nass-simscape/src/describeNassSetup.m

197 lines
5.6 KiB
Matlab

function [] = describeNassSetup()
% describeNassSetup -
%
% Syntax: [] = describeNassSetup()
%
% Inputs:
% - -
%
% Outputs:
% - -
load('./mat/conf_simscape.mat', 'conf_simscape');
fprintf('Simscape Configuration:\n');
if conf_simscape.type == 1
fprintf('- Gravity is included\n');
else
fprintf('- Gravity is not included\n');
end
fprintf('\n');
load('./mat/nass_disturbances.mat', 'args');
fprintf('Disturbances:\n');
if ~args.enable
fprintf('- No disturbance is included\n');
else
if args.Dwx && args.Dwy && args.Dwz
fprintf('- Ground motion\n');
end
if args.Fty_x && args.Fty_z
fprintf('- Vibrations of the Translation Stage\n');
end
if args.Frz_z
fprintf('- Vibrations of the Spindle\n');
end
end
fprintf('\n');
load('./mat/nass_references.mat', 'args');
fprintf('Reference Tracking:\n');
fprintf('- Translation Stage:\n');
switch args.Dy_type
case 'constant'
fprintf(' - Constant Position\n');
fprintf(' - Dy = %.0f [mm]\n', args.Dy_amplitude*1e3);
case 'triangular'
fprintf(' - Triangular Path\n');
fprintf(' - Amplitude = %.0f [mm]\n', args.Dy_amplitude*1e3);
fprintf(' - Period = %.0f [s]\n', args.Dy_period);
case 'sinusoidal'
fprintf(' - Sinusoidal Path\n');
fprintf(' - Amplitude = %.0f [mm]\n', args.Dy_amplitude*1e3);
fprintf(' - Period = %.0f [s]\n', args.Dy_period);
end
fprintf('- Tilt Stage:\n');
switch args.Ry_type
case 'constant'
fprintf(' - Constant Position\n');
fprintf(' - Ry = %.0f [mm]\n', args.Ry_amplitude*1e3);
case 'triangular'
fprintf(' - Triangular Path\n');
fprintf(' - Amplitude = %.0f [mm]\n', args.Ry_amplitude*1e3);
fprintf(' - Period = %.0f [s]\n', args.Ry_period);
case 'sinusoidal'
fprintf(' - Sinusoidal Path\n');
fprintf(' - Amplitude = %.0f [mm]\n', args.Ry_amplitude*1e3);
fprintf(' - Period = %.0f [s]\n', args.Ry_period);
end
fprintf('- Spindle:\n');
switch args.Rz_type
case 'constant'
fprintf(' - Constant Position\n');
fprintf(' - Rz = %.0f [deg]\n', 180/pi*args.Rz_amplitude);
case { 'rotating', 'rotating-not-filtered' }
fprintf(' - Rotating\n');
fprintf(' - Speed = %.0f [rpm]\n', 60/Rz_period);
end
fprintf('- Micro Hexapod:\n');
switch args.Dh_type
case 'constant'
fprintf(' - Constant Position\n');
fprintf(' - Dh = %.0f, %.0f, %.0f [mm]\n', args.Dh_pos(1), args.Dh_pos(2), args.Dh_pos(3));
fprintf(' - Rh = %.0f, %.0f, %.0f [deg]\n', args.Dh_pos(4), args.Dh_pos(5), args.Dh_pos(6));
end
fprintf('\n');
load('./mat/controller.mat', 'controller');
fprintf('Controller:\n');
fprintf('- %s\n', controller.name);
fprintf('\n');
load('./mat/stages.mat', 'ground', 'granite', 'ty', 'ry', 'rz', 'micro_hexapod', 'axisc');
fprintf('Micro Station:\n');
if granite.type == 1 && ...
ty.type == 1 && ...
ry.type == 1 && ...
rz.type == 1 && ...
micro_hexapod.type == 1;
fprintf('- All stages are rigid\n');
elseif granite.type == 2 && ...
ty.type == 2 && ...
ry.type == 2 && ...
rz.type == 2 && ...
micro_hexapod.type == 2;
fprintf('- All stages are flexible\n');
else
if granite.type == 1 || granite.type == 4
fprintf('- Granite is rigid\n');
else
fprintf('- Granite is flexible\n');
end
if ty.type == 1 || ty.type == 4
fprintf('- Translation Stage is rigid\n');
else
fprintf('- Translation Stage is flexible\n');
end
if ry.type == 1 || ry.type == 4
fprintf('- Tilt Stage is rigid\n');
else
fprintf('- Tilt Stage is flexible\n');
end
if rz.type == 1 || rz.type == 4
fprintf('- Spindle is rigid\n');
else
fprintf('- Spindle is flexible\n');
end
if micro_hexapod.type == 1 || micro_hexapod.type == 4
fprintf('- Micro Hexapod is rigid\n');
else
fprintf('- Micro Hexapod is flexible\n');
end
end
fprintf('\n');
load('./mat/stages.mat', 'mirror');
fprintf('Reference Mirror:\n');
if mirror.type == 2;
fprintf('- flexible fixation\n');
fprintf('- w = %.0f [Hz]\n', mirror.freq(1));
else
fprintf('- rigidly attached to the nano-hexapod\n');
end
fprintf('- m = %.0f [kg]\n', mirror.mass);
fprintf('\n');
load('./mat/stages.mat', 'nano_hexapod');
fprintf('Nano Hexapod:\n');
if nano_hexapod.type == 0;
fprintf('- no included\n');
elseif nano_hexapod.type == 1 || nano_hexapod.type == 3;
fprintf('- rigid\n');
elseif nano_hexapod.type == 2;
fprintf('- flexible\n');
fprintf('- Ki = %.0g [N/m]\n', nano_hexapod.Ki(1));
end
fprintf('\n');
load('./mat/stages.mat', 'sample');
fprintf('Sample:\n');
if sample.type == 0;
fprintf('- no included\n');
elseif sample.type == 1 || sample.type == 3;
fprintf('- rigid\n');
fprintf('- mass = %.0f [kg]\n', sample.mass);
fprintf('- moment of inertia = %.2f, %.2f, %.2f [kg m2]\n', sample.inertia(1), sample.inertia(2), sample.inertia(3));
elseif sample.type == 2;
fprintf('- flexible\n');
fprintf('- mass = %.0f [kg]\n', sample.mass);
fprintf('- moment of inertia = %.2f, %.2f, %.2f [kg m2]\n', sample.inertia(1), sample.inertia(2), sample.inertia(3));
% fprintf('- Kt = %.0g, %.0g, %.0g [N/m]\n', sample.K(1), sample.K(2), sample.K(3));
% fprintf('- Kr = %.0g, %.0g, %.0g [Nm/rad]\n', sample.K(4), sample.K(5), sample.K(6));
fprintf('- wt(x,y,z) = %.0f, %.0f, %.0f [Hz]\n', 1/2/pi*sqrt(sample.K(1)/sample.mass), 1/2/pi*sqrt(sample.K(1)/sample.mass), 1/2/pi*sqrt(sample.K(1)/sample.mass));
fprintf('- wr(x,y,z) = %.0f, %.0f, %.0f [Hz]\n', 1/2/pi*sqrt(sample.K(4)/sample.inertia(1)), 1/2/pi*sqrt(sample.K(5)/sample.inertia(2)), 1/2/pi*sqrt(sample.K(6)/sample.inertia(3)));
end
fprintf('\n');