Work on Control (HAC-LAC) + Models

This commit is contained in:
2020-03-13 17:40:22 +01:00
parent 493268638b
commit fab78b6527
78 changed files with 5395 additions and 2475 deletions

View File

@@ -4,7 +4,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-02-25 mar. 18:20 -->
<!-- 2020-03-13 ven. 17:39 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>HAC-LAC applied on the Simscape Model</title>
@@ -202,51 +202,39 @@
<script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
<script type="text/javascript" src="./js/readtheorg.js"></script>
<script type="text/javascript">
/*
@licstart The following is the entire license notice for the
JavaScript code in this tag.
Copyright (C) 2012-2020 Free Software Foundation, Inc.
The JavaScript code in this tag is free software: you can
redistribute it and/or modify it under the terms of the GNU
General Public License (GNU GPL) as published by the Free Software
Foundation, either version 3 of the License, or (at your option)
any later version. The code is distributed WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
As additional permission under GNU GPL version 3 section 7, you
may distribute non-source (e.g., minimized or compacted) forms of
that code without the copy of the GNU GPL normally required by
section 4, provided you include this license notice and a URL
through which recipients can access the Corresponding Source.
@licend The above is the entire license notice
for the JavaScript code in this tag.
*/
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
// @license-end
</script>
<script>
MathJax = {
tex: { macros: {
bm: ["\\boldsymbol{#1}",1],
}
}
};
</script>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
@@ -259,51 +247,44 @@ for the JavaScript code in this tag.
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org68eabc2">1. Undamped System</a>
<li><a href="#org9a782be">1. Initialization</a></li>
<li><a href="#org5f71356">2. Low Authority Control - Direct Velocity Feedback \(\bm{K}_\mathcal{L}\)</a>
<ul>
<li><a href="#org05b902d">1.1. Identification of the plant</a>
<ul>
<li><a href="#orga716982">1.1.1. Initialize the Simulation</a></li>
<li><a href="#org2a3d76d">1.1.2. Identification</a></li>
<li><a href="#org86a6b3a">1.1.3. Display TF</a></li>
<li><a href="#org51e23f6">1.1.4. Obtained Plants for Active Damping</a></li>
<li><a href="#orgd91db57">2.1. Identification</a></li>
<li><a href="#org09c8990">2.2. Plant</a></li>
<li><a href="#orgc21ad83">2.3. Root Locus</a></li>
<li><a href="#orgd18d476">2.4. Controller and Loop Gain</a></li>
</ul>
</li>
<li><a href="#orgaf40de5">1.2. Tomography Experiment</a>
<li><a href="#orgbba86f0">3. High Authority Control - \(\bm{K}_\mathcal{X}\)</a>
<ul>
<li><a href="#org5a1507e">1.2.1. Simulation</a></li>
<li><a href="#org9498b7b">1.2.2. Results</a></li>
</ul>
</li>
<li><a href="#orgdcbab01">1.3. Verification of the transfer function from nano hexapod to metrology</a>
<ul>
<li><a href="#org9edf24c">1.3.1. Initialize the Simulation</a></li>
<li><a href="#org9ff767e">1.3.2. Identification</a></li>
<li><a href="#org5c0b9bf">1.3.3. Display TF</a></li>
<li><a href="#org6288fb1">1.3.4. Obtained Plants for Active Damping</a></li>
</ul>
</li>
<li><a href="#orgdd75cdd">3.1. Identification of the damped plant</a></li>
<li><a href="#orgf70f020">3.2. Controller Design</a></li>
</ul>
</li>
<li><a href="#org5a1507e">4. Simulation</a></li>
<li><a href="#org9498b7b">5. Results</a></li>
</ul>
</div>
</div>
<div id="outline-container-org68eabc2" class="outline-2">
<h2 id="org68eabc2"><span class="section-number-2">1</span> Undamped System</h2>
<div class="outline-text-2" id="text-1">
<p>
<a id="org632e852"></a>
The position \(\bm{\mathcal{X}}\) of the Sample with respect to the granite is measured.
</p>
<p>
It is then compare to the wanted position of the Sample \(\bm{r}_\mathcal{X}\) in order to obtain the position error \(\bm{\epsilon}_\mathcal{X}\) of the Sample with respect to a frame attached to the Stewart top platform.
</p>
<div class="figure">
<p><img src="figs/hac_lac_control_schematic.png" alt="hac_lac_control_schematic.png" />
</p>
</div>
<div id="outline-container-org05b902d" class="outline-3">
<h3 id="org05b902d"><span class="section-number-3">1.1</span> Identification of the plant</h3>
<div class="outline-text-3" id="text-1-1">
</div>
<div id="outline-container-orga716982" class="outline-4">
<h4 id="orga716982"><span class="section-number-4">1.1.1</span> Initialize the Simulation</h4>
<div class="outline-text-4" id="text-1-1-1">
<div id="outline-container-org9a782be" class="outline-2">
<h2 id="org9a782be"><span class="section-number-2">1</span> Initialization</h2>
<div class="outline-text-2" id="text-1">
<p>
We initialize all the stages with the default parameters.
</p>
@@ -324,137 +305,199 @@ The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
initializeSample(<span class="org-string">'mass'</span>, 50);
initializeSample(<span class="org-string">'mass'</span>, 1);
</pre>
</div>
<p>
No disturbances.
We set the references that corresponds to a tomography experiment.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeDisturbances(<span class="org-string">'enable'</span>, <span class="org-constant">false</span>);
<pre class="src src-matlab">initializeReferences(<span class="org-string">'Rz_type'</span>, <span class="org-string">'rotating'</span>, <span class="org-string">'Rz_period'</span>, 1);
</pre>
</div>
<p>
We set the references to zero.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeReferences();
<pre class="src src-matlab">initializeDisturbances();
</pre>
</div>
<p>
And all the controllers are set to 0.
Open Loop.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-org2a3d76d" class="outline-4">
<h4 id="org2a3d76d"><span class="section-number-4">1.1.2</span> Identification</h4>
<div class="outline-text-4" id="text-1-1-2">
<p>
First, we identify the dynamics of the system using the <code>linearize</code> function.
And we put some gravity.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
<pre class="src src-matlab">initializeSimscapeConfiguration(<span class="org-string">'gravity'</span>, <span class="org-constant">true</span>);
</pre>
</div>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
<p>
We log the signals.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeLoggingConfiguration(<span class="org-string">'log'</span>, <span class="org-string">'all'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-org5f71356" class="outline-2">
<h2 id="org5f71356"><span class="section-number-2">2</span> Low Authority Control - Direct Velocity Feedback \(\bm{K}_\mathcal{L}\)</h2>
<div class="outline-text-2" id="text-2">
<p>
The first loop closed corresponds to a direct velocity feedback loop.
</p>
<p>
The design of the associated decentralized controller is explained in <a href="active_damping.html">this</a> file.
</p>
</div>
<div id="outline-container-orgd91db57" class="outline-3">
<h3 id="orgd91db57"><span class="section-number-3">2.1</span> Identification</h3>
<div class="outline-text-3" id="text-2-1">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'nass_model'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Metrology Outputs</span>
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Dnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Motion Outputs</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
G_dvf = linearize(mdl, io, 0);
G_dvf.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
G_dvf.OutputName = {<span class="org-string">'Dnlm1'</span>, <span class="org-string">'Dnlm2'</span>, <span class="org-string">'Dnlm3'</span>, <span class="org-string">'Dnlm4'</span>, <span class="org-string">'Dnlm5'</span>, <span class="org-string">'Dnlm6'</span>};
</pre>
</div>
</div>
</div>
<div id="outline-container-org09c8990" class="outline-3">
<h3 id="org09c8990"><span class="section-number-3">2.2</span> Plant</h3>
</div>
<div id="outline-container-orgc21ad83" class="outline-3">
<h3 id="orgc21ad83"><span class="section-number-3">2.3</span> Root Locus</h3>
</div>
<div id="outline-container-orgd18d476" class="outline-3">
<h3 id="orgd18d476"><span class="section-number-3">2.4</span> Controller and Loop Gain</h3>
<div class="outline-text-3" id="text-2-4">
<div class="org-src-container">
<pre class="src src-matlab">K_dvf = s<span class="org-type">*</span>15000<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10000);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">K_dvf = <span class="org-type">-</span>K_dvf<span class="org-type">*</span>eye(6);
</pre>
</div>
</div>
</div>
</div>
<div id="outline-container-orgbba86f0" class="outline-2">
<h2 id="orgbba86f0"><span class="section-number-2">3</span> High Authority Control - \(\bm{K}_\mathcal{X}\)</h2>
<div class="outline-text-2" id="text-3">
</div>
<div id="outline-container-orgdd75cdd" class="outline-3">
<h3 id="orgdd75cdd"><span class="section-number-3">3.1</span> Identification of the damped plant</h3>
<div class="outline-text-3" id="text-3-1">
<div class="org-src-container">
<pre class="src src-matlab">Kx = tf(zeros(6));
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">initializeController(<span class="org-string">'type'</span>, <span class="org-string">'hac-dvf'</span>);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'nass_model'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'output'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position Errror</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, 0);
G.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
G.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
</pre>
</div>
<p>
The minus sine is put here because there is already a minus sign included due to the computation of the position error.
</p>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'mat/stages.mat'</span>, <span class="org-string">'nano_hexapod'</span>);
G_cart = minreal(G<span class="org-type">*</span>inv(nano_hexapod.J<span class="org-type">'</span>));
G_cart.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">'Fny'</span>, <span class="org-string">'Fnz'</span>, <span class="org-string">'Mnx'</span>, <span class="org-string">'Mny'</span>, <span class="org-string">'Mnz'</span>};
Gx = <span class="org-type">-</span>G<span class="org-type">*</span>inv(nano_hexapod.J<span class="org-type">'</span>);
Gx.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
</pre>
</div>
</div>
</div>
<div id="outline-container-orgf70f020" class="outline-3">
<h3 id="orgf70f020"><span class="section-number-3">3.2</span> Controller Design</h3>
<div class="outline-text-3" id="text-3-2">
<p>
The controller consists of:
</p>
<ul class="org-ul">
<li>A pure integrator</li>
<li>A Second integrator up to half the wanted bandwidth</li>
<li>A Lead around the cross-over frequency</li>
<li>A low pass filter with a cut-off equal to two times the wanted bandwidth</li>
</ul>
<div class="org-src-container">
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>15; <span class="org-comment">% Bandwidth Bandwidth [rad/s]</span>
h = 1.5; <span class="org-comment">% Lead parameter</span>
Kx = (1<span class="org-type">/</span>h) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">*</span>h)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>h) <span class="org-type">*</span> wc<span class="org-type">/</span>s <span class="org-type">*</span> ((s<span class="org-type">/</span>wc<span class="org-type">*</span>2 <span class="org-type">+</span> 1)<span class="org-type">/</span>(s<span class="org-type">/</span>wc<span class="org-type">*</span>2)) <span class="org-type">*</span> (1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc<span class="org-type">/</span>2));
<span class="org-comment">% Normalization of the gain of have a loop gain of 1 at frequency wc</span>
Kx = Kx<span class="org-type">.*</span>diag(1<span class="org-type">./</span>diag(abs(freqresp(Gx<span class="org-type">*</span>Kx, wc))));
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">G_legs = minreal(inv(nano_hexapod.J)<span class="org-type">*</span>G);
G_legs.OutputName = {<span class="org-string">'e1'</span>, <span class="org-string">'e2'</span>, <span class="org-string">'e3'</span>, <span class="org-string">'e4'</span>, <span class="org-string">'e5'</span>, <span class="org-string">'e6'</span>};
<pre class="src src-matlab">isstable(feedback(Gx<span class="org-type">*</span>Kx, eye(6), <span class="org-type">-</span>1))
</pre>
</div>
</div>
</div>
<div id="outline-container-org86a6b3a" class="outline-4">
<h4 id="org86a6b3a"><span class="section-number-4">1.1.3</span> Display TF</h4>
<div class="outline-text-4" id="text-1-1-3">
<div id="org37e58f3" class="figure">
<p><img src="figs/plant_G_cart.png" alt="plant_G_cart.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Transfer Function from forces applied by the nano-hexapod to position error (<a href="./figs/plant_G_cart.png">png</a>, <a href="./figs/plant_G_cart.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org51e23f6" class="outline-4">
<h4 id="org51e23f6"><span class="section-number-4">1.1.4</span> Obtained Plants for Active Damping</h4>
<div class="outline-text-4" id="text-1-1-4">
<div id="orga98bcf7" class="figure">
<p><img src="figs/nass_active_damping_iff_plant.png" alt="nass_active_damping_iff_plant.png" />
</p>
<p><span class="figure-number">Figure 2: </span><code>G_iff</code>: IFF Plant (<a href="./figs/nass_active_damping_iff_plant.png">png</a>, <a href="./figs/nass_active_damping_iff_plant.pdf">pdf</a>)</p>
</div>
<div id="orgf5e6d6e" class="figure">
<p><img src="figs/nass_active_damping_ine_plant.png" alt="nass_active_damping_ine_plant.png" />
</p>
<p><span class="figure-number">Figure 3: </span><code>G_dvf</code>: Plant for Direct Velocity Feedback (<a href="./figs/nass_active_damping_dvf_plant.png">png</a>, <a href="./figs/nass_active_damping_dvf_plant.pdf">pdf</a>)</p>
</div>
<div id="orgfe31dcc" class="figure">
<p><img src="figs/nass_active_damping_inertial_plant.png" alt="nass_active_damping_inertial_plant.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Inertial Feedback Plant (<a href="./figs/nass_active_damping_inertial_plant.png">png</a>, <a href="./figs/nass_active_damping_inertial_plant.pdf">pdf</a>)</p>
</div>
</div>
</div>
</div>
<div id="outline-container-orgaf40de5" class="outline-3">
<h3 id="orgaf40de5"><span class="section-number-3">1.2</span> Tomography Experiment</h3>
<div class="outline-text-3" id="text-1-2">
</div>
<div id="outline-container-org5a1507e" class="outline-4">
<h4 id="org5a1507e"><span class="section-number-4">1.2.1</span> Simulation</h4>
<div class="outline-text-4" id="text-1-2-1">
<p>
We initialize elements for the tomography experiment.
</p>
<div class="org-src-container">
<pre class="src src-matlab">prepareTomographyExperiment();
<pre class="src src-matlab">Kx = inv(nano_hexapod.J<span class="org-type">'</span>)<span class="org-type">*</span>Kx;
</pre>
</div>
<p>
We change the simulation stop time.
</p>
<div class="org-src-container">
<pre class="src src-matlab">isstable(feedback(G<span class="org-type">*</span>Kx, eye(6), 1))
</pre>
</div>
</div>
</div>
</div>
<div id="outline-container-org5a1507e" class="outline-2">
<h2 id="org5a1507e"><span class="section-number-2">4</span> Simulation</h2>
<div class="outline-text-2" id="text-4">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'mat/conf_simulink.mat'</span>);
<span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simulink</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'3'</span>);
<span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simulink</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'1.5'</span>);
</pre>
</div>
@@ -466,186 +509,26 @@ And we simulate the system.
</pre>
</div>
<p>
Finally, we save the simulation results for further analysis
</p>
<div class="org-src-container">
<pre class="src src-matlab">save(<span class="org-string">'./active_damping/mat/tomo_exp.mat'</span>, <span class="org-string">'En'</span>, <span class="org-string">'Eg'</span>, <span class="org-string">'-append'</span>);
<pre class="src src-matlab">save(<span class="org-string">'./mat/tomo_exp_hac_lac.mat'</span>, <span class="org-string">'simout'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-org9498b7b" class="outline-4">
<h4 id="org9498b7b"><span class="section-number-4">1.2.2</span> Results</h4>
<div class="outline-text-4" id="text-1-2-2">
<p>
We load the results of tomography experiments.
</p>
<div id="outline-container-org9498b7b" class="outline-2">
<h2 id="org9498b7b"><span class="section-number-2">5</span> Results</h2>
<div class="outline-text-2" id="text-5">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/tomo_exp.mat'</span>, <span class="org-string">'En'</span>);
t = linspace(0, 3, length(En(<span class="org-type">:</span>,1)));
<pre class="src src-matlab">load(<span class="org-string">'./mat/tomo_exp_hac_lac.mat'</span>, <span class="org-string">'simout'</span>);
</pre>
</div>
<div id="org5746ec3" class="figure">
<p><img src="figs/nass_act_damp_undamped_sim_tomo_trans.png" alt="nass_act_damp_undamped_sim_tomo_trans.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Position Error during tomography experiment - Translations (<a href="./figs/nass_act_damp_undamped_sim_tomo_trans.png">png</a>, <a href="./figs/nass_act_damp_undamped_sim_tomo_trans.pdf">pdf</a>)</p>
</div>
<div id="orgb29225c" class="figure">
<p><img src="figs/nass_act_damp_undamped_sim_tomo_rot.png" alt="nass_act_damp_undamped_sim_tomo_rot.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Position Error during tomography experiment - Rotations (<a href="./figs/nass_act_damp_undamped_sim_tomo_rot.png">png</a>, <a href="./figs/nass_act_damp_undamped_sim_tomo_rot.pdf">pdf</a>)</p>
</div>
</div>
</div>
</div>
<div id="outline-container-orgdcbab01" class="outline-3">
<h3 id="orgdcbab01"><span class="section-number-3">1.3</span> Verification of the transfer function from nano hexapod to metrology</h3>
<div class="outline-text-3" id="text-1-3">
</div>
<div id="outline-container-org9edf24c" class="outline-4">
<h4 id="org9edf24c"><span class="section-number-4">1.3.1</span> Initialize the Simulation</h4>
<div class="outline-text-4" id="text-1-3-1">
<p>
We initialize all the stages with the default parameters.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
</pre>
</div>
<p>
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
initializeSample(<span class="org-string">'mass'</span>, 50);
</pre>
</div>
<p>
No disturbances.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeDisturbances(<span class="org-string">'enable'</span>, <span class="org-constant">false</span>);
</pre>
</div>
<p>
We set the references to zero.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeReferences();
</pre>
</div>
<p>
And all the controllers are set to 0.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-org9ff767e" class="outline-4">
<h4 id="org9ff767e"><span class="section-number-4">1.3.2</span> Identification</h4>
<div class="outline-text-4" id="text-1-3-2">
<p>
First, we identify the dynamics of the system using the <code>linearize</code> function.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'nass_model'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Inputs</span>
io(io_i) = linio([mdl, <span class="org-string">'/Tracking Error'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'En'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Metrology Outputs</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>};
G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'mat/stages.mat'</span>, <span class="org-string">'nano_hexapod'</span>);
G_cart = minreal(G<span class="org-type">*</span>inv(nano_hexapod.J<span class="org-type">'</span>));
G_cart.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">'Fny'</span>, <span class="org-string">'Fnz'</span>, <span class="org-string">'Mnx'</span>, <span class="org-string">'Mny'</span>, <span class="org-string">'Mnz'</span>};
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">G_legs = minreal(inv(nano_hexapod.J)<span class="org-type">*</span>G);
G_legs.OutputName = {<span class="org-string">'e1'</span>, <span class="org-string">'e2'</span>, <span class="org-string">'e3'</span>, <span class="org-string">'e4'</span>, <span class="org-string">'e5'</span>, <span class="org-string">'e6'</span>};
</pre>
</div>
</div>
</div>
<div id="outline-container-org5c0b9bf" class="outline-4">
<h4 id="org5c0b9bf"><span class="section-number-4">1.3.3</span> Display TF</h4>
<div class="outline-text-4" id="text-1-3-3">
<div id="org85c36b6" class="figure">
<p><img src="figs/plant_G_cart.png" alt="plant_G_cart.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Transfer Function from forces applied by the nano-hexapod to position error (<a href="./figs/plant_G_cart.png">png</a>, <a href="./figs/plant_G_cart.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org6288fb1" class="outline-4">
<h4 id="org6288fb1"><span class="section-number-4">1.3.4</span> Obtained Plants for Active Damping</h4>
<div class="outline-text-4" id="text-1-3-4">
<div id="org29fb6b2" class="figure">
<p><img src="figs/nass_active_damping_iff_plant.png" alt="nass_active_damping_iff_plant.png" />
</p>
<p><span class="figure-number">Figure 8: </span><code>G_iff</code>: IFF Plant (<a href="./figs/nass_active_damping_iff_plant.png">png</a>, <a href="./figs/nass_active_damping_iff_plant.pdf">pdf</a>)</p>
</div>
<div id="org9412773" class="figure">
<p><img src="figs/nass_active_damping_ine_plant.png" alt="nass_active_damping_ine_plant.png" />
</p>
<p><span class="figure-number">Figure 9: </span><code>G_dvf</code>: Plant for Direct Velocity Feedback (<a href="./figs/nass_active_damping_dvf_plant.png">png</a>, <a href="./figs/nass_active_damping_dvf_plant.pdf">pdf</a>)</p>
</div>
<div id="orgea280f2" class="figure">
<p><img src="figs/nass_active_damping_inertial_plant.png" alt="nass_active_damping_inertial_plant.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Inertial Feedback Plant (<a href="./figs/nass_active_damping_inertial_plant.png">png</a>, <a href="./figs/nass_active_damping_inertial_plant.pdf">pdf</a>)</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-02-25 mar. 18:20</p>
<p class="date">Created: 2020-03-13 ven. 17:39</p>
</div>
</body>
</html>