p>
 | |
| <a id="org2dcea31"></a>
 | |
| </p>
 | |
| </div>
 | |
| <div id="outline-container-orgbe907b4" class="outline-3">
 | |
| <h3 id="orgbe907b4"><span class="section-number-3">5.1</span> Load the plants</h3>
 | |
| <div class="outline-text-3" id="text-5-1">
 | |
| <div class="org-src-container">
 | |
| <pre class="src src-matlab">load(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'G_rmc'</span>, <span class="org-string">'G_dvf'</span>);
 | |
| </pre>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-orgde6308d" class="outline-3">
 | |
| <h3 id="orgde6308d"><span class="section-number-3">5.2</span> Sensitivity to Disturbance</h3>
 | |
| <div class="outline-text-3" id="text-5-2">
 | |
| 
 | |
| <div id="orgfde858b" class="figure">
 | |
| <p><img src="figs/sensitivity_comp_ground_motion_z.png" alt="sensitivity_comp_ground_motion_z.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 26: </span>caption (<a href="./figs/sensitivity_comp_ground_motion_z.png">png</a>, <a href="./figs/sensitivity_comp_ground_motion_z.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| 
 | |
| <div id="org8aab19c" class="figure">
 | |
| <p><img src="figs/sensitivity_comp_direct_forces_z.png" alt="sensitivity_comp_direct_forces_z.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 27: </span>caption (<a href="./figs/sensitivity_comp_direct_forces_z.png">png</a>, <a href="./figs/sensitivity_comp_direct_forces_z.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <div id="orgfffe60e" class="figure">
 | |
| <p><img src="figs/sensitivity_comp_spindle_z.png" alt="sensitivity_comp_spindle_z.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 28: </span>caption (<a href="./figs/sensitivity_comp_spindle_z.png">png</a>, <a href="./figs/sensitivity_comp_spindle_z.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <div id="orga94d0ef" class="figure">
 | |
| <p><img src="figs/sensitivity_comp_ty_z.png" alt="sensitivity_comp_ty_z.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 29: </span>caption (<a href="./figs/sensitivity_comp_ty_z.png">png</a>, <a href="./figs/sensitivity_comp_ty_z.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| 
 | |
| <div id="org94a317f" class="figure">
 | |
| <p><img src="figs/sensitivity_comp_ty_x.png" alt="sensitivity_comp_ty_x.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 30: </span>caption (<a href="./figs/sensitivity_comp_ty_x.png">png</a>, <a href="./figs/sensitivity_comp_ty_x.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org1de78b5" class="outline-3">
 | |
| <h3 id="org1de78b5"><span class="section-number-3">5.3</span> Damped Plant</h3>
 | |
| <div class="outline-text-3" id="text-5-3">
 | |
| 
 | |
| <div id="org043ecf3" class="figure">
 | |
| <p><img src="figs/plant_comp_damping_z.png" alt="plant_comp_damping_z.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 31: </span>Plant for the \(z\) direction for different active damping technique used (<a href="./figs/plant_comp_damping_z.png">png</a>, <a href="./figs/plant_comp_damping_z.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <div id="org20c1ba1" class="figure">
 | |
| <p><img src="figs/plant_comp_damping_x.png" alt="plant_comp_damping_x.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 32: </span>Plant for the \(x\) direction for different active damping technique used (<a href="./figs/plant_comp_damping_x.png">png</a>, <a href="./figs/plant_comp_damping_x.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <div id="org22f4195" class="figure">
 | |
| <p><img src="figs/plant_comp_damping_coupling.png" alt="plant_comp_damping_coupling.png" />
 | |
| </p>
 | |
| <p><span class="figure-number">Figure 33: </span>Comparison of one off-diagonal plant for different damping technique applied (<a href="./figs/plant_comp_damping_coupling.png">png</a>, <a href="./figs/plant_comp_damping_coupling.pdf">pdf</a>)</p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| <div id="outline-container-org1ff0703" class="outline-2">
 | |
| <h2 id="org1ff0703"><span class="section-number-2">6</span> Conclusion</h2>
 | |
| <div class="outline-text-2" id="text-6">
 | |
| <p>
 | |
| <a id="org58549a4"></a>
 | |
| </p>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| <div id="postamble" class="status">
 | |
| <p class="author">Author: Dehaeze Thomas</p>
 | |
| <p class="date">Created: 2020-04-17 ven. 09:36</p>
 | |
| </div>
 | |
| </body>
 | |
| </html>
 |