Update the main control.org file

This commit is contained in:
Thomas Dehaeze 2020-03-26 17:19:56 +01:00
parent 62a745a697
commit de8ba392ed
5 changed files with 47 additions and 7 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

View File

@ -118,7 +118,7 @@ Combining both can be done in an HAC-LAC topology presented in Section [[sec:hac
The use of decentralized controllers is proposed in Section [[sec:cascade_control]].
* Tracking Control - Basic Architectures
* Tracking Control in the Frame of the Nano-Hexapod - Basic Architectures
<<sec:tracking_control>>
** Introduction :ignore:
In this section, we suppose that we want to track some reference position $\bm{r}_{\mathcal{X}_n}$ corresponding to the pose of the nano-hexapod's mobile platform with respect to its fixed base.
@ -209,7 +209,7 @@ These forces are then converted to forces applied in each of the nano-hexapod's
#+RESULTS:
[[file:figs/control_architecture_cartesian_frame.png]]
* Active Damping Architecture - Collocated Control
* Active Damping Architecture - Collocated Control ([[file:control_active_damping.org][link]])
<<sec:active_damping>>
** Introduction :ignore:
From cite:preumont18_vibrat_contr_activ_struc_fourt_edition:
@ -222,6 +222,8 @@ Two very well known active damping techniques are *Integral Force Feedback* and
These two active damping techniques are collocated control techniques.
The active damping techniques are studied in [[file:control_active_damping.org][this]] document.
** Integral Force Feedback
<<sec:active_damping_iff>>
@ -307,7 +309,7 @@ Each diagonal element consists of:
#+RESULTS:
[[file:figs/control_architecture_dvf.png]]
* HAC-LAC Architectures
* HAC-LAC Architectures ([[file:control_hac_lac.org][link]])
<<sec:hac_lac>>
** Introduction :ignore:
Here we can combine Active Damping Techniques (Low authority control) with a tracking controller (high authority control).
@ -475,7 +477,44 @@ Usually, the Low Authority Controller is first design, and then the High Authori
#+RESULTS:
[[file:figs/control_architecture_hac_iff_X.png]]
* Cascade Architectures
** HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite
#+begin_src latex :file control_architecture_hac_iff_pos_X.pdf
\begin{tikzpicture}
% Blocs
\node[block={3.0cm}{3.0cm}] (P) {Plant};
\coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
\coordinate[] (outputF) at ($(P.south east)!0.8!(P.north east)$);
\coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$);
\coordinate[] (outputL) at ($(P.south east)!0.2!(P.north east)$);
\node[block, above=0.4 of P] (Kiff) {$\bm{K}_\text{IFF}$};
\node[addb={+}{}{-}{}{}, left= of inputF] (addF) {};
\node[block, left= of addF] (J) {$\bm{J}^{-T}$};
\node[block, left= of J] (K) {$\bm{K}_\mathcal{X}$};
\node[block, align=center, left= of K] (Ex) {Compute\\Pos. Error};
% Connections and labels
\draw[->] (outputF) -- ++(1, 0) node[below left]{$\bm{\tau}_m$};
\draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east);
\draw[->] (Kiff.west) -| (addF.north);
\draw[->] (addF.east) -- (inputF) node[above left]{$\bm{\tau}$};
\draw[->] (outputL) -- ++(1, 0) node[above left]{$d\bm{\mathcal{L}}$};
\draw[->] (outputX) -- ++(1.6, 0) node[above left]{$\bm{\mathcal{X}}$};
\draw[->] ($(outputX) + (1.2, 0)$)node[branch]{} -- ++(0, -2) -| (Ex.south);
\draw[<-] (Ex.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
\draw[->] (Ex.east) -- (K.west) node[above left]{$\bm{\epsilon}_{\mathcal{X}_n}$};
\draw[->] (K.east) -- (J.west) node[above left]{$\bm{\mathcal{F}}$};
\draw[->] (J.east) -- (addF.west) node[above left]{$\bm{\tau}^\prime$};
\end{tikzpicture}
#+end_src
#+RESULTS:
[[file:figs/control_architecture_hac_iff_pos_X.png]]
* Cascade Architectures ([[file:control_cascade.org][link]])
<<sec:cascade_control>>
** Introduction :ignore:
The principle of Cascade control is shown in Figure [[fig:control_architecture_cascade_control]] and explained as follow:
@ -649,13 +688,13 @@ The inner loop can be composed of the system controlled with the HAC-LAC topolog
#+RESULTS:
[[file:figs/control_architecture_cascade_X.png]]
* Sensor Fusion Architectures
* Sensor Fusion Architectures :noexport:
<<sec:sensor_fusion>>
* $\mathcal{H}_\infty$ Architectures
* $\mathcal{H}_\infty$ Architectures :noexport:
<<sec:h_infinity>>
* Force Control
* Force Control ([[file:control_force.org][link]])
Signals:
- $\bm{r}_\mathcal{F}$ is the wanted total force/torque to be applied to the payload
- $\bm{\epsilon}_\mathcal{F}$ is the force/torque errors that should be applied to the payload
@ -692,6 +731,7 @@ Signals:
#+RESULTS:
[[file:figs/control_architecture_force.png]]
* Bibliography :ignore:
bibliographystyle:unsrt
bibliography:ref.bib