Change tangle filenames

This commit is contained in:
2020-02-25 18:27:39 +01:00
parent b7daaf18b2
commit e3e6043810
21 changed files with 1201 additions and 47 deletions

View File

@@ -65,7 +65,7 @@ For each of the active damping technique, we:
* Undamped System
:PROPERTIES:
:header-args:matlab+: :tangle matlab/undamped_system.m
:header-args:matlab+: :tangle ../matlab/undamped_system.m
:header-args:matlab+: :comments none :mkdirp yes
:END:
<<sec:undamped_system>>
@@ -508,7 +508,7 @@ We load the results of tomography experiments.
* Variability of the system dynamics for Active Damping
:PROPERTIES:
:header-args:matlab+: :tangle matlab/act_damp_variability_plant.m
:header-args:matlab+: :tangle ../matlab/act_damp_variability_plant.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:act_damp_variability_plant>>
@@ -1660,7 +1660,7 @@ Also, for the Inertial Sensor, a RHP zero may appear when the spindle is rotatin
* Integral Force Feedback
:PROPERTIES:
:header-args:matlab+: :tangle matlab/iff.m
:header-args:matlab+: :tangle ../matlab/iff.m
:header-args:matlab+: :comments none :mkdirp yes
:END:
<<sec:iff>>
@@ -2149,7 +2149,7 @@ Integral Force Feedback using a force sensor:
* Direct Velocity Feedback
:PROPERTIES:
:header-args:matlab+: :tangle matlab/dvf.m
:header-args:matlab+: :tangle ../matlab/dvf.m
:header-args:matlab+: :comments none :mkdirp yes
:END:
<<sec:dvf>>
@@ -2627,7 +2627,7 @@ Direct Velocity Feedback using a relative motion sensor:
* Inertial Control
:PROPERTIES:
:header-args:matlab+: :tangle matlab/ine.m
:header-args:matlab+: :tangle ../matlab/ine.m
:header-args:matlab+: :comments none :mkdirp yes
:END:
<<sec:ine>>

View File

@@ -60,7 +60,7 @@ The disturbances are:
* Undamped System
:PROPERTIES:
:header-args:matlab+: :tangle matlab/undamped_system.m
:header-args:matlab+: :tangle ../matlab/undamped_system_uniaxial.m
:header-args:matlab+: :comments none :mkdirp yes
:END:
<<sec:undamped_system>>
@@ -244,7 +244,7 @@ The "plant" (transfer function from forces applied by the nano-hexapod to the me
* Integral Force Feedback
:PROPERTIES:
:header-args:matlab+: :tangle matlab/iff.m
:header-args:matlab+: :tangle ../matlab/iff_uniaxial.m
:header-args:matlab+: :comments none :mkdirp yes
:END:
<<sec:iff>>
@@ -788,7 +788,7 @@ Integral Force Feedback:
* Relative Motion Control
:PROPERTIES:
:header-args:matlab+: :tangle matlab/rmc.m
:header-args:matlab+: :tangle ../matlab/rmc_uniaxial.m
:header-args:matlab+: :comments none :mkdirp yes
:END:
<<sec:rmc>>
@@ -1286,7 +1286,7 @@ Relative Motion Control:
* Direct Velocity Feedback
:PROPERTIES:
:header-args:matlab+: :tangle matlab/dvf.m
:header-args:matlab+: :tangle ../matlab/dvf_uniaxial.m
:header-args:matlab+: :comments none :mkdirp yes
:END:
<<sec:dvf>>

View File

@@ -25,7 +25,7 @@
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:matlab+ :tangle matlab/modal_frf_coh.m
#+PROPERTY: header-args:matlab+ :tangle no
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:shell :eval no-export

View File

@@ -25,7 +25,7 @@
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:matlab+ :tangle matlab/tomo_exp.m
#+PROPERTY: header-args:matlab+ :tangle no
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:shell :eval no-export

View File

@@ -25,7 +25,7 @@
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:matlab+ :tangle matlab/modal_frf_coh.m
#+PROPERTY: header-args:matlab+ :tangle ../matlab/identification.m
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:shell :eval no-export

View File

@@ -22,7 +22,7 @@
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:matlab+ :tangle matlab/nass_simscape.m
#+PROPERTY: header-args:matlab+ :tangle no
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:shell :eval no-export

View File

@@ -25,7 +25,7 @@
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:matlab+ :tangle matlab/modal_frf_coh.m
#+PROPERTY: header-args:matlab+ :tangle no
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:shell :eval no-export

398
org/matlab/modal_frf_coh.m Normal file
View File

@@ -0,0 +1,398 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Simscape Model
% The simulink file for the identification is =sim_micro_station_id.slx=.
open('identification/matlab/sim_micro_station_id.slx')
% We load the configuration and we set a small =StopTime=.
load('mat/conf_simulink.mat');
set_param(conf_simulink, 'StopTime', '0.5');
% We initialize all the stages.
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod('actuator', 'piezo');
initializeSample('mass', 50);
% Compute the transfer functions
% We first define some parameters for the identification.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'sim_micro_station_id';
%% Micro-Hexapod
% Input/Output definition
io(1) = linio([mdl, '/Micro-Station/Fm_ext'],1,'openinput');
io(2) = linio([mdl, '/Micro-Station/Fg_ext'],1,'openinput');
io(3) = linio([mdl, '/Micro-Station/Dm_inertial'],1,'output');
io(4) = linio([mdl, '/Micro-Station/Ty_inertial'],1,'output');
io(5) = linio([mdl, '/Micro-Station/Ry_inertial'],1,'output');
io(6) = linio([mdl, '/Micro-Station/Dg_inertial'],1,'output');
% Run the linearization
G_ms = linearize(mdl, io, 0);
% Input/Output names
G_ms.InputName = {'Fmx', 'Fmy', 'Fmz',...
'Fgx', 'Fgy', 'Fgz'};
G_ms.OutputName = {'Dmx', 'Dmy', 'Dmz', ...
'Tyx', 'Tyy', 'Tyz', ...
'Ryx', 'Ryy', 'Ryz', ...
'Dgx', 'Dgy', 'Dgz'};
%% Save the obtained transfer functions
save('./mat/id_micro_station.mat', 'G_ms');
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Simscape Model
% The simulink file for the analysis is =sim_micro_station_modal_analysis.slx=.
open('identification/matlab/sim_micro_station_modal_analysis.slx')
% We load the configuration and we set a small =StopTime=.
load('mat/conf_simulink.mat');
set_param(conf_simulink, 'StopTime', '0.5');
% We initialize all the stages.
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod('actuator', 'piezo');
initializeSample('mass', 50);
% Identification
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'sim_micro_station_modal_analysis';
%% Micro-Hexapod
% Input/Output definition
io(1) = linio([mdl, '/Micro-Station/F_hammer'],1,'openinput');
io(2) = linio([mdl, '/Micro-Station/acc9'],1,'output');
io(3) = linio([mdl, '/Micro-Station/acc10'],1,'output');
io(4) = linio([mdl, '/Micro-Station/acc11'],1,'output');
io(5) = linio([mdl, '/Micro-Station/acc12'],1,'output');
% Run the linearization
G_ms = linearize(mdl, io, 0);
% Input/Output names
G_ms.InputName = {'Fx', 'Fy', 'Fz'};
G_ms.OutputName = {'x9', 'y9', 'z9', ...
'x10', 'y10', 'z10', ...
'x11', 'y11', 'z11', ...
'x12', 'y12', 'z12'};
% Plot Results
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(G_ms('x9', 'Fx'), freqs, 'Hz'))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]');
hold off;
% Compare with measurements
load('../meas/modal-analysis/mat/frf_coh_matrices.mat', 'FRFs', 'COHs', 'freqs');
dirs = {'x', 'y', 'z'};
n_acc = 9;
n_dir = 1; % x, y, z
n_exc = 1; % x, y, z
figure;
hold on;
plot(freqs, abs(squeeze(FRFs(3*(n_acc-1) + n_dir, n_exc, :)))./((2*pi*freqs).^2)');
plot(freqs, abs(squeeze(freqresp(G_ms([dirs{n_dir}, num2str(n_acc)], ['F', dirs{n_dir}]), freqs, 'Hz'))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]');
hold off;
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Prepare the Simulation
open('nass_model.slx')
% We load the configuration.
load('mat/conf_simulink.mat');
% We set a small =StopTime=.
set_param(conf_simulink, 'StopTime', '0.5');
% We initialize all the stages.
initializeGround( 'type', 'rigid');
initializeGranite( 'type', 'modal-analysis');
initializeTy( 'type', 'modal-analysis');
initializeRy( 'type', 'modal-analysis');
initializeRz( 'type', 'modal-analysis');
initializeMicroHexapod('type', 'modal-analysis');
initializeAxisc( 'type', 'flexible');
initializeMirror( 'type', 'none');
initializeNanoHexapod( 'type', 'none');
initializeSample( 'type', 'none');
initializeController( 'type', 'open-loop');
initializeLoggingConfiguration('log', 'none');
initializeReferences();
initializeDisturbances('enable', false);
% Estimate the position of the CoM of each solid and compare with the one took for the Measurement Analysis
% Thanks to the [[https://fr.mathworks.com/help/physmod/sm/ref/inertiasensor.html][Inertia Sensor]] simscape block, it is possible to estimate the position of the Center of Mass of a solid body with respect to a defined frame.
sim('nass_model')
% Create a frame at the CoM of each solid body
% Now we use one =inertiasensor= block connected on each solid body that measured the center of mass of this solid with respect to the same connected frame.
% We do that in order to position an accelerometer on the Simscape model at this particular point.
open('identification/matlab/sim_micro_station_com_estimation.slx')
sim('sim_micro_station_com_estimation')
% #+RESULTS:
% | | granite bot | granite top | ty | ry | rz | hexa |
% |--------+-------------+-------------+-------+--------+-------+-------|
% | X [mm] | 0.0 | 51.7 | 0.9 | -0.1 | 0.0 | -0.0 |
% | Y [mm] | 0.0 | 753.2 | 0.7 | 5.2 | -0.0 | 0.1 |
% | Z [mm] | -250.0 | 22.9 | -17.1 | -146.5 | -23.2 | -47.1 |
% We now same this for further use:
granite_bot_com = granite_bot_com.Data(end, :)';
granite_top_com = granite_top_com.Data(end, :)';
ty_com = ty_com.Data(end, :)';
ry_com = ry_com.Data(end, :)';
rz_com = rz_com.Data(end, :)';
hexa_com = hexa_com.Data(end, :)';
save('mat/solids_com.mat', 'granite_bot_com', 'granite_top_com', 'ty_com', 'ry_com', 'rz_com', 'hexa_com');
% Identification of the dynamics of the Simscape Model
% We now use a new Simscape Model where 6DoF inertial sensors are located at the Center of Mass of each solid body.
% load('mat/solids_com.mat', 'granite_bot_com', 'granite_top_com', 'ty_com', 'ry_com', 'rz_com', 'hexa_com');
open('nass_model.slx')
% We use the =linearize= function in order to estimate the dynamics from forces applied on the Translation stage at the same position used for the real modal analysis to the inertial sensors.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Micro-Station/Translation Stage/Modal Analysis/F_hammer'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station/Granite/Modal Analysis/accelerometer'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station/Translation Stage/Modal Analysis/accelerometer'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station/Tilt Stage/Modal Analysis/accelerometer'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station/Spindle/Modal Analysis/accelerometer'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Modal Analysis/accelerometer'], 1, 'openoutput'); io_i = io_i + 1;
% Run the linearization
G_ms = linearize(mdl, io, 0);
%% Input/Output definition
clear io; io_i = 1;
G_ms.InputName = {'Fx', 'Fy', 'Fz'};
G_ms.OutputName = {'gtop_x', 'gtop_y', 'gtop_z', 'gtop_rx', 'gtop_ry', 'gtop_rz', ...
'ty_x', 'ty_y', 'ty_z', 'ty_rx', 'ty_ry', 'ty_rz', ...
'ry_x', 'ry_y', 'ry_z', 'ry_rx', 'ry_ry', 'ry_rz', ...
'rz_x', 'rz_y', 'rz_z', 'rz_rx', 'rz_ry', 'rz_rz', ...
'hexa_x', 'hexa_y', 'hexa_z', 'hexa_rx', 'hexa_ry', 'hexa_rz'};
% The output of =G_ms= is the acceleration of each solid body.
% In order to obtain a displacement, we divide the obtained transfer function by $1/s^{2}$;
G_ms = G_ms/s^2;
% Compare with measurements
% We now load the Frequency Response Functions measurements during the Modal Analysis (accessible [[file:../../meas/modal-analysis/index.org][here]]).
load('../meas/modal-analysis/mat/frf_coh_matrices.mat', 'freqs');
load('../meas/modal-analysis/mat/frf_com.mat', 'FRFs_CoM');
% We then compare the measurements with the identified transfer functions using the Simscape Model.
dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'};
stages = {'gbot', 'gtop', 'ty', 'ry', 'rz', 'hexa'}
n_stg = 3;
n_dir = 6; % x, y, z, Rx, Ry, Rz
n_exc = 2; % x, y, z
f = logspace(0, 3, 1000);
figure;
hold on;
plot(freqs, abs(squeeze(FRFs_CoM(6*(n_stg-1) + n_dir, n_exc, :)))./((2*pi*freqs).^2)');
plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_exc}]), f, 'Hz'))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]');
hold off;
xlim([1, 200]);
dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'};
stages = {'gtop', 'ty', 'ry', 'rz', 'hexa'}
f = logspace(1, 3, 1000);
figure;
for n_stg = 1:2
for n_dir = 1:3
subplot(3, 2, (n_dir-1)*2 + n_stg);
title(['F ', dirs{n_dir}, ' to ', stages{n_stg}, ' ', dirs{n_dir}]);
hold on;
plot(freqs, abs(squeeze(FRFs_CoM(6*(n_stg) + n_dir, n_dir, :)))./((2*pi*freqs).^2)');
plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_dir}]), f, 'Hz'))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]');
if n_dir == 3
xlabel('Frequency [Hz]');
end
hold off;
xlim([10, 1000]);
ylim([1e-12, 1e-6]);
end
end
% #+NAME: fig:identification_comp_bot_stages
% #+CAPTION: caption ([[./figs/identification_comp_bot_stages.png][png]], [[./figs/identification_comp_bot_stages.pdf][pdf]])
% [[file:figs/identification_comp_bot_stages.png]]
dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'};
stages = {'ry', 'rz', 'hexa'}
f = logspace(1, 3, 1000);
figure;
for n_stg = 1:2
for n_dir = 1:3
subplot(3, 2, (n_dir-1)*2 + n_stg);
title(['F ', dirs{n_dir}, ' to ', stages{n_stg}, ' ', dirs{n_dir}]);
hold on;
plot(freqs, abs(squeeze(FRFs_CoM(6*(n_stg+2) + n_dir, n_dir, :)))./((2*pi*freqs).^2)');
plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_dir}]), f, 'Hz'))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]');
if n_dir == 3
xlabel('Frequency [Hz]');
end
hold off;
xlim([10, 1000]);
ylim([1e-12, 1e-6]);
end
end
% #+NAME: fig:identification_comp_mid_stages
% #+CAPTION: caption ([[./figs/identification_comp_mid_stages.png][png]], [[./figs/identification_comp_mid_stages.pdf][pdf]])
% [[file:figs/identification_comp_mid_stages.png]]
dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'};
stages = {'hexa'}
f = logspace(1, 3, 1000);
figure;
for n_stg = 1
for n_dir = 1:3
subplot(3, 1, (n_dir-1) + n_stg);
title(['F ', dirs{n_dir}, ' to ', stages{n_stg}, ' ', dirs{n_dir}]);
hold on;
plot(freqs, abs(squeeze(FRFs_CoM(6*(n_stg+4) + n_dir, n_dir, :)))./((2*pi*freqs).^2)');
plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_dir}]), f, 'Hz'))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]');
if n_dir == 3
xlabel('Frequency [Hz]');
end
hold off;
xlim([10, 1000]);
ylim([1e-12, 1e-6]);
end
end

407
org/matlab/tomo_exp.m Normal file
View File

@@ -0,0 +1,407 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Simscape Model
% <<sec:simscape_model>>
open('nass_model.slx');
% We load the shared simulink configuration and we set the =StopTime=.
load('mat/conf_simulink.mat');
set_param(conf_simulink, 'StopTime', '5');
% We first initialize all the stages.
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod('actuator', 'piezo');
initializeSample('mass', 1);
% We initialize the reference path for all the stages.
% All stage is set to its zero position except the Spindle which is rotating at 60rpm.
initializeReferences('Rz_type', 'rotating', 'Rz_period', 1);
% Simulation Setup
% And we initialize the disturbances to be equal to zero.
initializeDisturbances(...
'Dwx', false, ... % Ground Motion - X direction
'Dwy', false, ... % Ground Motion - Y direction
'Dwz', false, ... % Ground Motion - Z direction
'Fty_x', false, ... % Translation Stage - X direction
'Fty_z', false, ... % Translation Stage - Z direction
'Frz_z', false ... % Spindle - Z direction
);
% We simulate the model.
sim('nass_model');
% And we save the obtained data.
tomo_align_no_dist = struct('t', t, 'MTr', MTr);
save('experiment_tomography/mat/experiment.mat', 'tomo_align_no_dist', '-append');
% Analysis
load('experiment_tomography/mat/experiment.mat', 'tomo_align_no_dist');
t = tomo_align_no_dist.t;
MTr = tomo_align_no_dist.MTr;
Edx = squeeze(MTr(1, 4, :));
Edy = squeeze(MTr(2, 4, :));
Edz = squeeze(MTr(3, 4, :));
% The angles obtained are u-v-w Euler angles (rotations in the moving frame)
Ery = atan2( squeeze(MTr(1, 3, :)), squeeze(sqrt(MTr(1, 1, :).^2 + MTr(1, 2, :).^2)));
Erx = atan2(-squeeze(MTr(2, 3, :))./cos(Ery), squeeze(MTr(3, 3, :))./cos(Ery));
Erz = atan2(-squeeze(MTr(1, 2, :))./cos(Ery), squeeze(MTr(1, 1, :))./cos(Ery));
figure;
ax1 = subplot(1, 3, 1);
plot(t, Edx, 'DisplayName', '$\epsilon_{x}$')
ylabel('Displacement [m]');
legend('location', 'northeast');
ax2 = subplot(1, 3, 2);
plot(t, Edy, 'DisplayName', '$\epsilon_{y}$')
xlabel('Time [s]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Edz, 'DisplayName', '$\epsilon_{z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
% #+NAME: fig:exp_tomo_without_dist_trans
% #+CAPTION: X-Y-Z translation of the sample w.r.t. granite when performing tomography experiment with no disturbances ([[./figs/exp_tomo_without_dist_trans.png][png]], [[./figs/exp_tomo_without_dist_trans.pdf][pdf]])
% [[file:figs/exp_tomo_without_dist_trans.png]]
figure;
ax1 = subplot(1, 3, 1);
plot(t, Erx, 'DisplayName', '$\epsilon_{\theta x}$')
ylabel('Rotation [rad]');
legend('location', 'northeast');
ax2 = subplot(1, 3, 2);
plot(t, Ery, 'DisplayName', '$\epsilon_{\theta y}$')
xlabel('Time [s]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Erz, 'DisplayName', '$\epsilon_{\theta z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
% Simulation Setup
% We now activate the disturbances.
initializeDisturbances(...
'Dwx', true, ... % Ground Motion - X direction
'Dwy', true, ... % Ground Motion - Y direction
'Dwz', true, ... % Ground Motion - Z direction
'Fty_x', true, ... % Translation Stage - X direction
'Fty_z', true, ... % Translation Stage - Z direction
'Frz_z', true ... % Spindle - Z direction
);
% We simulate the model.
sim('nass_model');
% And we save the obtained data.
tomo_align_dist = struct('t', t, 'MTr', MTr);
save('experiment_tomography/mat/experiment.mat', 'tomo_align_dist', '-append');
% Analysis
load('experiment_tomography/mat/experiment.mat', 'tomo_align_dist');
t = tomo_align_dist.t;
MTr = tomo_align_dist.MTr;
Edx = squeeze(MTr(1, 4, :));
Edy = squeeze(MTr(2, 4, :));
Edz = squeeze(MTr(3, 4, :));
% The angles obtained are u-v-w Euler angles (rotations in the moving frame)
Ery = atan2( squeeze(MTr(1, 3, :)), squeeze(sqrt(MTr(1, 1, :).^2 + MTr(1, 2, :).^2)));
Erx = atan2(-squeeze(MTr(2, 3, :))./cos(Ery), squeeze(MTr(3, 3, :))./cos(Ery));
Erz = atan2(-squeeze(MTr(1, 2, :))./cos(Ery), squeeze(MTr(1, 1, :))./cos(Ery));
figure;
ax1 = subplot(1, 3, 1);
plot(t, Edx, 'DisplayName', '$\epsilon_{x}$')
ylabel('Displacement [m]');
legend('location', 'northeast');
ax2 = subplot(1, 3, 2);
plot(t, Edy, 'DisplayName', '$\epsilon_{y}$')
xlabel('Time [s]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Edz, 'DisplayName', '$\epsilon_{z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
% #+NAME: fig:exp_tomo_dist_trans
% #+CAPTION: X-Y-Z translation of the sample w.r.t. the granite when performing tomography experiment with disturbances ([[./figs/exp_tomo_dist_trans.png][png]], [[./figs/exp_tomo_dist_trans.pdf][pdf]])
% [[file:figs/exp_tomo_dist_trans.png]]
figure;
ax1 = subplot(1, 3, 1);
plot(t, Erx, 'DisplayName', '$\epsilon_{\theta x}$')
ylabel('Rotation [rad]');
legend('location', 'northeast');
ax2 = subplot(1, 3, 2);
plot(t, Ery, 'DisplayName', '$\epsilon_{\theta y}$')
xlabel('Time [s]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Erz, 'DisplayName', '$\epsilon_{\theta z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
% Simulation Setup
% We first set the wanted translation of the Micro Hexapod.
P_micro_hexapod = [0.01; 0; 0]; % [m]
% We initialize the reference path.
initializeReferences('Dh_pos', [P_micro_hexapod; 0; 0; 0], 'Rz_type', 'rotating', 'Rz_period', 1);
% We initialize the stages.
initializeMicroHexapod('AP', P_micro_hexapod);
% And we initialize the disturbances to zero.
initializeDisturbances(...
'Dwx', false, ... % Ground Motion - X direction
'Dwy', false, ... % Ground Motion - Y direction
'Dwz', false, ... % Ground Motion - Z direction
'Fty_x', false, ... % Translation Stage - X direction
'Fty_z', false, ... % Translation Stage - Z direction
'Frz_z', false ... % Spindle - Z direction
);
% We simulate the model.
sim('nass_model');
% And we save the obtained data.
tomo_not_align = struct('t', t, 'MTr', MTr);
save('experiment_tomography/mat/experiment.mat', 'tomo_not_align', '-append');
% Analysis
load('experiment_tomography/mat/experiment.mat', 'tomo_not_align');
t = tomo_not_align.t;
MTr = tomo_not_align.MTr;
Edx = squeeze(MTr(1, 4, :));
Edy = squeeze(MTr(2, 4, :));
Edz = squeeze(MTr(3, 4, :));
% The angles obtained are u-v-w Euler angles (rotations in the moving frame)
Ery = atan2( squeeze(MTr(1, 3, :)), squeeze(sqrt(MTr(1, 1, :).^2 + MTr(1, 2, :).^2)));
Erx = atan2(-squeeze(MTr(2, 3, :))./cos(Ery), squeeze(MTr(3, 3, :))./cos(Ery));
Erz = atan2(-squeeze(MTr(1, 2, :))./cos(Ery), squeeze(MTr(1, 1, :))./cos(Ery));
figure;
ax1 = subplot(1, 3, 1);
plot(t, Edx, 'DisplayName', '$\epsilon_{x}$')
ylabel('Displacement [m]');
legend('location', 'northeast');
ax2 = subplot(1, 3, 2);
plot(t, Edy, 'DisplayName', '$\epsilon_{y}$')
xlabel('Time [s]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Edz, 'DisplayName', '$\epsilon_{z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
% #+NAME: fig:exp_tomo_offset_trans
% #+CAPTION: X-Y-Z translation of the sample w.r.t. granite when performing tomography experiment with no disturbances ([[./figs/exp_tomo_offset_trans.png][png]], [[./figs/exp_tomo_offset_trans.pdf][pdf]])
% [[file:figs/exp_tomo_offset_trans.png]]
figure;
ax1 = subplot(1, 3, 1);
plot(t, Erx, 'DisplayName', '$\epsilon_{\theta x}$')
ylabel('Rotation [rad]');
legend('location', 'northeast');
ax2 = subplot(1, 3, 2);
plot(t, Ery, 'DisplayName', '$\epsilon_{\theta y}$')
xlabel('Time [s]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Erz, 'DisplayName', '$\epsilon_{\theta z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
% Simulation Setup
% We set the reference path.
initializeReferences('Dy_type', 'triangular', 'Dy_amplitude', 10e-3, 'Dy_period', 1);
% We initialize the stages.
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod('actuator', 'piezo');
initializeSample('mass', 1);
% And we initialize the disturbances to zero.
initializeDisturbances(...
'Dwx', false, ... % Ground Motion - X direction
'Dwy', false, ... % Ground Motion - Y direction
'Dwz', false, ... % Ground Motion - Z direction
'Fty_x', false, ... % Translation Stage - X direction
'Fty_z', false, ... % Translation Stage - Z direction
'Frz_z', false ... % Spindle - Z direction
);
% We simulate the model.
sim('nass_model');
% And we save the obtained data.
ty_scan = struct('t', t, 'MTr', MTr);
save('experiment_tomography/mat/experiment.mat', 'ty_scan', '-append');
% Analysis
load('experiment_tomography/mat/experiment.mat', 'ty_scan');
t = ty_scan.t;
MTr = ty_scan.MTr;
Edx = squeeze(MTr(1, 4, :));
Edy = squeeze(MTr(2, 4, :));
Edz = squeeze(MTr(3, 4, :));
% The angles obtained are u-v-w Euler angles (rotations in the moving frame)
Ery = atan2( squeeze(MTr(1, 3, :)), squeeze(sqrt(MTr(1, 1, :).^2 + MTr(1, 2, :).^2)));
Erx = atan2(-squeeze(MTr(2, 3, :))./cos(Ery), squeeze(MTr(3, 3, :))./cos(Ery));
Erz = atan2(-squeeze(MTr(1, 2, :))./cos(Ery), squeeze(MTr(1, 1, :))./cos(Ery));
figure;
ax1 = subplot(1, 3, 1);
plot(t, Edx, 'DisplayName', '$\epsilon_{x}$')
ylabel('Displacement [m]');
legend('location', 'northeast');
ax2 = subplot(1, 3, 2);
plot(t, Edy, 'DisplayName', '$\epsilon_{y}$')
xlabel('Time [s]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Edz, 'DisplayName', '$\epsilon_{z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
% #+NAME: fig:exp_ty_scan_trans
% #+CAPTION: X-Y-Z translation of the sample w.r.t. granite when performing tomography experiment with no disturbances ([[./figs/exp_ty_scan_trans.png][png]], [[./figs/exp_ty_scan_trans.pdf][pdf]])
% [[file:figs/exp_ty_scan_trans.png]]
figure;
ax1 = subplot(1, 3, 1);
plot(t, Erx, 'DisplayName', '$\epsilon_{\theta x}$')
ylabel('Rotation [rad]');
legend('location', 'northeast');
ax2 = subplot(1, 3, 2);
plot(t, Ery, 'DisplayName', '$\epsilon_{\theta y}$')
xlabel('Time [s]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Erz, 'DisplayName', '$\epsilon_{\theta z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);

View File

@@ -0,0 +1,27 @@
function [] = prepareLinearizeIdentification(args)
arguments
args.nass_actuator char {mustBeMember(args.nass_actuator,{'piezo', 'lorentz'})} = 'piezo'
args.sample_mass (1,1) double {mustBeNumeric, mustBePositive} = 50 % [kg]
end
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod('actuator', args.nass_actuator);
initializeSample('mass', args.sample_mass);
initializeReferences();
initializeDisturbances('enable', false);
initializeController('type', 'open-loop');
initializeSimscapeConfiguration('gravity', true);
initializeLoggingConfiguration('log', 'none');

View File

@@ -0,0 +1,29 @@
function [] = prepareTomographyExperiment(args)
arguments
args.nass_actuator char {mustBeMember(args.nass_actuator,{'piezo', 'lorentz'})} = 'piezo'
args.sample_mass (1,1) double {mustBeNumeric, mustBePositive} = 50 % [kg]
args.Rz_period (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
end
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod('actuator', args.nass_actuator);
initializeSample('mass', args.sample_mass);
initializeReferences('Rz_type', 'rotating', 'Rz_period', args.Rz_period);
initializeDisturbances();
initializeController('type', 'open-loop');
initializeSimscapeConfiguration('gravity', true);
initializeLoggingConfiguration('log', 'all');

View File

@@ -25,7 +25,7 @@
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:matlab+ :tangle matlab/modal_frf_coh.m
#+PROPERTY: header-args:matlab+ :tangle no
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:shell :eval no-export