Work on Control (HAC-LAC) + Models

This commit is contained in:
2020-03-13 17:40:22 +01:00
parent 493268638b
commit fab78b6527
78 changed files with 5395 additions and 2475 deletions

View File

@@ -4,7 +4,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-02-25 mar. 18:21 -->
<!-- 2020-03-13 ven. 17:39 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Active Damping with an uni-axial model</title>
@@ -202,50 +202,28 @@
<script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
<script type="text/javascript" src="./js/readtheorg.js"></script>
<script type="text/javascript">
/*
@licstart The following is the entire license notice for the
JavaScript code in this tag.
Copyright (C) 2012-2020 Free Software Foundation, Inc.
The JavaScript code in this tag is free software: you can
redistribute it and/or modify it under the terms of the GNU
General Public License (GNU GPL) as published by the Free Software
Foundation, either version 3 of the License, or (at your option)
any later version. The code is distributed WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
As additional permission under GNU GPL version 3 section 7, you
may distribute non-source (e.g., minimized or compacted) forms of
that code without the copy of the GNU GPL normally required by
section 4, provided you include this license notice and a URL
through which recipients can access the Corresponding Source.
@licend The above is the entire license notice
for the JavaScript code in this tag.
*/
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
// @license-end
</script>
<script>
MathJax = {
@@ -273,63 +251,63 @@ for the JavaScript code in this tag.
<ul>
<li><a href="#org7409841">1.1. Init</a></li>
<li><a href="#org7514f31">1.2. Identification</a></li>
<li><a href="#orgbc3b2d2">1.3. Sensitivity to disturbances</a></li>
<li><a href="#org380e20f">1.3. Sensitivity to disturbances</a></li>
<li><a href="#orgdda82c0">1.4. Undamped Plant</a></li>
</ul>
</li>
<li><a href="#org5a3389e">2. Integral Force Feedback</a>
<ul>
<li><a href="#org8fee25f">2.1. One degree-of-freedom example</a>
<li><a href="#orgbaae6a1">2.1. One degree-of-freedom example</a>
<ul>
<li><a href="#orge4d9f41">2.1.1. Equations</a></li>
<li><a href="#org3305ce8">2.1.2. Matlab Example</a></li>
<li><a href="#orgc436f05">2.1.1. Equations</a></li>
<li><a href="#org238893b">2.1.2. Matlab Example</a></li>
</ul>
</li>
<li><a href="#orgc2ae0be">2.2. Control Design</a></li>
<li><a href="#org6eda033">2.3. Identification of the damped plant</a></li>
<li><a href="#orgae8bf4a">2.4. Sensitivity to disturbances</a></li>
<li><a href="#orgf8558bc">2.5. Damped Plant</a></li>
<li><a href="#org7146202">2.6. Conclusion</a></li>
<li><a href="#org824be47">2.2. Control Design</a></li>
<li><a href="#orgfdd4556">2.3. Identification of the damped plant</a></li>
<li><a href="#org4802ab9">2.4. Sensitivity to disturbances</a></li>
<li><a href="#org2cbe422">2.5. Damped Plant</a></li>
<li><a href="#orgdade398">2.6. Conclusion</a></li>
</ul>
</li>
<li><a href="#orgc4ca1b5">3. Relative Motion Control</a>
<ul>
<li><a href="#orgff968f4">3.1. One degree-of-freedom example</a>
<li><a href="#org39a3687">3.1. One degree-of-freedom example</a>
<ul>
<li><a href="#orgd5a2de5">3.1.1. Equations</a></li>
<li><a href="#orgfebe737">3.1.2. Matlab Example</a></li>
<li><a href="#org994b142">3.1.1. Equations</a></li>
<li><a href="#org6a1f411">3.1.2. Matlab Example</a></li>
</ul>
</li>
<li><a href="#orgf3a1477">3.2. Control Design</a></li>
<li><a href="#org0c94d61">3.3. Identification of the damped plant</a></li>
<li><a href="#orgae7a685">3.4. Sensitivity to disturbances</a></li>
<li><a href="#orgb0045d5">3.5. Damped Plant</a></li>
<li><a href="#orgeacd46f">3.6. Conclusion</a></li>
<li><a href="#org13a97a7">3.2. Control Design</a></li>
<li><a href="#orge00b37b">3.3. Identification of the damped plant</a></li>
<li><a href="#orgcd3874b">3.4. Sensitivity to disturbances</a></li>
<li><a href="#orgfcc3787">3.5. Damped Plant</a></li>
<li><a href="#org37ceb38">3.6. Conclusion</a></li>
</ul>
</li>
<li><a href="#org3cc03b0">4. Direct Velocity Feedback</a>
<ul>
<li><a href="#orgb2d2757">4.1. One degree-of-freedom example</a>
<li><a href="#org20ee26e">4.1. One degree-of-freedom example</a>
<ul>
<li><a href="#org0d13907">4.1.1. Equations</a></li>
<li><a href="#org5d7b09d">4.1.2. Matlab Example</a></li>
<li><a href="#org0d2ea8d">4.1.1. Equations</a></li>
<li><a href="#orgaddbb82">4.1.2. Matlab Example</a></li>
</ul>
</li>
<li><a href="#org1fe076f">4.2. Control Design</a></li>
<li><a href="#orgee6ab5a">4.3. Identification of the damped plant</a></li>
<li><a href="#org455bb51">4.4. Sensitivity to disturbances</a></li>
<li><a href="#org6d852f5">4.5. Damped Plant</a></li>
<li><a href="#org5d33a43">4.6. Conclusion</a></li>
<li><a href="#orgf1bd80b">4.2. Control Design</a></li>
<li><a href="#org54ebde8">4.3. Identification of the damped plant</a></li>
<li><a href="#org454c0c8">4.4. Sensitivity to disturbances</a></li>
<li><a href="#org5f21dd1">4.5. Damped Plant</a></li>
<li><a href="#org53572a3">4.6. Conclusion</a></li>
</ul>
</li>
<li><a href="#org21441bc">5. Comparison</a>
<ul>
<li><a href="#orgbe907b4">5.1. Load the plants</a></li>
<li><a href="#orgde6308d">5.2. Sensitivity to Disturbance</a></li>
<li><a href="#orgb849304">5.3. Damped Plant</a></li>
<li><a href="#orga1cf9f2">5.3. Damped Plant</a></li>
</ul>
</li>
<li><a href="#org333697a">6. Conclusion</a></li>
<li><a href="#org4d89cbd">6. Conclusion</a></li>
</ul>
</div>
</div>
@@ -410,13 +388,13 @@ All the controllers are set to 0.
</p>
<div class="org-src-container">
<pre class="src src-matlab">K = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
K_iff = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
K_rmc = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
K_dvf = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
</div>
@@ -437,14 +415,14 @@ We identify the various transfer functions of the system
And we save it for further analysis.
</p>
<div class="org-src-container">
<pre class="src src-matlab">save(<span class="org-string">'./active_damping_uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span>, <span class="org-string">'-append'</span>);
<pre class="src src-matlab">save(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-orgbc3b2d2" class="outline-3">
<h3 id="orgbc3b2d2"><span class="section-number-3">1.3</span> Sensitivity to disturbances</h3>
<div id="outline-container-org380e20f" class="outline-3">
<h3 id="org380e20f"><span class="section-number-3">1.3</span> Sensitivity to disturbances</h3>
<div class="outline-text-3" id="text-1-3">
<p>
The sensitivity to disturbances are shown on figure <a href="#orgcf7fa15">1</a>.
@@ -502,15 +480,15 @@ Then, it is applied on the simscape model.
</p>
</div>
<div id="outline-container-org8fee25f" class="outline-3">
<h3 id="org8fee25f"><span class="section-number-3">2.1</span> One degree-of-freedom example</h3>
<div id="outline-container-orgbaae6a1" class="outline-3">
<h3 id="orgbaae6a1"><span class="section-number-3">2.1</span> One degree-of-freedom example</h3>
<div class="outline-text-3" id="text-2-1">
<p>
<a id="org7f37ded"></a>
</p>
</div>
<div id="outline-container-orge4d9f41" class="outline-4">
<h4 id="orge4d9f41"><span class="section-number-4">2.1.1</span> Equations</h4>
<div id="outline-container-orgc436f05" class="outline-4">
<h4 id="orgc436f05"><span class="section-number-4">2.1.1</span> Equations</h4>
<div class="outline-text-4" id="text-2-1-1">
<div id="org1acdc30" class="figure">
@@ -576,8 +554,8 @@ This is attainable if we have:
</div>
</div>
<div id="outline-container-org3305ce8" class="outline-4">
<h4 id="org3305ce8"><span class="section-number-4">2.1.2</span> Matlab Example</h4>
<div id="outline-container-org238893b" class="outline-4">
<h4 id="org238893b"><span class="section-number-4">2.1.2</span> Matlab Example</h4>
<div class="outline-text-4" id="text-2-1-2">
<p>
Let define the system parameters.
@@ -640,14 +618,14 @@ And the closed loop system is computed below.
</div>
</div>
<div id="outline-container-orgc2ae0be" class="outline-3">
<h3 id="orgc2ae0be"><span class="section-number-3">2.2</span> Control Design</h3>
<div id="outline-container-org824be47" class="outline-3">
<h3 id="org824be47"><span class="section-number-3">2.2</span> Control Design</h3>
<div class="outline-text-3" id="text-2-2">
<p>
Let&rsquo;s load the undamped plant:
</p>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./active_damping_uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span>);
<pre class="src src-matlab">load(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>);
</pre>
</div>
@@ -683,8 +661,8 @@ The corresponding loop gains are shown in figure <a href="#org36e3a94">7</a>.
</div>
</div>
<div id="outline-container-org6eda033" class="outline-3">
<h3 id="org6eda033"><span class="section-number-3">2.3</span> Identification of the damped plant</h3>
<div id="outline-container-orgfdd4556" class="outline-3">
<h3 id="orgfdd4556"><span class="section-number-3">2.3</span> Identification of the damped plant</h3>
<div class="outline-text-3" id="text-2-3">
<p>
Let&rsquo;s initialize the system prior to identification.
@@ -709,13 +687,13 @@ All the controllers are set to 0.
</p>
<div class="org-src-container">
<pre class="src src-matlab">K = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
K_iff = <span class="org-type">-</span>K_iff<span class="org-type">*</span>eye(6);
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
K_rmc = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
K_dvf = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
@@ -731,14 +709,14 @@ We identify the system dynamics now that the IFF controller is ON.
And we save the damped plant for further analysis
</p>
<div class="org-src-container">
<pre class="src src-matlab">save(<span class="org-string">'./active_damping_uniaxial/mat/plants.mat'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'-append'</span>);
<pre class="src src-matlab">save(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-orgae8bf4a" class="outline-3">
<h3 id="orgae8bf4a"><span class="section-number-3">2.4</span> Sensitivity to disturbances</h3>
<div id="outline-container-org4802ab9" class="outline-3">
<h3 id="org4802ab9"><span class="section-number-3">2.4</span> Sensitivity to disturbances</h3>
<div class="outline-text-3" id="text-2-4">
<p>
As shown on figure <a href="#org38217ee">8</a>:
@@ -774,8 +752,8 @@ For instance, the plots are not the same when using <code>minreal</code>.
</div>
</div>
<div id="outline-container-orgf8558bc" class="outline-3">
<h3 id="orgf8558bc"><span class="section-number-3">2.5</span> Damped Plant</h3>
<div id="outline-container-org2cbe422" class="outline-3">
<h3 id="org2cbe422"><span class="section-number-3">2.5</span> Damped Plant</h3>
<div class="outline-text-3" id="text-2-5">
<p>
Now, look at the new damped plant to control.
@@ -804,8 +782,8 @@ However, it increases coupling at low frequency (figure <a href="#org8017b2f">11
</div>
</div>
<div id="outline-container-org7146202" class="outline-3">
<h3 id="org7146202"><span class="section-number-3">2.6</span> Conclusion</h3>
<div id="outline-container-orgdade398" class="outline-3">
<h3 id="orgdade398"><span class="section-number-3">2.6</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-6">
<div class="important">
<p>
@@ -839,15 +817,15 @@ In the Relative Motion Control (RMC), a derivative feedback is applied between t
</p>
</div>
<div id="outline-container-orgff968f4" class="outline-3">
<h3 id="orgff968f4"><span class="section-number-3">3.1</span> One degree-of-freedom example</h3>
<div id="outline-container-org39a3687" class="outline-3">
<h3 id="org39a3687"><span class="section-number-3">3.1</span> One degree-of-freedom example</h3>
<div class="outline-text-3" id="text-3-1">
<p>
<a id="org6f16e09"></a>
</p>
</div>
<div id="outline-container-orgd5a2de5" class="outline-4">
<h4 id="orgd5a2de5"><span class="section-number-4">3.1.1</span> Equations</h4>
<div id="outline-container-org994b142" class="outline-4">
<h4 id="org994b142"><span class="section-number-4">3.1.1</span> Equations</h4>
<div class="outline-text-4" id="text-3-1-1">
<div id="org64900ec" class="figure">
@@ -906,8 +884,8 @@ This corresponds to a gain:
</div>
</div>
<div id="outline-container-orgfebe737" class="outline-4">
<h4 id="orgfebe737"><span class="section-number-4">3.1.2</span> Matlab Example</h4>
<div id="outline-container-org6a1f411" class="outline-4">
<h4 id="org6a1f411"><span class="section-number-4">3.1.2</span> Matlab Example</h4>
<div class="outline-text-4" id="text-3-1-2">
<p>
Let define the system parameters.
@@ -970,14 +948,14 @@ And the closed loop system is computed below.
</div>
</div>
<div id="outline-container-orgf3a1477" class="outline-3">
<h3 id="orgf3a1477"><span class="section-number-3">3.2</span> Control Design</h3>
<div id="outline-container-org13a97a7" class="outline-3">
<h3 id="org13a97a7"><span class="section-number-3">3.2</span> Control Design</h3>
<div class="outline-text-3" id="text-3-2">
<p>
Let&rsquo;s load the undamped plant:
</p>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./active_damping_uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span>);
<pre class="src src-matlab">load(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>);
</pre>
</div>
@@ -1014,8 +992,8 @@ The obtained loop gains are shown in figure <a href="#orga5b8f12">15</a>.
</div>
</div>
<div id="outline-container-org0c94d61" class="outline-3">
<h3 id="org0c94d61"><span class="section-number-3">3.3</span> Identification of the damped plant</h3>
<div id="outline-container-orge00b37b" class="outline-3">
<h3 id="orge00b37b"><span class="section-number-3">3.3</span> Identification of the damped plant</h3>
<div class="outline-text-3" id="text-3-3">
<p>
Let&rsquo;s initialize the system prior to identification.
@@ -1040,13 +1018,13 @@ And initialize the controllers.
</p>
<div class="org-src-container">
<pre class="src src-matlab">K = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
K_iff = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
K_rmc = <span class="org-type">-</span>K_rmc<span class="org-type">*</span>eye(6);
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
K_dvf = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
@@ -1062,14 +1040,14 @@ We identify the system dynamics now that the RMC controller is ON.
And we save the damped plant for further analysis.
</p>
<div class="org-src-container">
<pre class="src src-matlab">save(<span class="org-string">'./active_damping_uniaxial/mat/plants.mat'</span>, <span class="org-string">'G_rmc'</span>, <span class="org-string">'-append'</span>);
<pre class="src src-matlab">save(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G_rmc'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-orgae7a685" class="outline-3">
<h3 id="orgae7a685"><span class="section-number-3">3.4</span> Sensitivity to disturbances</h3>
<div id="outline-container-orgcd3874b" class="outline-3">
<h3 id="orgcd3874b"><span class="section-number-3">3.4</span> Sensitivity to disturbances</h3>
<div class="outline-text-3" id="text-3-4">
<p>
As shown in figure <a href="#org58aec78">16</a>, RMC control succeed in lowering the sensitivity to disturbances near resonance of the system.
@@ -1091,8 +1069,8 @@ As shown in figure <a href="#org58aec78">16</a>, RMC control succeed in lowering
</div>
</div>
<div id="outline-container-orgb0045d5" class="outline-3">
<h3 id="orgb0045d5"><span class="section-number-3">3.5</span> Damped Plant</h3>
<div id="outline-container-orgfcc3787" class="outline-3">
<h3 id="orgfcc3787"><span class="section-number-3">3.5</span> Damped Plant</h3>
<div class="outline-text-3" id="text-3-5">
<div id="org2267bd4" class="figure">
@@ -1103,8 +1081,8 @@ As shown in figure <a href="#org58aec78">16</a>, RMC control succeed in lowering
</div>
</div>
<div id="outline-container-orgeacd46f" class="outline-3">
<h3 id="orgeacd46f"><span class="section-number-3">3.6</span> Conclusion</h3>
<div id="outline-container-org37ceb38" class="outline-3">
<h3 id="org37ceb38"><span class="section-number-3">3.6</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-6">
<div class="important">
<p>
@@ -1136,15 +1114,15 @@ In the Relative Motion Control (RMC), a feedback is applied between the measured
</p>
</div>
<div id="outline-container-orgb2d2757" class="outline-3">
<h3 id="orgb2d2757"><span class="section-number-3">4.1</span> One degree-of-freedom example</h3>
<div id="outline-container-org20ee26e" class="outline-3">
<h3 id="org20ee26e"><span class="section-number-3">4.1</span> One degree-of-freedom example</h3>
<div class="outline-text-3" id="text-4-1">
<p>
<a id="org3a699cb"></a>
</p>
</div>
<div id="outline-container-org0d13907" class="outline-4">
<h4 id="org0d13907"><span class="section-number-4">4.1.1</span> Equations</h4>
<div id="outline-container-org0d2ea8d" class="outline-4">
<h4 id="org0d2ea8d"><span class="section-number-4">4.1.1</span> Equations</h4>
<div class="outline-text-4" id="text-4-1-1">
<div id="org93ae6e4" class="figure">
@@ -1203,8 +1181,8 @@ This corresponds to a gain:
</div>
</div>
<div id="outline-container-org5d7b09d" class="outline-4">
<h4 id="org5d7b09d"><span class="section-number-4">4.1.2</span> Matlab Example</h4>
<div id="outline-container-orgaddbb82" class="outline-4">
<h4 id="orgaddbb82"><span class="section-number-4">4.1.2</span> Matlab Example</h4>
<div class="outline-text-4" id="text-4-1-2">
<p>
Let define the system parameters.
@@ -1291,14 +1269,14 @@ The obtained sensitivity to disturbances is shown in figure <a href="#org1c3277a
</div>
</div>
<div id="outline-container-org1fe076f" class="outline-3">
<h3 id="org1fe076f"><span class="section-number-3">4.2</span> Control Design</h3>
<div id="outline-container-orgf1bd80b" class="outline-3">
<h3 id="orgf1bd80b"><span class="section-number-3">4.2</span> Control Design</h3>
<div class="outline-text-3" id="text-4-2">
<p>
Let&rsquo;s load the undamped plant:
</p>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./active_damping_uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span>);
<pre class="src src-matlab">load(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>);
</pre>
</div>
@@ -1331,8 +1309,8 @@ The controller is defined below and the obtained loop gain is shown in figure <a
</div>
</div>
<div id="outline-container-orgee6ab5a" class="outline-3">
<h3 id="orgee6ab5a"><span class="section-number-3">4.3</span> Identification of the damped plant</h3>
<div id="outline-container-org54ebde8" class="outline-3">
<h3 id="org54ebde8"><span class="section-number-3">4.3</span> Identification of the damped plant</h3>
<div class="outline-text-3" id="text-4-3">
<p>
Let&rsquo;s initialize the system prior to identification.
@@ -1357,13 +1335,13 @@ And initialize the controllers.
</p>
<div class="org-src-container">
<pre class="src src-matlab">K = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
K_iff = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
K_rmc = tf(zeros(6));
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
K_dvf = <span class="org-type">-</span>K_dvf<span class="org-type">*</span>eye(6);
save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
@@ -1379,14 +1357,14 @@ We identify the system dynamics now that the RMC controller is ON.
And we save the damped plant for further analysis.
</p>
<div class="org-src-container">
<pre class="src src-matlab">save(<span class="org-string">'./active_damping_uniaxial/mat/plants.mat'</span>, <span class="org-string">'G_dvf'</span>, <span class="org-string">'-append'</span>);
<pre class="src src-matlab">save(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G_dvf'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-org455bb51" class="outline-3">
<h3 id="org455bb51"><span class="section-number-3">4.4</span> Sensitivity to disturbances</h3>
<div id="outline-container-org454c0c8" class="outline-3">
<h3 id="org454c0c8"><span class="section-number-3">4.4</span> Sensitivity to disturbances</h3>
<div class="outline-text-3" id="text-4-4">
<div id="org2558226" class="figure">
@@ -1405,8 +1383,8 @@ And we save the damped plant for further analysis.
</div>
</div>
<div id="outline-container-org6d852f5" class="outline-3">
<h3 id="org6d852f5"><span class="section-number-3">4.5</span> Damped Plant</h3>
<div id="outline-container-org5f21dd1" class="outline-3">
<h3 id="org5f21dd1"><span class="section-number-3">4.5</span> Damped Plant</h3>
<div class="outline-text-3" id="text-4-5">
<div id="org2fa3671" class="figure">
@@ -1417,8 +1395,8 @@ And we save the damped plant for further analysis.
</div>
</div>
<div id="outline-container-org5d33a43" class="outline-3">
<h3 id="org5d33a43"><span class="section-number-3">4.6</span> Conclusion</h3>
<div id="outline-container-org53572a3" class="outline-3">
<h3 id="org53572a3"><span class="section-number-3">4.6</span> Conclusion</h3>
<div class="outline-text-3" id="text-4-6">
<div class="important">
<p>
@@ -1441,7 +1419,7 @@ Direct Velocity Feedback:
<h3 id="orgbe907b4"><span class="section-number-3">5.1</span> Load the plants</h3>
<div class="outline-text-3" id="text-5-1">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./active_damping_uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'G_rmc'</span>, <span class="org-string">'G_dvf'</span>);
<pre class="src src-matlab">load(<span class="org-string">'./mat/active_damping_uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'G_rmc'</span>, <span class="org-string">'G_dvf'</span>);
</pre>
</div>
</div>
@@ -1489,8 +1467,8 @@ Direct Velocity Feedback:
</div>
</div>
<div id="outline-container-orgb849304" class="outline-3">
<h3 id="orgb849304"><span class="section-number-3">5.3</span> Damped Plant</h3>
<div id="outline-container-orga1cf9f2" class="outline-3">
<h3 id="orga1cf9f2"><span class="section-number-3">5.3</span> Damped Plant</h3>
<div class="outline-text-3" id="text-5-3">
<div id="org043ecf3" class="figure">
@@ -1516,8 +1494,8 @@ Direct Velocity Feedback:
</div>
</div>
<div id="outline-container-org333697a" class="outline-2">
<h2 id="org333697a"><span class="section-number-2">6</span> Conclusion</h2>
<div id="outline-container-org4d89cbd" class="outline-2">
<h2 id="org4d89cbd"><span class="section-number-2">6</span> Conclusion</h2>
<div class="outline-text-2" id="text-6">
<p>
<a id="org58549a4"></a>
@@ -1527,7 +1505,7 @@ Direct Velocity Feedback:
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-02-25 mar. 18:21</p>
<p class="date">Created: 2020-03-13 ven. 17:39</p>
</div>
</body>
</html>