nass-simscape/docs/positioning_error.html

683 lines
34 KiB
HTML

<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-04-17 ven. 09:35 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Computation of the Positioning Error with respect to the nano-hexapod</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<script>MathJax = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
</script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="./index.html"> UP </a>
|
<a accesskey="H" href="./index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Computation of the Positioning Error with respect to the nano-hexapod</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#orgf8376ef">1. How do we measure the position of the sample with respect to the granite</a></li>
<li><a href="#orgb3d760a">2. Verify that the function to compute the reference pose is correct</a>
<ul>
<li><a href="#org824599b">2.1. Prepare the Simulation</a></li>
<li><a href="#orgd2fa379">2.2. Verify that the pose of the sample is the same as the computed one</a></li>
<li><a href="#org127e189">2.3. Conclusion</a></li>
</ul>
</li>
<li><a href="#orgf6fa84d">3. Verify that the function to convert the position error in the frame fixed to the nano-hexapod is working</a>
<ul>
<li><a href="#orgf76b12a">3.1. Prepare the Simulation</a></li>
<li><a href="#org4e6a2dc">3.2. Compute the wanted pose of the sample in the NASS Base from the metrology and the reference</a></li>
<li><a href="#orga048dbb">3.3. Verify that be imposing the error motion on the nano-hexapod, we indeed have zero error at the end</a></li>
<li><a href="#org1528ce4">3.4. Conclusion</a></li>
</ul>
</li>
</ul>
</div>
</div>
<p>
The global measurement and control schematic is shown in figure <a href="#org0939a33">1</a>.
</p>
<div id="org0939a33" class="figure">
<p><img src="figs/control-schematic-nass.png" alt="control-schematic-nass.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Global Control Schematic for the Station</p>
</div>
<p>
In this document, are interesting by the &ldquo;compute Sample Position w.r.t. Granite&rdquo; bloc and we develop and verify that the two green blocs are working.
</p>
<p>
We suppose that we are able to measure perfectly the position of the sample with respect to the granite.
This means that we do not care about the bloc &ldquo;Compute Sample Position w.r.t. Granite&rdquo; that makes the transformation from the interferometer measurements to the position of the sample.
We suppose that we can directly measure perfectly the position of the sample with respect to the granite.
This is actually done with a &ldquo;transform sensor block&rdquo; that outputs the x-y-z translation of the sample with respect to the granite as well as the rotation matrix that maps the granite frame to the sample frame.
</p>
<p>
Also, all the stages can be perfectly positioned.
</p>
<p>
First, in section <a href="#org82a4cbd">1</a>, is explained how the measurement of the position of the sample with respect to the granite is performed (using Simscape blocs).
</p>
<p>
In section <a href="#orgbdef361">2</a>, we verify that the function developed to compute the wanted pose (translation and orientation) of the sample with respect to the granite can be determined from the wanted position of each stage (translation stage, tilt stage, spindle and micro-hexapod). This corresponds to the bloc &ldquo;Compute Wanted Sample Position w.r.t. Granite&rdquo; in figure <a href="#org0939a33">1</a>.
To do so, we impose a perfect displacement and all the stage, we perfectly measure the position of the sample with respect to the granite, and we verify that this measured position corresponds to the computed wanted pose of the sample.
</p>
<p>
Then, in section <a href="#orgb2f3e9c">3</a>, we introduce some positioning error in the micro-station&rsquo;s stages.
The positioning error of the sample expressed with respect to the granite frame (the one measured) is expressed in a frame connected to the NASS top platform (corresponding to the green bloc &ldquo;Compute Sample Position Error w.r.t. NASS&rdquo; in figure <a href="#org0939a33">1</a>).
Then, we move the NASS such that it compensate for the positioning error that are expressed in the frame of the NASS, and we verify that the positioning error of the sample is well compensated.
</p>
<div id="outline-container-orgf8376ef" class="outline-2">
<h2 id="orgf8376ef"><span class="section-number-2">1</span> How do we measure the position of the sample with respect to the granite</h2>
<div class="outline-text-2" id="text-1">
<p>
<a id="org82a4cbd"></a>
A transform sensor block gives the translation and orientation of the follower frame with respect to the base frame.
</p>
<p>
The base frame is fixed to the granite and located at the initial sample location that defines the zero position.
</p>
<p>
The follower frame is attached to the sample (or more precisely to the reflector).
</p>
<p>
The outputs of the transform sensor are:
</p>
<ul class="org-ul">
<li>the 3 translations x, y and z in meter</li>
<li>the <b>rotation matrix</b> \(\bm{R}\) that permits to rotate the base frame into the follower frame.</li>
</ul>
<p>
We can then determine extract other orientation conventions such that Euler angles or screw axis.
</p>
</div>
</div>
<div id="outline-container-orgb3d760a" class="outline-2">
<h2 id="orgb3d760a"><span class="section-number-2">2</span> Verify that the function to compute the reference pose is correct</h2>
<div class="outline-text-2" id="text-2">
<p>
<a id="orgbdef361"></a>
</p>
<p>
The goal here is to perfectly move the station and verify that there is no mismatch between the metrology measurement and the computation of the reference pose.
</p>
</div>
<div id="outline-container-org824599b" class="outline-3">
<h3 id="org824599b"><span class="section-number-3">2.1</span> Prepare the Simulation</h3>
<div class="outline-text-3" id="text-2-1">
<p>
We set a small <code>StopTime</code>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'mat/conf_simulink.mat'</span>);
<span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simulink</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'0.5'</span>);
</pre>
</div>
<p>
We initialize all the stages.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeGranite(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeTy(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeRy(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeRz(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeMicroHexapod(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeAxisc(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeMirror(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeNanoHexapod(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
initializeSample(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'mass'</span>, 50);
</pre>
</div>
<p>
No disturbance and no gravity.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeSimscapeConfiguration(<span class="org-string">'gravity'</span>, <span class="org-constant">false</span>);
initializeDisturbances(<span class="org-string">'enable'</span>, <span class="org-constant">false</span>);
</pre>
</div>
<p>
We setup the reference path to be constant.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeReferences(...
<span class="org-string">'Ts'</span>, 1e<span class="org-type">-</span>3, ...<span class="org-comment"> % Sampling Frequency [s]</span>
<span class="org-string">'Dy_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "triangular" / "sinusoidal"</span>
<span class="org-string">'Dy_amplitude'</span>, 5e<span class="org-type">-</span>3, ...<span class="org-comment"> % Amplitude of the displacement [m]</span>
<span class="org-string">'Dy_period'</span>, 1, ...<span class="org-comment"> % Period of the displacement [s]</span>
<span class="org-string">'Ry_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "triangular" / "sinusoidal"</span>
<span class="org-string">'Ry_amplitude'</span>, <span class="org-type">-</span>1<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">/</span>180, ...<span class="org-comment"> % Amplitude [rad]</span>
<span class="org-string">'Ry_period'</span>, 10, ...<span class="org-comment"> % Period of the displacement [s]</span>
<span class="org-string">'Rz_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "rotating"</span>
<span class="org-string">'Rz_amplitude'</span>, <span class="org-type">-</span>135<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">/</span>180, ...<span class="org-comment"> % Initial angle [rad]</span>
<span class="org-string">'Rz_period'</span>, 1, ...<span class="org-comment"> % Period of the rotating [s]</span>
<span class="org-string">'Dh_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Dh_pos'</span>, [0.01; 0.02; <span class="org-type">-</span>0.03; <span class="org-type">-</span>3<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">/</span>180; 1<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">/</span>180; 3<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">/</span>180], ...<span class="org-comment"> % Initial position [m,m,m,rad,rad,rad] of the top platform</span>
<span class="org-string">'Rm_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Rm_pos'</span>, [0, <span class="org-constant">pi</span>]<span class="org-type">'</span>, ...<span class="org-comment"> % Initial position of the two masses</span>
<span class="org-string">'Dn_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Dn_pos'</span>, [1e<span class="org-type">-</span>3; 2e<span class="org-type">-</span>3; 3e<span class="org-type">-</span>3; 1<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">/</span>180; 0; 1<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">/</span>180] ...<span class="org-comment"> % Initial position [m,m,m,rad,rad,rad] of the top platform</span>
);
</pre>
</div>
<p>
No position error for now (perfect positioning).
</p>
<div class="org-src-container">
<pre class="src src-matlab">Dye = 0; <span class="org-comment">% [m]</span>
Rye = 0; <span class="org-comment">% [rad]</span>
Rze = 0; <span class="org-comment">% [rad]</span>
Dhe = zeros(6,1); <span class="org-comment">% [m,m,m,rad,rad,rad]</span>
Dhle = zeros(6,1); <span class="org-comment">% [m,m,m,m,m,m]</span>
Dne = zeros(6,1); <span class="org-comment">% [m,m,m,rad,rad,rad]</span>
</pre>
</div>
<p>
We want to log the signals
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeLoggingConfiguration(<span class="org-string">'log'</span>, <span class="org-string">'all'</span>);
</pre>
</div>
<p>
And we run the simulation.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-simulink-keyword">sim</span>(<span class="org-string">'nass_model'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-orgd2fa379" class="outline-3">
<h3 id="orgd2fa379"><span class="section-number-3">2.2</span> Verify that the pose of the sample is the same as the computed one</h3>
<div class="outline-text-3" id="text-2-2">
<p>
Let&rsquo;s denote:
</p>
<ul class="org-ul">
<li>\(\{W\}\) the initial fixed frame (base in which the interferometric measurement is done)</li>
<li>\(\{R\}\) the reference frame corresponding to the wanted pose of the sample</li>
<li>\(\{M\}\) the frame corresponding to the measured pose of the sample</li>
</ul>
<p>
We have then computed:
</p>
<ul class="org-ul">
<li>\({}^W\bm{T}_R\) which corresponds to the wanted pose of the sample with respect to the granite</li>
<li>\({}^W\bm{T}_M\) which corresponds to the measured pose of the sample with respect to the granite</li>
</ul>
<p>
We load the reference and we compute the desired trajectory of the sample in the form of an homogeneous transformation matrix \({}^W\bm{T}_R\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">n = length(simout.r.Dy.Time);
WTr = zeros(4, 4, n);
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:n</span>
WTr(<span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span>) = computeReferencePose(simout.r.Dy.Data(<span class="org-constant">i</span>), simout.r.Ry.Data(<span class="org-constant">i</span>), simout.r.Rz.Data(<span class="org-constant">i</span>), simout.r.Dh.Data(<span class="org-constant">i</span>,<span class="org-type">:</span>), simout.r.Dn.Data(<span class="org-constant">i</span>,<span class="org-type">:</span>));
<span class="org-keyword">end</span>
</pre>
</div>
<p>
As the displacement is perfect, we also measure in simulation the pose of the sample with respect to the granite.
From that we can compute the homogeneous transformation matrix \({}^W\bm{T}_M\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">n = length(simout.y.R.Time);
WTm = zeros(4, 4, n);
WTm(1<span class="org-type">:</span>3, 1<span class="org-type">:</span>3, <span class="org-type">:</span>) = simout.y.R.Data;
WTm(1<span class="org-type">:</span>3, 4, <span class="org-type">:</span>) = [simout.y.x.Data<span class="org-type">'</span> ; simout.y.y.Data<span class="org-type">'</span> ; simout.y.z.Data<span class="org-type">'</span>];
WTm(4, 4, <span class="org-type">:</span>) = 1;
</pre>
</div>
<p>
As the simulation is perfect (no measurement error and no motion error), we should have that
\[ {}^W\bm{T}_R = {}^W\bm{T}_M \]
</p>
<p>
Or are least:
\[ {}^W\bm{T}_R(1:3, 4) = {}^W\bm{T}_M(1:3, 4) \]
\[ {}^W\bm{R}_R^t \cdot {}^W\bm{R}_M = \bm{I}_3 \]
</p>
<div class="org-src-container">
<pre class="src src-matlab">WTr(1<span class="org-type">:</span>3, 4, end)<span class="org-type">-</span>WTm(1<span class="org-type">:</span>3, 4, end)
WTr(1<span class="org-type">:</span>3, 1<span class="org-type">:</span>3, end)<span class="org-type">'*</span>WTm(1<span class="org-type">:</span>3, 1<span class="org-type">:</span>3, end)<span class="org-type">-</span>eye(3)
</pre>
</div>
<pre class="example">
WTr(1:3, 4, end)-WTm(1:3, 4, end)
ans =
8.53830894875784e-15
-5.58580959264532e-15
-5.89805981832114e-17
WTr(1:3, 1:3, end)'*WTm(1:3, 1:3, end)-eye(3)
ans =
1.62092561595273e-14 -1.59832000065641e-14 1.11022302462516e-16
1.61295672998496e-14 1.62092561595273e-14 -1.72431513512095e-15
-1.65492619608187e-15 -9.8879238130678e-16 9.41469124882133e-14
</pre>
</div>
</div>
<div id="outline-container-org127e189" class="outline-3">
<h3 id="org127e189"><span class="section-number-3">2.3</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-3">
<div class="important">
<p>
We are able to compute the wanted position and orientation of the sample.
Both the measurement and the theory gives the same result.
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-orgf6fa84d" class="outline-2">
<h2 id="orgf6fa84d"><span class="section-number-2">3</span> Verify that the function to convert the position error in the frame fixed to the nano-hexapod is working</h2>
<div class="outline-text-2" id="text-3">
<p>
<a id="orgb2f3e9c"></a>
</p>
<p>
We now introduce some positioning error in the stage.
This will induce a global positioning error of the sample with respect to the desired pose that we can compute.
</p>
<p>
We want to verify that we are able to measure this positioning error and convert it in the frame attached to the Nano-hexapod.
</p>
</div>
<div id="outline-container-orgf76b12a" class="outline-3">
<h3 id="orgf76b12a"><span class="section-number-3">3.1</span> Prepare the Simulation</h3>
<div class="outline-text-3" id="text-3-1">
<p>
We set a small <code>StopTime</code>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'mat/conf_simulink.mat'</span>);
<span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simulink</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'0.5'</span>);
</pre>
</div>
<p>
We initialize all the stages.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeGranite(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeTy(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeRy(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeRz(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeMicroHexapod(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeAxisc(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeMirror(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
initializeNanoHexapod(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
initializeSample(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'mass'</span>, 50);
</pre>
</div>
<p>
No disturbance and no gravity.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeSimscapeConfiguration(<span class="org-string">'gravity'</span>, <span class="org-constant">false</span>);
initializeDisturbances(<span class="org-string">'enable'</span>, <span class="org-constant">false</span>);
</pre>
</div>
<p>
We setup the reference path to be constant.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeReferences(...
<span class="org-string">'Ts'</span>, 1e<span class="org-type">-</span>3, ...<span class="org-comment"> % Sampling Frequency [s]</span>
<span class="org-string">'Dy_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "triangular" / "sinusoidal"</span>
<span class="org-string">'Dy_amplitude'</span>, 0, ...<span class="org-comment"> % Amplitude of the displacement [m]</span>
<span class="org-string">'Ry_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "triangular" / "sinusoidal"</span>
<span class="org-string">'Ry_amplitude'</span>, 0, ...<span class="org-comment"> % Amplitude [rad]</span>
<span class="org-string">'Rz_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "rotating"</span>
<span class="org-string">'Rz_amplitude'</span>, 0<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">/</span>180, ...<span class="org-comment"> % Initial angle [rad]</span>
<span class="org-string">'Dh_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Dh_pos'</span>, [0; 0; 0; 0; 0; 0], ...<span class="org-comment"> % Initial position [m,m,m,rad,rad,rad] of the top platform</span>
<span class="org-string">'Rm_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Rm_pos'</span>, [0, <span class="org-constant">pi</span>]<span class="org-type">'</span>, ...<span class="org-comment"> % Initial position of the two masses</span>
<span class="org-string">'Dn_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Dn_pos'</span>, [0; 0; 0; 0; 0; 0] ...<span class="org-comment"> % Initial position [m,m,m,rad,rad,rad] of the top platform</span>
);
</pre>
</div>
<p>
Now we introduce some positioning error.
</p>
<div class="org-src-container">
<pre class="src src-matlab">Dye = 1e<span class="org-type">-</span>6; <span class="org-comment">% [m]</span>
Rye = 2e<span class="org-type">-</span>4; <span class="org-comment">% [rad]</span>
Rze = 1e<span class="org-type">-</span>5; <span class="org-comment">% [rad]</span>
initializePosError(<span class="org-string">'error'</span>, <span class="org-constant">true</span>, <span class="org-string">'Dy'</span>, Dye, <span class="org-string">'Ry'</span>, Rye, <span class="org-string">'Rz'</span>, Rze);
</pre>
</div>
<p>
And we run the simulation.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-simulink-keyword">sim</span>(<span class="org-string">'nass_model'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-org4e6a2dc" class="outline-3">
<h3 id="org4e6a2dc"><span class="section-number-3">3.2</span> Compute the wanted pose of the sample in the NASS Base from the metrology and the reference</h3>
<div class="outline-text-3" id="text-3-2">
<p>
Now that we have introduced some positioning error, the computed wanted pose and the measured pose will not be the same.
</p>
<p>
We would like to compute \({}^M\bm{T}_R\) which corresponds to the wanted pose of the sample expressed in a frame attached to the top platform of the nano-hexapod (frame \(\{M\}\)).
</p>
<p>
We have:
</p>
\begin{align}
{}^M\bm{T}_R &= {}^M\bm{T}_W \cdot {}^W\bm{T}_R \\
&= {}^W{\bm{T}_M}^{-1} \cdot {}^W\bm{T}_R
\end{align}
<p>
The top platform of the nano-hexapod is considered to be rigidly connected to the sample, thus, \({}^M\bm{T}_R\) corresponds to the pose error of the sample with respect to the nano-hexapod platform.
</p>
<p>
We load the reference and we compute the desired trajectory of the sample in the form of an homogeneous transformation matrix \({}^W\bm{T}_R\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">n = length(simout.r.Dy.Time);
WTr = zeros(4, 4, n);
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:n</span>
WTr(<span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span>) = computeReferencePose(simout.r.Dy.Data(<span class="org-constant">i</span>), simout.r.Ry.Data(<span class="org-constant">i</span>), simout.r.Rz.Data(<span class="org-constant">i</span>), simout.r.Dh.Data(<span class="org-constant">i</span>,<span class="org-type">:</span>), simout.r.Dn.Data(<span class="org-constant">i</span>,<span class="org-type">:</span>));
<span class="org-keyword">end</span>
</pre>
</div>
<p>
We also measure in simulation the pose of the sample with respect to the granite.
From that we can compute the homogeneous transformation matrix \({}^W\bm{T}_M\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">n = length(simout.y.R.Time);
WTm = zeros(4, 4, n);
WTm(1<span class="org-type">:</span>3, 1<span class="org-type">:</span>3, <span class="org-type">:</span>) = simout.y.R.Data;
WTm(1<span class="org-type">:</span>3, 4, <span class="org-type">:</span>) = [simout.y.x.Data<span class="org-type">'</span> ; simout.y.y.Data<span class="org-type">'</span> ; simout.y.z.Data<span class="org-type">'</span>];
WTm(4, 4, <span class="org-type">:</span>) = 1;
</pre>
</div>
<p>
The <b>inverse of the transformation matrix</b> can be obtain by (it is less computation intensive than doing a full inverse)
</p>
\begin{equation}
{}^B\bm{T}_A = {}^A\bm{T}_B^{-1} =
\left[ \begin{array}{ccc|c}
& & & \\
& {}^A\bm{R}_B^T & & -{}^A \bm{R}_B^T {}^A\bm{P}_{O_B} \\
& & & \\
\hline
0 & 0 & 0 & 1 \\
\end{array} \right]
\end{equation}
<p>
Finally, we compute \({}^M\bm{T}_R\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">MTr = zeros(4, 4, n);
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:n</span>
MTr(<span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span>) = [WTm(1<span class="org-type">:</span>3,1<span class="org-type">:</span>3,<span class="org-constant">i</span>)<span class="org-type">'</span>, <span class="org-type">-</span>WTm(1<span class="org-type">:</span>3,1<span class="org-type">:</span>3,<span class="org-constant">i</span>)<span class="org-type">'*</span>WTm(1<span class="org-type">:</span>3,4,<span class="org-constant">i</span>) ; 0 0 0 1]<span class="org-type">*</span>WTr(<span class="org-type">:</span>,<span class="org-type">:</span>,<span class="org-constant">i</span>);
<span class="org-keyword">end</span>
</pre>
</div>
<p>
Verify that the pose error corresponds to the positioning error of the stages.
</p>
<div class="org-src-container">
<pre class="src src-matlab">MTr(1<span class="org-type">:</span>3, 1<span class="org-type">:</span>3, end)
Rx = [1 0 0;
0 cos(Erx) <span class="org-type">-</span>sin(Erx);
0 sin(Erx) cos(Erx)];
Ry = [ cos(Ery) 0 sin(Ery);
0 1 0;
<span class="org-type">-</span>sin(Ery) 0 cos(Ery)];
Rz = [cos(Erz) <span class="org-type">-</span>sin(Erz) 0;
sin(Erz) cos(Erz) 0;
0 0 1];
</pre>
</div>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">&#xa0;</th>
<th scope="col" class="org-right">Edx [m]</th>
<th scope="col" class="org-right">Edy [m]</th>
<th scope="col" class="org-right">Edz [m]</th>
<th scope="col" class="org-right">Erx [rad]</th>
<th scope="col" class="org-right">Ery [rad]</th>
<th scope="col" class="org-right">Erz [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">Error</td>
<td class="org-right">-1.0e-11</td>
<td class="org-right">-1.0e-06</td>
<td class="org-right">-6.2e-16</td>
<td class="org-right">-2.0e-09</td>
<td class="org-right">-2.0e-04</td>
<td class="org-right">-1.0e-05</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="outline-container-orga048dbb" class="outline-3">
<h3 id="orga048dbb"><span class="section-number-3">3.3</span> Verify that be imposing the error motion on the nano-hexapod, we indeed have zero error at the end</h3>
<div class="outline-text-3" id="text-3-3">
<p>
We now keep the wanted pose but we impose a displacement of the nano hexapod corresponding to the measured position error.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeReferences(...
<span class="org-string">'Ts'</span>, 1e<span class="org-type">-</span>3, ...<span class="org-comment"> % Sampling Frequency [s]</span>
<span class="org-string">'Dy_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "triangular" / "sinusoidal"</span>
<span class="org-string">'Dy_amplitude'</span>, 0, ...<span class="org-comment"> % Amplitude of the displacement [m]</span>
<span class="org-string">'Ry_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "triangular" / "sinusoidal"</span>
<span class="org-string">'Ry_amplitude'</span>, 0, ...<span class="org-comment"> % Amplitude [rad]</span>
<span class="org-string">'Rz_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "rotating"</span>
<span class="org-string">'Rz_amplitude'</span>, 0<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">/</span>180, ...<span class="org-comment"> % Initial angle [rad]</span>
<span class="org-string">'Dh_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Dh_pos'</span>, [0; 0; 0; 0; 0; 0], ...<span class="org-comment"> % Initial position [m,m,m,rad,rad,rad] of the top platform</span>
<span class="org-string">'Rm_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Rm_pos'</span>, [0, <span class="org-constant">pi</span>]<span class="org-type">'</span>, ...<span class="org-comment"> % Initial position of the two masses</span>
<span class="org-string">'Dn_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Dn_pos'</span>, [Edx; Edy; Edz; Erx; Ery; Erz] ...<span class="org-comment"> % Initial position [m,m,m,rad,rad,rad] of the top platform</span>
);
</pre>
</div>
<p>
And we run the simulation.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-simulink-keyword">sim</span>(<span class="org-string">'nass_model'</span>);
</pre>
</div>
<p>
We keep the old computed computed reference pose \({}^W\bm{T}_r\) even though we have change the nano hexapod reference, but this is not a real wanted reference but rather a adaptation to reject the positioning errors.
</p>
<p>
As the displacement is perfect, we also measure in simulation the pose of the sample with respect to the granite.
From that we can compute the homogeneous transformation matrix \({}^W\bm{T}_M\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">n = length(simout.y.R.Time);
WTm = zeros(4, 4, n);
WTm(1<span class="org-type">:</span>3, 1<span class="org-type">:</span>3, <span class="org-type">:</span>) = simout.y.R.Data;
WTm(1<span class="org-type">:</span>3, 4, <span class="org-type">:</span>) = [simout.y.x.Data<span class="org-type">'</span> ; simout.y.y.Data<span class="org-type">'</span> ; simout.y.z.Data<span class="org-type">'</span>];
WTm(4, 4, <span class="org-type">:</span>) = 1;
</pre>
</div>
<p>
Finally, we compute \({}^M\bm{T}_R\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">MTr = zeros(4, 4, n);
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:n</span>
MTr(<span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span>) = [WTm(1<span class="org-type">:</span>3,1<span class="org-type">:</span>3,<span class="org-constant">i</span>)<span class="org-type">'</span>, <span class="org-type">-</span>WTm(1<span class="org-type">:</span>3,1<span class="org-type">:</span>3,<span class="org-constant">i</span>)<span class="org-type">'*</span>WTm(1<span class="org-type">:</span>3,4,<span class="org-constant">i</span>) ; 0 0 0 1]<span class="org-type">*</span>WTr(<span class="org-type">:</span>,<span class="org-type">:</span>,<span class="org-constant">i</span>);
<span class="org-keyword">end</span>
</pre>
</div>
<p>
Verify that the pose error is small.
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">&#xa0;</th>
<th scope="col" class="org-right">Edx [m]</th>
<th scope="col" class="org-right">Edy [m]</th>
<th scope="col" class="org-right">Edz [m]</th>
<th scope="col" class="org-right">Erx [rad]</th>
<th scope="col" class="org-right">Ery [rad]</th>
<th scope="col" class="org-right">Erz [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">Error</td>
<td class="org-right">2.4e-16</td>
<td class="org-right">-9.9e-17</td>
<td class="org-right">4.4e-16</td>
<td class="org-right">2.0e-09</td>
<td class="org-right">-8.9e-15</td>
<td class="org-right">2.0e-13</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="outline-container-org1528ce4" class="outline-3">
<h3 id="org1528ce4"><span class="section-number-3">3.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-4">
<div class="important">
<p>
Indeed, we are able to convert the position error in the frame of the NASS and then compensate these errors with the NASS.
</p>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-04-17 ven. 09:35</p>
</div>
</body>
</html>