1510 lines
75 KiB
HTML
1510 lines
75 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
|
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
|
<head>
|
|
<!-- 2020-04-01 mer. 16:16 -->
|
|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
<title>Control of the NASS with Voice coil actuators</title>
|
|
<meta name="generator" content="Org mode" />
|
|
<meta name="author" content="Dehaeze Thomas" />
|
|
<style type="text/css">
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
.title { text-align: center;
|
|
margin-bottom: .2em; }
|
|
.subtitle { text-align: center;
|
|
font-size: medium;
|
|
font-weight: bold;
|
|
margin-top:0; }
|
|
.todo { font-family: monospace; color: red; }
|
|
.done { font-family: monospace; color: green; }
|
|
.priority { font-family: monospace; color: orange; }
|
|
.tag { background-color: #eee; font-family: monospace;
|
|
padding: 2px; font-size: 80%; font-weight: normal; }
|
|
.timestamp { color: #bebebe; }
|
|
.timestamp-kwd { color: #5f9ea0; }
|
|
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
|
|
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
|
|
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
|
|
.underline { text-decoration: underline; }
|
|
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
|
|
p.verse { margin-left: 3%; }
|
|
pre {
|
|
border: 1px solid #ccc;
|
|
box-shadow: 3px 3px 3px #eee;
|
|
padding: 8pt;
|
|
font-family: monospace;
|
|
overflow: auto;
|
|
margin: 1.2em;
|
|
}
|
|
pre.src {
|
|
position: relative;
|
|
overflow: visible;
|
|
padding-top: 1.2em;
|
|
}
|
|
pre.src:before {
|
|
display: none;
|
|
position: absolute;
|
|
background-color: white;
|
|
top: -10px;
|
|
right: 10px;
|
|
padding: 3px;
|
|
border: 1px solid black;
|
|
}
|
|
pre.src:hover:before { display: inline;}
|
|
/* Languages per Org manual */
|
|
pre.src-asymptote:before { content: 'Asymptote'; }
|
|
pre.src-awk:before { content: 'Awk'; }
|
|
pre.src-C:before { content: 'C'; }
|
|
/* pre.src-C++ doesn't work in CSS */
|
|
pre.src-clojure:before { content: 'Clojure'; }
|
|
pre.src-css:before { content: 'CSS'; }
|
|
pre.src-D:before { content: 'D'; }
|
|
pre.src-ditaa:before { content: 'ditaa'; }
|
|
pre.src-dot:before { content: 'Graphviz'; }
|
|
pre.src-calc:before { content: 'Emacs Calc'; }
|
|
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
|
|
pre.src-fortran:before { content: 'Fortran'; }
|
|
pre.src-gnuplot:before { content: 'gnuplot'; }
|
|
pre.src-haskell:before { content: 'Haskell'; }
|
|
pre.src-hledger:before { content: 'hledger'; }
|
|
pre.src-java:before { content: 'Java'; }
|
|
pre.src-js:before { content: 'Javascript'; }
|
|
pre.src-latex:before { content: 'LaTeX'; }
|
|
pre.src-ledger:before { content: 'Ledger'; }
|
|
pre.src-lisp:before { content: 'Lisp'; }
|
|
pre.src-lilypond:before { content: 'Lilypond'; }
|
|
pre.src-lua:before { content: 'Lua'; }
|
|
pre.src-matlab:before { content: 'MATLAB'; }
|
|
pre.src-mscgen:before { content: 'Mscgen'; }
|
|
pre.src-ocaml:before { content: 'Objective Caml'; }
|
|
pre.src-octave:before { content: 'Octave'; }
|
|
pre.src-org:before { content: 'Org mode'; }
|
|
pre.src-oz:before { content: 'OZ'; }
|
|
pre.src-plantuml:before { content: 'Plantuml'; }
|
|
pre.src-processing:before { content: 'Processing.js'; }
|
|
pre.src-python:before { content: 'Python'; }
|
|
pre.src-R:before { content: 'R'; }
|
|
pre.src-ruby:before { content: 'Ruby'; }
|
|
pre.src-sass:before { content: 'Sass'; }
|
|
pre.src-scheme:before { content: 'Scheme'; }
|
|
pre.src-screen:before { content: 'Gnu Screen'; }
|
|
pre.src-sed:before { content: 'Sed'; }
|
|
pre.src-sh:before { content: 'shell'; }
|
|
pre.src-sql:before { content: 'SQL'; }
|
|
pre.src-sqlite:before { content: 'SQLite'; }
|
|
/* additional languages in org.el's org-babel-load-languages alist */
|
|
pre.src-forth:before { content: 'Forth'; }
|
|
pre.src-io:before { content: 'IO'; }
|
|
pre.src-J:before { content: 'J'; }
|
|
pre.src-makefile:before { content: 'Makefile'; }
|
|
pre.src-maxima:before { content: 'Maxima'; }
|
|
pre.src-perl:before { content: 'Perl'; }
|
|
pre.src-picolisp:before { content: 'Pico Lisp'; }
|
|
pre.src-scala:before { content: 'Scala'; }
|
|
pre.src-shell:before { content: 'Shell Script'; }
|
|
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
|
|
/* additional language identifiers per "defun org-babel-execute"
|
|
in ob-*.el */
|
|
pre.src-cpp:before { content: 'C++'; }
|
|
pre.src-abc:before { content: 'ABC'; }
|
|
pre.src-coq:before { content: 'Coq'; }
|
|
pre.src-groovy:before { content: 'Groovy'; }
|
|
/* additional language identifiers from org-babel-shell-names in
|
|
ob-shell.el: ob-shell is the only babel language using a lambda to put
|
|
the execution function name together. */
|
|
pre.src-bash:before { content: 'bash'; }
|
|
pre.src-csh:before { content: 'csh'; }
|
|
pre.src-ash:before { content: 'ash'; }
|
|
pre.src-dash:before { content: 'dash'; }
|
|
pre.src-ksh:before { content: 'ksh'; }
|
|
pre.src-mksh:before { content: 'mksh'; }
|
|
pre.src-posh:before { content: 'posh'; }
|
|
/* Additional Emacs modes also supported by the LaTeX listings package */
|
|
pre.src-ada:before { content: 'Ada'; }
|
|
pre.src-asm:before { content: 'Assembler'; }
|
|
pre.src-caml:before { content: 'Caml'; }
|
|
pre.src-delphi:before { content: 'Delphi'; }
|
|
pre.src-html:before { content: 'HTML'; }
|
|
pre.src-idl:before { content: 'IDL'; }
|
|
pre.src-mercury:before { content: 'Mercury'; }
|
|
pre.src-metapost:before { content: 'MetaPost'; }
|
|
pre.src-modula-2:before { content: 'Modula-2'; }
|
|
pre.src-pascal:before { content: 'Pascal'; }
|
|
pre.src-ps:before { content: 'PostScript'; }
|
|
pre.src-prolog:before { content: 'Prolog'; }
|
|
pre.src-simula:before { content: 'Simula'; }
|
|
pre.src-tcl:before { content: 'tcl'; }
|
|
pre.src-tex:before { content: 'TeX'; }
|
|
pre.src-plain-tex:before { content: 'Plain TeX'; }
|
|
pre.src-verilog:before { content: 'Verilog'; }
|
|
pre.src-vhdl:before { content: 'VHDL'; }
|
|
pre.src-xml:before { content: 'XML'; }
|
|
pre.src-nxml:before { content: 'XML'; }
|
|
/* add a generic configuration mode; LaTeX export needs an additional
|
|
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
|
|
pre.src-conf:before { content: 'Configuration File'; }
|
|
|
|
table { border-collapse:collapse; }
|
|
caption.t-above { caption-side: top; }
|
|
caption.t-bottom { caption-side: bottom; }
|
|
td, th { vertical-align:top; }
|
|
th.org-right { text-align: center; }
|
|
th.org-left { text-align: center; }
|
|
th.org-center { text-align: center; }
|
|
td.org-right { text-align: right; }
|
|
td.org-left { text-align: left; }
|
|
td.org-center { text-align: center; }
|
|
dt { font-weight: bold; }
|
|
.footpara { display: inline; }
|
|
.footdef { margin-bottom: 1em; }
|
|
.figure { padding: 1em; }
|
|
.figure p { text-align: center; }
|
|
.equation-container {
|
|
display: table;
|
|
text-align: center;
|
|
width: 100%;
|
|
}
|
|
.equation {
|
|
vertical-align: middle;
|
|
}
|
|
.equation-label {
|
|
display: table-cell;
|
|
text-align: right;
|
|
vertical-align: middle;
|
|
}
|
|
.inlinetask {
|
|
padding: 10px;
|
|
border: 2px solid gray;
|
|
margin: 10px;
|
|
background: #ffffcc;
|
|
}
|
|
#org-div-home-and-up
|
|
{ text-align: right; font-size: 70%; white-space: nowrap; }
|
|
textarea { overflow-x: auto; }
|
|
.linenr { font-size: smaller }
|
|
.code-highlighted { background-color: #ffff00; }
|
|
.org-info-js_info-navigation { border-style: none; }
|
|
#org-info-js_console-label
|
|
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
|
|
.org-info-js_search-highlight
|
|
{ background-color: #ffff00; color: #000000; font-weight: bold; }
|
|
.org-svg { width: 90%; }
|
|
/*]]>*/-->
|
|
</style>
|
|
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
|
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
|
<link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>
|
|
<script type="text/javascript" src="./js/jquery.min.js"></script>
|
|
<script type="text/javascript" src="./js/bootstrap.min.js"></script>
|
|
<script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
|
|
<script type="text/javascript" src="./js/readtheorg.js"></script>
|
|
<script type="text/javascript">
|
|
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
function CodeHighlightOn(elem, id)
|
|
{
|
|
var target = document.getElementById(id);
|
|
if(null != target) {
|
|
elem.cacheClassElem = elem.className;
|
|
elem.cacheClassTarget = target.className;
|
|
target.className = "code-highlighted";
|
|
elem.className = "code-highlighted";
|
|
}
|
|
}
|
|
function CodeHighlightOff(elem, id)
|
|
{
|
|
var target = document.getElementById(id);
|
|
if(elem.cacheClassElem)
|
|
elem.className = elem.cacheClassElem;
|
|
if(elem.cacheClassTarget)
|
|
target.className = elem.cacheClassTarget;
|
|
}
|
|
/*]]>*///-->
|
|
// @license-end
|
|
</script>
|
|
<script>
|
|
MathJax = {
|
|
tex: { macros: {
|
|
bm: ["\\boldsymbol{#1}",1],
|
|
}
|
|
}
|
|
};
|
|
</script>
|
|
<script type="text/javascript"
|
|
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
|
</head>
|
|
<body>
|
|
<div id="org-div-home-and-up">
|
|
<a accesskey="h" href="./index.html"> UP </a>
|
|
|
|
|
<a accesskey="H" href="./index.html"> HOME </a>
|
|
</div><div id="content">
|
|
<h1 class="title">Control of the NASS with Voice coil actuators</h1>
|
|
<div id="table-of-contents">
|
|
<h2>Table of Contents</h2>
|
|
<div id="text-table-of-contents">
|
|
<ul>
|
|
<li><a href="#orge379987">1. HAC-LAC + Cascade Control Topology</a>
|
|
<ul>
|
|
<li><a href="#org6d5d6b2">1.1. Initialization</a></li>
|
|
<li><a href="#orgf95b045">1.2. Low Authority Control - Integral Force Feedback \(\bm{K}_\text{IFF}\)</a>
|
|
<ul>
|
|
<li><a href="#orge9b2f08">1.2.1. Identification</a></li>
|
|
<li><a href="#org203d651">1.2.2. Plant</a></li>
|
|
<li><a href="#orgccc21d2">1.2.3. Root Locus</a></li>
|
|
<li><a href="#org1a8ee8a">1.2.4. Controller and Loop Gain</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org2a44e66">1.3. High Authority Control in the joint space - \(\bm{K}_\mathcal{L}\)</a>
|
|
<ul>
|
|
<li><a href="#org989c2e9">1.3.1. Identification of the damped plant</a></li>
|
|
<li><a href="#org45829b7">1.3.2. Obtained Plant</a></li>
|
|
<li><a href="#orgd1632cf">1.3.3. Controller Design and Loop Gain</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org0cd0c63">1.4. Primary Controller in the task space - \(\bm{K}_\mathcal{X}\)</a>
|
|
<ul>
|
|
<li><a href="#orga960106">1.4.1. Identification of the linearized plant</a></li>
|
|
<li><a href="#org40a9335">1.4.2. Obtained Plant</a></li>
|
|
<li><a href="#org16f56fa">1.4.3. Controller Design</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org0b05a3a">1.5. Simulation</a></li>
|
|
<li><a href="#org16024e0">1.6. Results</a>
|
|
<ul>
|
|
<li><a href="#orge126fd7">1.6.1. Load the simulation results</a></li>
|
|
<li><a href="#org0f974ff">1.6.2. Control effort</a></li>
|
|
<li><a href="#org83a367c">1.6.3. Load the simulation results</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org74d9dc7">1.7. Compliance of the nano-hexapod</a>
|
|
<ul>
|
|
<li><a href="#orgbdd14c0">1.7.1. Identification</a></li>
|
|
<li><a href="#org1a1ad20">1.7.2. Obtained Compliance</a></li>
|
|
<li><a href="#org5b81db9">1.7.3. Comparison with Piezo</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org3652c0c">1.8. Robustness to Payload Variability</a>
|
|
<ul>
|
|
<li><a href="#orgecf0445">1.8.1. Initialization</a></li>
|
|
<li><a href="#org0d97c55">1.8.2. Low Authority Control</a></li>
|
|
<li><a href="#orgab3ab98">1.8.3. High Authority Control</a></li>
|
|
<li><a href="#org176695a">1.8.4. Primary Plant</a></li>
|
|
<li><a href="#org049fbc5">1.8.5. Simulation</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#orgd649256">2. Other analysis</a>
|
|
<ul>
|
|
<li><a href="#orgcc14bbe">2.1. Robustness to Payload Variability</a></li>
|
|
<li><a href="#org18b00fa">2.2. Direct HAC control in the task space - \(\bm{K}_\mathcal{X}\)</a>
|
|
<ul>
|
|
<li><a href="#org14729d2">2.2.1. Identification</a></li>
|
|
<li><a href="#org1387536">2.2.2. Obtained Plant in the Task Space</a></li>
|
|
<li><a href="#org50b9f75">2.2.3. Obtained Plant in the Joint Space</a></li>
|
|
<li><a href="#org19db2cd">2.2.4. Controller Design in the Joint Space</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org5e26e70">2.3. On the usefulness of the High Authority Control loop / Linearization loop</a>
|
|
<ul>
|
|
<li><a href="#orga867ed3">2.3.1. Identification</a></li>
|
|
<li><a href="#orgfab8847">2.3.2. Plant in the Task space</a></li>
|
|
<li><a href="#org18aeea5">2.3.3. Plant in the Leg’s space</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org015f992">2.4. DVF instead of IFF?</a>
|
|
<ul>
|
|
<li><a href="#org17cfb9d">2.4.1. Initialization and Identification</a></li>
|
|
<li><a href="#org1144ed5">2.4.2. Obtained Plant</a></li>
|
|
<li><a href="#org51c8027">2.4.3. Controller</a></li>
|
|
<li><a href="#org33637f1">2.4.4. HAC Identification</a></li>
|
|
<li><a href="#orgec66083">2.4.5. Conclusion</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orge379987" class="outline-2">
|
|
<h2 id="orge379987"><span class="section-number-2">1</span> HAC-LAC + Cascade Control Topology</h2>
|
|
<div class="outline-text-2" id="text-1">
|
|
|
|
<div id="org757d77b" class="figure">
|
|
<p><img src="figs/cascade_control_architecture.png" alt="cascade_control_architecture.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 1: </span>Cascaded Control consisting of (from inner to outer loop): IFF, Linearization Loop, Tracking Control in the frame of the Legs</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org6d5d6b2" class="outline-3">
|
|
<h3 id="org6d5d6b2"><span class="section-number-3">1.1</span> Initialization</h3>
|
|
<div class="outline-text-3" id="text-1-1">
|
|
<p>
|
|
We initialize all the stages with the default parameters.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">initializeGround();
|
|
initializeGranite();
|
|
initializeTy();
|
|
initializeRy();
|
|
initializeRz();
|
|
initializeMicroHexapod();
|
|
initializeAxisc();
|
|
initializeMirror();
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
The nano-hexapod is a voice coil based hexapod and the sample has a mass of 1kg.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'lorentz'</span>);
|
|
initializeSample(<span class="org-string">'mass'</span>, 1);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We set the references that corresponds to a tomography experiment.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">initializeReferences(<span class="org-string">'Rz_type'</span>, <span class="org-string">'rotating'</span>, <span class="org-string">'Rz_period'</span>, 1);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">initializeDisturbances();
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">initializeController(<span class="org-string">'type'</span>, <span class="org-string">'cascade-hac-lac'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">initializeSimscapeConfiguration(<span class="org-string">'gravity'</span>, <span class="org-constant">true</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We log the signals.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">initializeLoggingConfiguration(<span class="org-string">'log'</span>, <span class="org-string">'all'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Kp = tf(zeros(6));
|
|
Kl = tf(zeros(6));
|
|
Kiff = tf(zeros(6));
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgf95b045" class="outline-3">
|
|
<h3 id="orgf95b045"><span class="section-number-3">1.2</span> Low Authority Control - Integral Force Feedback \(\bm{K}_\text{IFF}\)</h3>
|
|
<div class="outline-text-3" id="text-1-2">
|
|
<p>
|
|
<a id="org224edef"></a>
|
|
</p>
|
|
</div>
|
|
<div id="outline-container-orge9b2f08" class="outline-4">
|
|
<h4 id="orge9b2f08"><span class="section-number-4">1.2.1</span> Identification</h4>
|
|
<div class="outline-text-4" id="text-1-2-1">
|
|
<p>
|
|
Let’s first identify the plant for the IFF controller.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Fnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensors</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G_iff = linearize(mdl, io, 0);
|
|
G_iff.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
G_iff.OutputName = {<span class="org-string">'Fnlm1'</span>, <span class="org-string">'Fnlm2'</span>, <span class="org-string">'Fnlm3'</span>, <span class="org-string">'Fnlm4'</span>, <span class="org-string">'Fnlm5'</span>, <span class="org-string">'Fnlm6'</span>};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org203d651" class="outline-4">
|
|
<h4 id="org203d651"><span class="section-number-4">1.2.2</span> Plant</h4>
|
|
<div class="outline-text-4" id="text-1-2-2">
|
|
<p>
|
|
The obtained plant for IFF is shown in Figure <a href="#orga39f9fa">2</a>.
|
|
</p>
|
|
|
|
|
|
<div id="orga39f9fa" class="figure">
|
|
<p><img src="figs/cascade_vc_iff_plant.png" alt="cascade_vc_iff_plant.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 2: </span>IFF Plant (<a href="./figs/cascade_vc_iff_plant.png">png</a>, <a href="./figs/cascade_vc_iff_plant.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgccc21d2" class="outline-4">
|
|
<h4 id="orgccc21d2"><span class="section-number-4">1.2.3</span> Root Locus</h4>
|
|
<div class="outline-text-4" id="text-1-2-3">
|
|
<p>
|
|
As seen in the root locus (Figure <a href="#org528b5f0">3</a>, no damping can be added to modes corresponding to the resonance of the micro-station.
|
|
</p>
|
|
|
|
<p>
|
|
However, critical damping can be achieve for the resonances of the nano-hexapod as shown in the zoomed part of the root (Figure <a href="#org528b5f0">3</a>, left part).
|
|
The maximum damping is obtained for a control gain of \(\approx 70\).
|
|
</p>
|
|
|
|
|
|
<div id="org528b5f0" class="figure">
|
|
<p><img src="figs/cascade_vc_iff_root_locus.png" alt="cascade_vc_iff_root_locus.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 3: </span>Root Locus for the IFF control (<a href="./figs/cascade_vc_iff_root_locus.png">png</a>, <a href="./figs/cascade_vc_iff_root_locus.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org1a8ee8a" class="outline-4">
|
|
<h4 id="org1a8ee8a"><span class="section-number-4">1.2.4</span> Controller and Loop Gain</h4>
|
|
<div class="outline-text-4" id="text-1-2-4">
|
|
<p>
|
|
We create the \(6 \times 6\) diagonal Integral Force Feedback controller.
|
|
The obtained loop gain is shown in Figure <a href="#orgc890275">4</a>.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Kiff = <span class="org-type">-</span>70<span class="org-type">/</span>s<span class="org-type">*</span>eye(6);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgc890275" class="figure">
|
|
<p><img src="figs/cascade_vc_iff_loop_gain.png" alt="cascade_vc_iff_loop_gain.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 4: </span>Obtained Loop gain the IFF Control (<a href="./figs/cascade_vc_iff_loop_gain.png">png</a>, <a href="./figs/cascade_vc_iff_loop_gain.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org2a44e66" class="outline-3">
|
|
<h3 id="org2a44e66"><span class="section-number-3">1.3</span> High Authority Control in the joint space - \(\bm{K}_\mathcal{L}\)</h3>
|
|
<div class="outline-text-3" id="text-1-3">
|
|
<p>
|
|
<a id="org1d54e1b"></a>
|
|
</p>
|
|
</div>
|
|
<div id="outline-container-org989c2e9" class="outline-4">
|
|
<h4 id="org989c2e9"><span class="section-number-4">1.3.1</span> Identification of the damped plant</h4>
|
|
<div class="outline-text-4" id="text-1-3-1">
|
|
<p>
|
|
Let’s identify the dynamics from \(\bm{\tau}^\prime\) to \(d\bm{\mathcal{L}}\) as shown in Figure <a href="#org757d77b">1</a>.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'output'</span>, [], <span class="org-string">'Dnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Leg Displacement</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gl = linearize(mdl, io, 0);
|
|
Gl.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
Gl.OutputName = {<span class="org-string">'Dnlm1'</span>, <span class="org-string">'Dnlm2'</span>, <span class="org-string">'Dnlm3'</span>, <span class="org-string">'Dnlm4'</span>, <span class="org-string">'Dnlm5'</span>, <span class="org-string">'Dnlm6'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
There are some unstable poles in the Plant with very small imaginary parts.
|
|
These unstable poles are probably not physical, and they disappear when taking the minimum realization of the plant.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">isstable(Gl)
|
|
Gl = minreal(Gl);
|
|
isstable(Gl)
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org45829b7" class="outline-4">
|
|
<h4 id="org45829b7"><span class="section-number-4">1.3.2</span> Obtained Plant</h4>
|
|
<div class="outline-text-4" id="text-1-3-2">
|
|
<p>
|
|
The obtained dynamics is shown in Figure <a href="#orgd1818fd">5</a>.
|
|
</p>
|
|
|
|
<p>
|
|
Few things can be said on the dynamics:
|
|
</p>
|
|
<ul class="org-ul">
|
|
<li>the dynamics of the diagonal elements are almost all the same</li>
|
|
<li>the system is well decoupled below the resonances of the nano-hexapod (1Hz)</li>
|
|
<li>the dynamics of the diagonal elements are almost equivalent to a critically damped mass-spring-system with some spurious resonances above 50Hz corresponding to the resonances of the micro-station</li>
|
|
</ul>
|
|
|
|
|
|
<div id="orgd1818fd" class="figure">
|
|
<p><img src="figs/cascade_vc_hac_joint_plant.png" alt="cascade_vc_hac_joint_plant.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 5: </span>Plant for the High Authority Control in the Joint Space (<a href="./figs/cascade_vc_hac_joint_plant.png">png</a>, <a href="./figs/cascade_vc_hac_joint_plant.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgd1632cf" class="outline-4">
|
|
<h4 id="orgd1632cf"><span class="section-number-4">1.3.3</span> Controller Design and Loop Gain</h4>
|
|
<div class="outline-text-4" id="text-1-3-3">
|
|
<p>
|
|
As the plant is well decoupled, a diagonal plant is designed.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10; <span class="org-comment">% Bandwidth Bandwidth [rad/s]</span>
|
|
|
|
h = 2; <span class="org-comment">% Lead parameter</span>
|
|
|
|
Kl = (s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>1)<span class="org-type">/</span>s;
|
|
|
|
<span class="org-comment">% Normalization of the gain of have a loop gain of 1 at frequency wc</span>
|
|
Kl = Kl<span class="org-type">.*</span>diag(1<span class="org-type">./</span>diag(abs(freqresp(Gl<span class="org-type">*</span>Kl, wc))));
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org0cd0c63" class="outline-3">
|
|
<h3 id="org0cd0c63"><span class="section-number-3">1.4</span> Primary Controller in the task space - \(\bm{K}_\mathcal{X}\)</h3>
|
|
<div class="outline-text-3" id="text-1-4">
|
|
<p>
|
|
<a id="orga738520"></a>
|
|
</p>
|
|
</div>
|
|
<div id="outline-container-orga960106" class="outline-4">
|
|
<h4 id="orga960106"><span class="section-number-4">1.4.1</span> Identification of the linearized plant</h4>
|
|
<div class="outline-text-4" id="text-1-4-1">
|
|
<p>
|
|
We know identify the dynamics between \(\bm{r}_{\mathcal{X}_n}\) and \(\bm{r}_\mathcal{X}\).
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller/Cascade-HAC-LAC/Kp'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gp = linearize(mdl, io, 0);
|
|
Gp.InputName = {<span class="org-string">'rl1'</span>, <span class="org-string">'rl2'</span>, <span class="org-string">'rl3'</span>, <span class="org-string">'rl4'</span>, <span class="org-string">'rl5'</span>, <span class="org-string">'rl6'</span>};
|
|
Gp.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
A minus sign is added because the minus sign is already included in the plant identification.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">isstable(Gp)
|
|
Gp = <span class="org-type">-</span>minreal(Gp);
|
|
isstable(Gp)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/stages.mat'</span>, <span class="org-string">'nano_hexapod'</span>);
|
|
Gpx = Gp<span class="org-type">*</span>inv(nano_hexapod.J<span class="org-type">'</span>);
|
|
Gpx.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
|
|
|
|
Gpl = nano_hexapod.J<span class="org-type">*</span>Gp;
|
|
Gpl.OutputName = {<span class="org-string">'El1'</span>, <span class="org-string">'El2'</span>, <span class="org-string">'El3'</span>, <span class="org-string">'El4'</span>, <span class="org-string">'El5'</span>, <span class="org-string">'El6'</span>};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org40a9335" class="outline-4">
|
|
<h4 id="org40a9335"><span class="section-number-4">1.4.2</span> Obtained Plant</h4>
|
|
<div class="outline-text-4" id="text-1-4-2">
|
|
|
|
<div id="org8e042d5" class="figure">
|
|
<p><img src="figs/primary_plant_voice_coil_X.png" alt="primary_plant_voice_coil_X.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 6: </span>Obtained Primary plant in the Task space (<a href="./figs/primary_plant_voice_coil_X.png">png</a>, <a href="./figs/primary_plant_voice_coil_X.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="org2cb4d6f" class="figure">
|
|
<p><img src="figs/primary_plant_voice_coil_L.png" alt="primary_plant_voice_coil_L.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 7: </span>Obtained Primary plant in the frame of the legs (<a href="./figs/primary_plant_voice_coil_L.png">png</a>, <a href="./figs/primary_plant_voice_coil_L.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div id="outline-container-org16f56fa" class="outline-4">
|
|
<h4 id="org16f56fa"><span class="section-number-4">1.4.3</span> Controller Design</h4>
|
|
<div class="outline-text-4" id="text-1-4-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>200; <span class="org-comment">% Bandwidth Bandwidth [rad/s]</span>
|
|
|
|
h = 2; <span class="org-comment">% Lead parameter</span>
|
|
|
|
Kp = (1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...
|
|
(1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h); <span class="org-comment">% For Piezo</span>
|
|
<span class="org-comment">% Kp = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * (s + 2*pi*10)/s * (s + 2*pi*1)/s ; % For voice coil</span>
|
|
|
|
<span class="org-comment">% Normalization of the gain of have a loop gain of 1 at frequency wc</span>
|
|
Kp = Kp<span class="org-type">.*</span>diag(1<span class="org-type">./</span>diag(abs(freqresp(Gpx<span class="org-type">*</span>Kp, wc))));
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org6d0ebe2" class="figure">
|
|
<p><img src="figs/loop_gain_primary_voice_coil_X.png" alt="loop_gain_primary_voice_coil_X.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 8: </span>Obtained Loop gain for the primary controller in the Task space (<a href="./figs/loop_gain_primary_voice_coil_X.png">png</a>, <a href="./figs/loop_gain_primary_voice_coil_X.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
|
|
<p>
|
|
And now we include the Jacobian inside the controller.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Kp = inv(nano_hexapod.J<span class="org-type">'</span>)<span class="org-type">*</span>Kp;
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org0b05a3a" class="outline-3">
|
|
<h3 id="org0b05a3a"><span class="section-number-3">1.5</span> Simulation</h3>
|
|
<div class="outline-text-3" id="text-1-5">
|
|
<p>
|
|
Let’s first save the 3 controllers for further analysis:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">save(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kiff'</span>, <span class="org-string">'Kl'</span>, <span class="org-string">'Kp'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/conf_simulink.mat'</span>);
|
|
<span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simulink</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'2'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
And we simulate the system.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-simulink-keyword">sim</span>(<span class="org-string">'nass_model'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">cascade_hac_lac_lorentz = simout;
|
|
save(<span class="org-string">'./mat/cascade_hac_lac.mat'</span>, <span class="org-string">'cascade_hac_lac_lorentz'</span>, <span class="org-string">'-append'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org16024e0" class="outline-3">
|
|
<h3 id="org16024e0"><span class="section-number-3">1.6</span> Results</h3>
|
|
<div class="outline-text-3" id="text-1-6">
|
|
</div>
|
|
<div id="outline-container-orge126fd7" class="outline-4">
|
|
<h4 id="orge126fd7"><span class="section-number-4">1.6.1</span> Load the simulation results</h4>
|
|
<div class="outline-text-4" id="text-1-6-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'./mat/experiment_tomography.mat'</span>, <span class="org-string">'tomo_align_dist'</span>);
|
|
load(<span class="org-string">'./mat/cascade_hac_lac.mat'</span>, <span class="org-string">'cascade_hac_lac'</span>, <span class="org-string">'cascade_hac_lac_lorentz'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org0f974ff" class="outline-4">
|
|
<h4 id="org0f974ff"><span class="section-number-4">1.6.2</span> Control effort</h4>
|
|
<div class="outline-text-4" id="text-1-6-2">
|
|
|
|
<div id="org8301604" class="figure">
|
|
<p><img src="figs/actuator_force_torques_tomography_voice_coil.png" alt="actuator_force_torques_tomography_voice_coil.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 9: </span>Actuator Action during a tomography experiment when using Voice Coil actuators (<a href="./figs/actuator_force_torques_tomography_voice_coil.png">png</a>, <a href="./figs/actuator_force_torques_tomography_voice_coil.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org83a367c" class="outline-4">
|
|
<h4 id="org83a367c"><span class="section-number-4">1.6.3</span> Load the simulation results</h4>
|
|
<div class="outline-text-4" id="text-1-6-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">n_av = 4;
|
|
han_win = hanning(ceil(length(cascade_hac_lac.Em.En.Data(<span class="org-type">:</span>,1))<span class="org-type">/</span>n_av));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">t = cascade_hac_lac.Em.En.Time;
|
|
Ts = t(2)<span class="org-type">-</span>t(1);
|
|
|
|
[pxx_ol, f] = pwelch(tomo_align_dist.Em.En.Data, han_win, [], [], 1<span class="org-type">/</span>Ts);
|
|
[pxx_ca, <span class="org-type">~</span>] = pwelch(cascade_hac_lac.Em.En.Data, han_win, [], [], 1<span class="org-type">/</span>Ts);
|
|
[pxx_vc, <span class="org-type">~</span>] = pwelch(cascade_hac_lac_lorentz.Em.En.Data, han_win, [], [], 1<span class="org-type">/</span>Ts);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org9a33ea7" class="figure">
|
|
<p><img src="figs/exp_tomography_voice_coil_psd_pos_error.png" alt="exp_tomography_voice_coil_psd_pos_error.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 10: </span>Power Spectral Density of the position error during a tomography experiment when using Voice Coil based nano-hexapod (<a href="./figs/exp_tomography_voice_coil_psd_pos_error.png">png</a>, <a href="./figs/exp_tomography_voice_coil_psd_pos_error.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
|
|
<div id="orga0c2483" class="figure">
|
|
<p><img src="figs/exp_tomography_voice_coil_cap_pos_error.png" alt="exp_tomography_voice_coil_cap_pos_error.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 11: </span>Cumulative Amplitude Spectrum of the position error during a tomography experiment when using Voice Coil based nano-hexapod (<a href="./figs/exp_tomography_voice_coil_cap_pos_error.png">png</a>, <a href="./figs/exp_tomography_voice_coil_cap_pos_error.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
|
|
<div id="org56aac09" class="figure">
|
|
<p><img src="figs/exp_tomography_voice_coil_time_domain.png" alt="exp_tomography_voice_coil_time_domain.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 12: </span>Position error during a tomography experiment when using Voice Coil based nano-hexapod (<a href="./figs/exp_tomography_voice_coil_time_domain.png">png</a>, <a href="./figs/exp_tomography_voice_coil_time_domain.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div id="outline-container-org74d9dc7" class="outline-3">
|
|
<h3 id="org74d9dc7"><span class="section-number-3">1.7</span> Compliance of the nano-hexapod</h3>
|
|
<div class="outline-text-3" id="text-1-7">
|
|
</div>
|
|
<div id="outline-container-orgbdd14c0" class="outline-4">
|
|
<h4 id="orgbdd14c0"><span class="section-number-4">1.7.1</span> Identification</h4>
|
|
<div class="outline-text-4" id="text-1-7-1">
|
|
<p>
|
|
Let’s identify the Compliance of the NASS:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/Fd'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Direct Forces/Torques applied on the sample</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
First in open-loop:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Kp = tf(zeros(6));
|
|
Kl = tf(zeros(6));
|
|
Kiff = tf(zeros(6));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gc_ol = linearize(mdl, io, 0);
|
|
Gc_ol.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
|
Gc_ol.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Then with the IFF control.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kiff'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gc_iff = linearize(mdl, io, 0);
|
|
Gc_iff.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
|
Gc_iff.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
With the HAC control added
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kl'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gc_hac = linearize(mdl, io, 0);
|
|
Gc_hac.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
|
Gc_hac.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Finally with the primary controller
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kp'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gc_pri = linearize(mdl, io, 0);
|
|
Gc_pri.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
|
Gc_pri.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org1a1ad20" class="outline-4">
|
|
<h4 id="org1a1ad20"><span class="section-number-4">1.7.2</span> Obtained Compliance</h4>
|
|
<div class="outline-text-4" id="text-1-7-2">
|
|
|
|
<div id="org3444b1d" class="figure">
|
|
<p><img src="figs/compliance_evolution_vc_cascade_control.png" alt="compliance_evolution_vc_cascade_control.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 13: </span>Evolution of the NASS compliance with each control loop added (<a href="./figs/compliance_evolution_vc_cascade_control.png">png</a>, <a href="./figs/compliance_evolution_vc_cascade_control.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org5b81db9" class="outline-4">
|
|
<h4 id="org5b81db9"><span class="section-number-4">1.7.3</span> Comparison with Piezo</h4>
|
|
<div class="outline-text-4" id="text-1-7-3">
|
|
<p>
|
|
Let’s initialize a nano-hexapod with piezoelectric actuators.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We don’t use any controller.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Kp = tf(zeros(6));
|
|
Kl = tf(zeros(6));
|
|
Kiff = tf(zeros(6));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gc_pz = linearize(mdl, io, 0);
|
|
Gc_pz.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
|
Gc_pz.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgc7cba59" class="figure">
|
|
<p><img src="figs/compliance_comp_pz_vc_cascade.png" alt="compliance_comp_pz_vc_cascade.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 14: </span>Comparison of the compliance using the open-loop piezo-nano hexapod and the voice coil nano-hexapod with the cascade control topology (<a href="./figs/compliance_comp_pz_vc_cascade.png">png</a>, <a href="./figs/compliance_comp_pz_vc_cascade.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div id="outline-container-org3652c0c" class="outline-3">
|
|
<h3 id="org3652c0c"><span class="section-number-3">1.8</span> Robustness to Payload Variability</h3>
|
|
<div class="outline-text-3" id="text-1-8">
|
|
</div>
|
|
<div id="outline-container-orgecf0445" class="outline-4">
|
|
<h4 id="orgecf0445"><span class="section-number-4">1.8.1</span> Initialization</h4>
|
|
<div class="outline-text-4" id="text-1-8-1">
|
|
<p>
|
|
Let’s change the payload mass, and see if the controller design for a payload mass of 1 still gives good performance.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">initializeSample(<span class="org-string">'mass'</span>, 50);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Kp = tf(zeros(6));
|
|
Kl = tf(zeros(6));
|
|
Kiff = tf(zeros(6));
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org0d97c55" class="outline-4">
|
|
<h4 id="org0d97c55"><span class="section-number-4">1.8.2</span> Low Authority Control</h4>
|
|
<div class="outline-text-4" id="text-1-8-2">
|
|
<p>
|
|
Let’s first identify the transfer function for the Low Authority control.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Fnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensors</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G_iff_m = linearize(mdl, io, 0);
|
|
G_iff_m.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
G_iff_m.OutputName = {<span class="org-string">'Fnlm1'</span>, <span class="org-string">'Fnlm2'</span>, <span class="org-string">'Fnlm3'</span>, <span class="org-string">'Fnlm4'</span>, <span class="org-string">'Fnlm5'</span>, <span class="org-string">'Fnlm6'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
The obtained dynamics is compared when using a payload of 1Kg in Figure <a href="#orgda72d72">15</a>.
|
|
</p>
|
|
|
|
|
|
<div id="orgda72d72" class="figure">
|
|
<p><img src="figs/voice_coil_variability_mass_iff.png" alt="voice_coil_variability_mass_iff.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 15: </span>Dynamics of the LAC plant when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (<a href="./figs/voice_coil_variability_mass_iff.png">png</a>, <a href="./figs/voice_coil_variability_mass_iff.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
<p>
|
|
A gain of 50 will here suffice to obtain critical damping of the nano-hexapod modes.
|
|
</p>
|
|
|
|
<p>
|
|
Let’s load the IFF controller designed when the payload has a mass of 1Kg.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kiff'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org2d34f99" class="figure">
|
|
<p><img src="figs/voice_coil_variability_mass_iff_loop_gain.png" alt="voice_coil_variability_mass_iff_loop_gain.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 16: </span>Loop gain for the IFF Control when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (<a href="./figs/voice_coil_variability_mass_iff_loop_gain.png">png</a>, <a href="./figs/voice_coil_variability_mass_iff_loop_gain.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgab3ab98" class="outline-4">
|
|
<h4 id="orgab3ab98"><span class="section-number-4">1.8.3</span> High Authority Control</h4>
|
|
<div class="outline-text-4" id="text-1-8-3">
|
|
<p>
|
|
We use the Integral Force Feedback developed with a mass of 1Kg and we identify the dynamics for the High Authority Controller in the case of the 50Kg payload
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'output'</span>, [], <span class="org-string">'Dnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Leg Displacement</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gl_m = linearize(mdl, io, 0);
|
|
Gl_m.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
Gl_m.OutputName = {<span class="org-string">'Dnlm1'</span>, <span class="org-string">'Dnlm2'</span>, <span class="org-string">'Dnlm3'</span>, <span class="org-string">'Dnlm4'</span>, <span class="org-string">'Dnlm5'</span>, <span class="org-string">'Dnlm6'</span>};
|
|
|
|
isstable(Gl_m)
|
|
Gl_m = minreal(Gl_m);
|
|
isstable(Gl_m)
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org4a13006" class="figure">
|
|
<p><img src="figs/voice_coil_variability_mass_hac_plant.png" alt="voice_coil_variability_mass_hac_plant.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 17: </span>Dynamics of the HAC plant when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (<a href="./figs/voice_coil_variability_mass_hac_plant.png">png</a>, <a href="./figs/voice_coil_variability_mass_hac_plant.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
<p>
|
|
We load the HAC controller design when the payload has a mass of 1Kg.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kl'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgbc6b4d5" class="figure">
|
|
<p><img src="figs/voice_coil_variability_mass_hac_lool_gain.png" alt="voice_coil_variability_mass_hac_lool_gain.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 18: </span>Loop Gain of the HAC when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (<a href="./figs/voice_coil_variability_mass_hac_lool_gain.png">png</a>, <a href="./figs/voice_coil_variability_mass_hac_lool_gain.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org176695a" class="outline-4">
|
|
<h4 id="org176695a"><span class="section-number-4">1.8.4</span> Primary Plant</h4>
|
|
<div class="outline-text-4" id="text-1-8-4">
|
|
<p>
|
|
We use the Low Authority Controller developed with a mass of 1Kg and we identify the dynamics for the Primary controller in the case of the 50Kg payload.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller/Cascade-HAC-LAC/Kp'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
Gp_m = linearize(mdl, io, 0);
|
|
Gp_m.InputName = {<span class="org-string">'rl1'</span>, <span class="org-string">'rl2'</span>, <span class="org-string">'rl3'</span>, <span class="org-string">'rl4'</span>, <span class="org-string">'rl5'</span>, <span class="org-string">'rl6'</span>};
|
|
Gp_m.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
A minus sign is added to cancel the minus sign already included in the identified plant.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">isstable(Gp_m)
|
|
Gp_m = <span class="org-type">-</span>minreal(Gp_m);
|
|
isstable(Gp_m)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/stages.mat'</span>, <span class="org-string">'nano_hexapod'</span>);
|
|
Gpx_m = Gp_m<span class="org-type">*</span>inv(nano_hexapod.J<span class="org-type">'</span>);
|
|
Gpx_m.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
|
|
|
|
Gpl_m = nano_hexapod.J<span class="org-type">*</span>Gp_m;
|
|
Gpl_m.OutputName = {<span class="org-string">'El1'</span>, <span class="org-string">'El2'</span>, <span class="org-string">'El3'</span>, <span class="org-string">'El4'</span>, <span class="org-string">'El5'</span>, <span class="org-string">'El6'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="important">
|
|
<p>
|
|
There are two zeros with positive real part for the plant in the y direction at about 100Hz.
|
|
This is problematic as it limits the bandwidth to be less than \(\approx 50\ \text{Hz}\).
|
|
</p>
|
|
|
|
<p>
|
|
It is important here to physically understand why such “positive” zero appears.
|
|
</p>
|
|
|
|
<p>
|
|
If we make a “rigid” 50kg paylaod, the positive zero disappears.
|
|
</p>
|
|
|
|
</div>
|
|
|
|
|
|
<div id="orgef87d4d" class="figure">
|
|
<p><img src="figs/voice_coil_variability_mass_primary_plant.png" alt="voice_coil_variability_mass_primary_plant.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 19: </span>Dynamics of the Primary plant when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (<a href="./figs/voice_coil_variability_mass_primary_plant.png">png</a>, <a href="./figs/voice_coil_variability_mass_primary_plant.pdf">pdf</a>)</p>
|
|
</div>
|
|
|
|
<p>
|
|
We load the primary controller that was design when the payload has a mass of 1Kg.
|
|
</p>
|
|
|
|
<p>
|
|
We load the HAC controller design when the payload has a mass of 1Kg.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/hac_lac_cascade_vc_controllers.mat'</span>, <span class="org-string">'Kp'</span>)
|
|
Kp_x = nano_hexapod.J<span class="org-type">'*</span>Kp;
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>50; <span class="org-comment">% Bandwidth Bandwidth [rad/s]</span>
|
|
|
|
h = 2; <span class="org-comment">% Lead parameter</span>
|
|
|
|
Kp = (1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...
|
|
(1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...
|
|
(s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>1)<span class="org-type">/</span>s <span class="org-type">*</span> ...
|
|
1<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span>wc); <span class="org-comment">% For Piezo</span>
|
|
|
|
<span class="org-comment">% Normalization of the gain of have a loop gain of 1 at frequency wc</span>
|
|
Kp = Kp<span class="org-type">.*</span>diag(1<span class="org-type">./</span>diag(abs(freqresp(Gpx_m<span class="org-type">*</span>Kp, wc))));
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orga08b4d8" class="figure">
|
|
<p><img src="figs/voice_coil_variability_mass_primary_lool_gain.png" alt="voice_coil_variability_mass_primary_lool_gain.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 20: </span>Loop Gain of the Primary loop when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (<a href="./figs/voice_coil_variability_mass_primary_lool_gain.png">png</a>, <a href="./figs/voice_coil_variability_mass_primary_lool_gain.pdf">pdf</a>)</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org049fbc5" class="outline-4">
|
|
<h4 id="org049fbc5"><span class="section-number-4">1.8.5</span> Simulation</h4>
|
|
<div class="outline-text-4" id="text-1-8-5">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/conf_simulink.mat'</span>);
|
|
<span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simulink</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'2'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
And we simulate the system.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-simulink-keyword">sim</span>(<span class="org-string">'nass_model'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">cascade_hac_lac_lorentz_high_mass = simout;
|
|
save(<span class="org-string">'./mat/cascade_hac_lac.mat'</span>, <span class="org-string">'cascade_hac_lac_lorentz_high_mass'</span>, <span class="org-string">'-append'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'./mat/experiment_tomography.mat'</span>, <span class="org-string">'tomo_align_dist'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgd649256" class="outline-2">
|
|
<h2 id="orgd649256"><span class="section-number-2">2</span> Other analysis</h2>
|
|
<div class="outline-text-2" id="text-2">
|
|
</div>
|
|
<div id="outline-container-orgcc14bbe" class="outline-3">
|
|
<h3 id="orgcc14bbe"><span class="section-number-3">2.1</span> Robustness to Payload Variability</h3>
|
|
<div class="outline-text-3" id="text-2-1">
|
|
<ul class="org-ul">
|
|
<li class="off"><code>[ ]</code> For 3/masses (1kg, 10kg, 50kg), plot each of the 3 plants</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org18b00fa" class="outline-3">
|
|
<h3 id="org18b00fa"><span class="section-number-3">2.2</span> Direct HAC control in the task space - \(\bm{K}_\mathcal{X}\)</h3>
|
|
<div class="outline-text-3" id="text-2-2">
|
|
|
|
<div id="org5ded988" class="figure">
|
|
<p><img src="figs/control_architecture_hac_iff_pos_X.png" alt="control_architecture_hac_iff_pos_X.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 21: </span>Control Architecture containing an IFF controller and a Controller in the task space</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org14729d2" class="outline-4">
|
|
<h4 id="org14729d2"><span class="section-number-4">2.2.1</span> Identification</h4>
|
|
<div class="outline-text-4" id="text-2-2-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">initializeController(<span class="org-string">'type'</span>, <span class="org-string">'hac-iff'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller/HAC-IFF/Kx'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Control input</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G = linearize(mdl, io, 0);
|
|
G.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
G.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">isstable(G)
|
|
G = <span class="org-type">-</span>minreal(G);
|
|
isstable(G)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/stages.mat'</span>, <span class="org-string">'nano_hexapod'</span>);
|
|
Gx = G<span class="org-type">*</span>inv(nano_hexapod.J<span class="org-type">'</span>);
|
|
Gx.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
|
|
|
|
Gl = nano_hexapod.J<span class="org-type">*</span>G;
|
|
Gl.OutputName = {<span class="org-string">'El1'</span>, <span class="org-string">'El2'</span>, <span class="org-string">'El3'</span>, <span class="org-string">'El4'</span>, <span class="org-string">'El5'</span>, <span class="org-string">'El6'</span>};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org1387536" class="outline-4">
|
|
<h4 id="org1387536"><span class="section-number-4">2.2.2</span> Obtained Plant in the Task Space</h4>
|
|
</div>
|
|
<div id="outline-container-org50b9f75" class="outline-4">
|
|
<h4 id="org50b9f75"><span class="section-number-4">2.2.3</span> Obtained Plant in the Joint Space</h4>
|
|
</div>
|
|
<div id="outline-container-org19db2cd" class="outline-4">
|
|
<h4 id="org19db2cd"><span class="section-number-4">2.2.4</span> Controller Design in the Joint Space</h4>
|
|
<div class="outline-text-4" id="text-2-2-4">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>200; <span class="org-comment">% Bandwidth Bandwidth [rad/s]</span>
|
|
|
|
h = 2; <span class="org-comment">% Lead parameter</span>
|
|
|
|
Kx = (1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...<span class="org-comment"> % Lead</span>
|
|
(1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...<span class="org-comment"> % Lead</span>
|
|
(s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10)<span class="org-type">/</span>s <span class="org-type">*</span> ...<span class="org-comment"> % Pseudo Integrator</span>
|
|
1<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>500); <span class="org-comment">% Low pass Filter</span>
|
|
|
|
<span class="org-comment">% Normalization of the gain of have a loop gain of 1 at frequency wc</span>
|
|
Kx = Kx<span class="org-type">.*</span>diag(1<span class="org-type">./</span>diag(abs(freqresp(Gx<span class="org-type">*</span>Kx, wc))));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>200; <span class="org-comment">% Bandwidth Bandwidth [rad/s]</span>
|
|
|
|
h = 2; <span class="org-comment">% Lead parameter</span>
|
|
|
|
Kl = (1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...<span class="org-comment"> % Lead</span>
|
|
(1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> ...<span class="org-comment"> % Lead</span>
|
|
(s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>1)<span class="org-type">/</span>s <span class="org-type">*</span> ...<span class="org-comment"> % Pseudo Integrator</span>
|
|
(s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10)<span class="org-type">/</span>s <span class="org-type">*</span> ...<span class="org-comment"> % Pseudo Integrator</span>
|
|
1<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>500); <span class="org-comment">% Low pass Filter</span>
|
|
|
|
<span class="org-comment">% Normalization of the gain of have a loop gain of 1 at frequency wc</span>
|
|
Kl = Kl<span class="org-type">.*</span>diag(1<span class="org-type">./</span>diag(abs(freqresp(Gl<span class="org-type">*</span>Kl, wc))));
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org5e26e70" class="outline-3">
|
|
<h3 id="org5e26e70"><span class="section-number-3">2.3</span> On the usefulness of the High Authority Control loop / Linearization loop</h3>
|
|
<div class="outline-text-3" id="text-2-3">
|
|
<p>
|
|
Let’s see what happens is we omit the HAC loop and we directly try to control the damped plant using the measurement of the sample with respect to the granite \(\bm{\mathcal{X}}\).
|
|
</p>
|
|
|
|
<p>
|
|
We can do that in two different ways:
|
|
</p>
|
|
<ul class="org-ul">
|
|
<li>in the task space as shown in Figure <a href="#orge366d0b">22</a></li>
|
|
<li>in the space of the legs as shown in Figure <a href="#orgd23329e">23</a></li>
|
|
</ul>
|
|
|
|
|
|
<div id="orge366d0b" class="figure">
|
|
<p><img src="figs/control_architecture_iff_X.png" alt="control_architecture_iff_X.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 22: </span>IFF control + primary controller in the task space</p>
|
|
</div>
|
|
|
|
|
|
<div id="orgd23329e" class="figure">
|
|
<p><img src="figs/control_architecture_iff_L.png" alt="control_architecture_iff_L.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 23: </span>HAC-LAC control architecture in the frame of the legs</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orga867ed3" class="outline-4">
|
|
<h4 id="orga867ed3"><span class="section-number-4">2.3.1</span> Identification</h4>
|
|
<div class="outline-text-4" id="text-2-3-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">initializeController(<span class="org-string">'type'</span>, <span class="org-string">'hac-iff'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller/HAC-IFF/Kx'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G = linearize(mdl, io, 0);
|
|
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
|
G.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">isstable(G)
|
|
G = <span class="org-type">-</span>minreal(G);
|
|
isstable(G)
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgfab8847" class="outline-4">
|
|
<h4 id="orgfab8847"><span class="section-number-4">2.3.2</span> Plant in the Task space</h4>
|
|
<div class="outline-text-4" id="text-2-3-2">
|
|
<p>
|
|
The obtained plant is shown in Figure
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Gx = G<span class="org-type">*</span>inv(nano_hexapod.J<span class="org-type">'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org18aeea5" class="outline-4">
|
|
<h4 id="org18aeea5"><span class="section-number-4">2.3.3</span> Plant in the Leg’s space</h4>
|
|
<div class="outline-text-4" id="text-2-3-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Gl = nano_hexapod.J<span class="org-type">*</span>G;
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org015f992" class="outline-3">
|
|
<h3 id="org015f992"><span class="section-number-3">2.4</span> DVF instead of IFF?</h3>
|
|
<div class="outline-text-3" id="text-2-4">
|
|
</div>
|
|
<div id="outline-container-org17cfb9d" class="outline-4">
|
|
<h4 id="org17cfb9d"><span class="section-number-4">2.4.1</span> Initialization and Identification</h4>
|
|
<div class="outline-text-4" id="text-2-4-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">initializeController(<span class="org-string">'type'</span>, <span class="org-string">'hac-dvf'</span>);
|
|
Kdvf = tf(zeros(6));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Dnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Displacement Sensors</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G_dvf = linearize(mdl, io, 0);
|
|
G_dvf.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
G_dvf.OutputName = {<span class="org-string">'Dlm1'</span>, <span class="org-string">'Dlm2'</span>, <span class="org-string">'Dlm3'</span>, <span class="org-string">'Dlm4'</span>, <span class="org-string">'Dlm5'</span>, <span class="org-string">'Dlm6'</span>};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org1144ed5" class="outline-4">
|
|
<h4 id="org1144ed5"><span class="section-number-4">2.4.2</span> Obtained Plant</h4>
|
|
</div>
|
|
<div id="outline-container-org51c8027" class="outline-4">
|
|
<h4 id="org51c8027"><span class="section-number-4">2.4.3</span> Controller</h4>
|
|
<div class="outline-text-4" id="text-2-4-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Kdvf = <span class="org-type">-</span>850<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>1000)<span class="org-type">*</span>eye(6);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div id="outline-container-org33637f1" class="outline-4">
|
|
<h4 id="org33637f1"><span class="section-number-4">2.4.4</span> HAC Identification</h4>
|
|
<div class="outline-text-4" id="text-2-4-4">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'nass_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller/HAC-DVF/Kx'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Control input</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G = linearize(mdl, io, 0);
|
|
G.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
|
|
G.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">isstable(G)
|
|
G = <span class="org-type">-</span>minreal(G);
|
|
isstable(G)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/stages.mat'</span>, <span class="org-string">'nano_hexapod'</span>);
|
|
Gx = G<span class="org-type">*</span>inv(nano_hexapod.J<span class="org-type">'</span>);
|
|
Gx.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
|
|
|
|
Gl = nano_hexapod.J<span class="org-type">*</span>G;
|
|
Gl.OutputName = {<span class="org-string">'El1'</span>, <span class="org-string">'El2'</span>, <span class="org-string">'El3'</span>, <span class="org-string">'El4'</span>, <span class="org-string">'El5'</span>, <span class="org-string">'El6'</span>};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgec66083" class="outline-4">
|
|
<h4 id="orgec66083"><span class="section-number-4">2.4.5</span> Conclusion</h4>
|
|
<div class="outline-text-4" id="text-2-4-5">
|
|
<div class="important">
|
|
<p>
|
|
DVF can be used instead of IFF.
|
|
</p>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div id="postamble" class="status">
|
|
<p class="author">Author: Dehaeze Thomas</p>
|
|
<p class="date">Created: 2020-04-01 mer. 16:16</p>
|
|
</div>
|
|
</body>
|
|
</html>
|