Model flexible nano-hexapod elements
This commit is contained in:
@@ -1,10 +1,9 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-05-05 mar. 11:50 -->
|
||||
<!-- 2020-11-03 mar. 09:45 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<title>Study of the Flexible Joints</title>
|
||||
<meta name="generator" content="Org mode" />
|
||||
@@ -37,19 +36,19 @@
|
||||
<ul>
|
||||
<li><a href="#orge032d30">1. Bending and Torsional Stiffness</a>
|
||||
<ul>
|
||||
<li><a href="#org8fdef7f">1.1. Initialization</a></li>
|
||||
<li><a href="#orge82a7c2">1.1. Initialization</a></li>
|
||||
<li><a href="#orgde60939">1.2. Realistic Bending Stiffness Values</a>
|
||||
<ul>
|
||||
<li><a href="#orgdb214f9">1.2.1. Direct Velocity Feedback</a></li>
|
||||
<li><a href="#org4069e58">1.2.2. Primary Plant</a></li>
|
||||
<li><a href="#orga32adf0">1.2.3. Conclusion</a></li>
|
||||
<li><a href="#orge13b41c">1.2.1. Direct Velocity Feedback</a></li>
|
||||
<li><a href="#orgd5fd59b">1.2.2. Primary Plant</a></li>
|
||||
<li><a href="#org865157e">1.2.3. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org8ad3f34">1.3. Parametric Study</a>
|
||||
<ul>
|
||||
<li><a href="#org4adf147">1.3.1. Direct Velocity Feedback</a></li>
|
||||
<li><a href="#org53e5f08">1.3.2. Primary Control</a></li>
|
||||
<li><a href="#orgc45ccb0">1.3.3. Conclusion</a></li>
|
||||
<li><a href="#orgc98ee7c">1.3.1. Direct Velocity Feedback</a></li>
|
||||
<li><a href="#org15c2c08">1.3.2. Primary Control</a></li>
|
||||
<li><a href="#org5322ecd">1.3.3. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
@@ -58,22 +57,29 @@
|
||||
<ul>
|
||||
<li><a href="#org969d9e7">2.1. Realistic Translation Stiffness Values</a>
|
||||
<ul>
|
||||
<li><a href="#orge82a7c2">2.1.1. Initialization</a></li>
|
||||
<li><a href="#org44f67b8">2.1.2. Direct Velocity Feedback</a></li>
|
||||
<li><a href="#orgd5fd59b">2.1.3. Primary Plant</a></li>
|
||||
<li><a href="#org552093a">2.1.4. Conclusion</a></li>
|
||||
<li><a href="#org7dd21d5">2.1.1. Initialization</a></li>
|
||||
<li><a href="#org47be52b">2.1.2. Direct Velocity Feedback</a></li>
|
||||
<li><a href="#org15105f5">2.1.3. Primary Plant</a></li>
|
||||
<li><a href="#org2098f1e">2.1.4. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org0275632">2.2. Parametric study</a>
|
||||
<ul>
|
||||
<li><a href="#orge13b41c">2.2.1. Direct Velocity Feedback</a></li>
|
||||
<li><a href="#org15c2c08">2.2.2. Primary Control</a></li>
|
||||
<li><a href="#orgd87b94b">2.2.1. Direct Velocity Feedback</a></li>
|
||||
<li><a href="#orge5d1c12">2.2.2. Primary Control</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgce1052e">2.3. Conclusion</a></li>
|
||||
<li><a href="#org382b3cb">2.3. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgb6f6c0a">3. Conclusion</a></li>
|
||||
<li><a href="#orgdf2870d">4. Designed Flexible Joints</a>
|
||||
<ul>
|
||||
<li><a href="#orgd355fcb">4.1. Initialization</a></li>
|
||||
<li><a href="#org43c7d3c">4.2. Direct Velocity Feedback</a></li>
|
||||
<li><a href="#org056a1de">4.3. Integral Force Feedback</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org865157e">3. Conclusion</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
@@ -106,8 +112,8 @@ In this section, we wish to study the effect of the rotation flexibility of the
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org8fdef7f" class="outline-3">
|
||||
<h3 id="org8fdef7f"><span class="section-number-3">1.1</span> Initialization</h3>
|
||||
<div id="outline-container-orge82a7c2" class="outline-3">
|
||||
<h3 id="orge82a7c2"><span class="section-number-3">1.1</span> Initialization</h3>
|
||||
<div class="outline-text-3" id="text-1-1">
|
||||
<p>
|
||||
Let’s initialize all the stages with default parameters.
|
||||
@@ -128,8 +134,8 @@ initializeMirror();
|
||||
Let’s consider the heaviest mass which should we the most problematic with it comes to the flexible joints.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">initializeSample('mass', 50, 'freq', 200*ones(6,1));
|
||||
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', 60);
|
||||
<pre class="src src-matlab">initializeSample(<span class="org-string">'mass'</span>, 50, <span class="org-string">'freq'</span>, 200<span class="org-type">*</span>ones(6,1));
|
||||
initializeReferences(<span class="org-string">'Rz_type'</span>, <span class="org-string">'rotating-not-filtered'</span>, <span class="org-string">'Rz_period'</span>, 60);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -147,10 +153,10 @@ Let’s compare the ideal case (zero stiffness in rotation and infinite stif
|
||||
</ul>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Kf_M = 15*ones(6,1);
|
||||
Kf_F = 15*ones(6,1);
|
||||
Kt_M = 20*ones(6,1);
|
||||
Kt_F = 20*ones(6,1);
|
||||
<pre class="src src-matlab">Kf_M = 15<span class="org-type">*</span>ones(6,1);
|
||||
Kf_F = 15<span class="org-type">*</span>ones(6,1);
|
||||
Kt_M = 20<span class="org-type">*</span>ones(6,1);
|
||||
Kt_F = 20<span class="org-type">*</span>ones(6,1);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -158,8 +164,8 @@ Kt_F = 20*ones(6,1);
|
||||
The stiffness and damping of the nano-hexapod’s legs are:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">k_opt = 1e5; % [N/m]
|
||||
c_opt = 2e2; % [N/(m/s)]
|
||||
<pre class="src src-matlab">k_opt = 1e5; <span class="org-comment">% [N/m]</span>
|
||||
c_opt = 2e2; <span class="org-comment">% [N/(m/s)]</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -168,8 +174,8 @@ This corresponds to the optimal identified stiffness.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgdb214f9" class="outline-4">
|
||||
<h4 id="orgdb214f9"><span class="section-number-4">1.2.1</span> Direct Velocity Feedback</h4>
|
||||
<div id="outline-container-orge13b41c" class="outline-4">
|
||||
<h4 id="orge13b41c"><span class="section-number-4">1.2.1</span> Direct Velocity Feedback</h4>
|
||||
<div class="outline-text-4" id="text-1-2-1">
|
||||
<p>
|
||||
We identify the dynamics from actuators force \(\tau_i\) to relative motion sensors \(d\mathcal{L}_i\) with and without considering the flexible joint stiffness.
|
||||
@@ -189,8 +195,8 @@ It is shown that the adding of stiffness for the flexible joints does increase a
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org4069e58" class="outline-4">
|
||||
<h4 id="org4069e58"><span class="section-number-4">1.2.2</span> Primary Plant</h4>
|
||||
<div id="outline-container-orgd5fd59b" class="outline-4">
|
||||
<h4 id="orgd5fd59b"><span class="section-number-4">1.2.2</span> Primary Plant</h4>
|
||||
<div class="outline-text-4" id="text-1-2-2">
|
||||
<p>
|
||||
Let’s now identify the dynamics from \(\bm{\tau}^\prime\) to \(\bm{\epsilon}_{\mathcal{X}_n}\) (for the primary controller designed in the frame of the legs).
|
||||
@@ -210,10 +216,10 @@ The plant dynamics is not found to be changing significantly.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orga32adf0" class="outline-4">
|
||||
<h4 id="orga32adf0"><span class="section-number-4">1.2.3</span> Conclusion</h4>
|
||||
<div id="outline-container-org865157e" class="outline-4">
|
||||
<h4 id="org865157e"><span class="section-number-4">1.2.3</span> Conclusion</h4>
|
||||
<div class="outline-text-4" id="text-1-2-3">
|
||||
<div class="important">
|
||||
<div class="important" id="org69f9617">
|
||||
<p>
|
||||
Considering realistic flexible joint bending stiffness for the nano-hexapod does not seems to impose any limitation on the DVF control nor on the primary control.
|
||||
</p>
|
||||
@@ -239,7 +245,7 @@ This will help to determine the requirements on the joint’s stiffness.
|
||||
Let’s consider the following bending stiffness of the flexible joints:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Ks = [1, 5, 10, 50, 100]; % [Nm/rad]
|
||||
<pre class="src src-matlab">Ks = [1, 5, 10, 50, 100]; <span class="org-comment">% [Nm/rad]</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -248,8 +254,8 @@ We also consider here a nano-hexapod with the identified optimal actuator stiffn
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org4adf147" class="outline-4">
|
||||
<h4 id="org4adf147"><span class="section-number-4">1.3.1</span> Direct Velocity Feedback</h4>
|
||||
<div id="outline-container-orgc98ee7c" class="outline-4">
|
||||
<h4 id="orgc98ee7c"><span class="section-number-4">1.3.1</span> Direct Velocity Feedback</h4>
|
||||
<div class="outline-text-4" id="text-1-3-1">
|
||||
<p>
|
||||
The dynamics from the actuators to the relative displacement sensor in each leg is identified and shown in Figure <a href="#org8fbbf9d">3</a>.
|
||||
@@ -279,8 +285,8 @@ It is shown that the bending stiffness of the flexible joints does indeed change
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org53e5f08" class="outline-4">
|
||||
<h4 id="org53e5f08"><span class="section-number-4">1.3.2</span> Primary Control</h4>
|
||||
<div id="outline-container-org15c2c08" class="outline-4">
|
||||
<h4 id="org15c2c08"><span class="section-number-4">1.3.2</span> Primary Control</h4>
|
||||
<div class="outline-text-4" id="text-1-3-2">
|
||||
<p>
|
||||
The dynamics from \(\bm{\tau}^\prime\) to \(\bm{\epsilon}_{\mathcal{X}_n}\) (for the primary controller designed in the frame of the legs) is shown in Figure <a href="#orgb739560">5</a>.
|
||||
@@ -299,10 +305,10 @@ It is shown that the bending stiffness of the flexible joints have very little i
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgc45ccb0" class="outline-4">
|
||||
<h4 id="orgc45ccb0"><span class="section-number-4">1.3.3</span> Conclusion</h4>
|
||||
<div id="outline-container-org5322ecd" class="outline-4">
|
||||
<h4 id="org5322ecd"><span class="section-number-4">1.3.3</span> Conclusion</h4>
|
||||
<div class="outline-text-4" id="text-1-3-3">
|
||||
<div class="important">
|
||||
<div class="important" id="orga223c1a">
|
||||
<p>
|
||||
The bending stiffness of the flexible joint does not significantly change the dynamics.
|
||||
</p>
|
||||
@@ -333,16 +339,16 @@ We choose realistic values of the axial stiffness of the joints:
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Kz_F = 60e6*ones(6,1); % [N/m]
|
||||
Kz_M = 60e6*ones(6,1); % [N/m]
|
||||
Cz_F = 1*ones(6,1); % [N/(m/s)]
|
||||
Cz_M = 1*ones(6,1); % [N/(m/s)]
|
||||
<pre class="src src-matlab">Ka_F = 60e6<span class="org-type">*</span>ones(6,1); <span class="org-comment">% [N/m]</span>
|
||||
Ka_M = 60e6<span class="org-type">*</span>ones(6,1); <span class="org-comment">% [N/m]</span>
|
||||
Ca_F = 1<span class="org-type">*</span>ones(6,1); <span class="org-comment">% [N/(m/s)]</span>
|
||||
Ca_M = 1<span class="org-type">*</span>ones(6,1); <span class="org-comment">% [N/(m/s)]</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge82a7c2" class="outline-4">
|
||||
<h4 id="orge82a7c2"><span class="section-number-4">2.1.1</span> Initialization</h4>
|
||||
<div id="outline-container-org7dd21d5" class="outline-4">
|
||||
<h4 id="org7dd21d5"><span class="section-number-4">2.1.1</span> Initialization</h4>
|
||||
<div class="outline-text-4" id="text-2-1-1">
|
||||
<p>
|
||||
Let’s initialize all the stages with default parameters.
|
||||
@@ -363,15 +369,15 @@ initializeMirror();
|
||||
Let’s consider the heaviest mass which should we the most problematic with it comes to the flexible joints.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">initializeSample('mass', 50, 'freq', 200*ones(6,1));
|
||||
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', 60);
|
||||
<pre class="src src-matlab">initializeSample(<span class="org-string">'mass'</span>, 50, <span class="org-string">'freq'</span>, 200<span class="org-type">*</span>ones(6,1));
|
||||
initializeReferences(<span class="org-string">'Rz_type'</span>, <span class="org-string">'rotating-not-filtered'</span>, <span class="org-string">'Rz_period'</span>, 60);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org44f67b8" class="outline-4">
|
||||
<h4 id="org44f67b8"><span class="section-number-4">2.1.2</span> Direct Velocity Feedback</h4>
|
||||
<div id="outline-container-org47be52b" class="outline-4">
|
||||
<h4 id="org47be52b"><span class="section-number-4">2.1.2</span> Direct Velocity Feedback</h4>
|
||||
<div class="outline-text-4" id="text-2-1-2">
|
||||
<p>
|
||||
The dynamics from actuators force \(\tau_i\) to relative motion sensors \(d\mathcal{L}_i\) with and without considering the flexible joint stiffness are identified.
|
||||
@@ -390,11 +396,11 @@ The obtained dynamics are shown in Figure <a href="#org78dd87a">6</a>.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd5fd59b" class="outline-4">
|
||||
<h4 id="orgd5fd59b"><span class="section-number-4">2.1.3</span> Primary Plant</h4>
|
||||
<div id="outline-container-org15105f5" class="outline-4">
|
||||
<h4 id="org15105f5"><span class="section-number-4">2.1.3</span> Primary Plant</h4>
|
||||
<div class="outline-text-4" id="text-2-1-3">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Kdvf = 5e3*s/(1+s/2/pi/1e3)*eye(6);
|
||||
<pre class="src src-matlab">Kdvf = 5e3<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>1e3)<span class="org-type">*</span>eye(6);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -415,10 +421,10 @@ The dynamics is compare with and without the joint flexibility in Figure <a href
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org552093a" class="outline-4">
|
||||
<h4 id="org552093a"><span class="section-number-4">2.1.4</span> Conclusion</h4>
|
||||
<div id="outline-container-org2098f1e" class="outline-4">
|
||||
<h4 id="org2098f1e"><span class="section-number-4">2.1.4</span> Conclusion</h4>
|
||||
<div class="outline-text-4" id="text-2-1-4">
|
||||
<div class="important">
|
||||
<div class="important" id="org3a7d9f4">
|
||||
<p>
|
||||
For the realistic value of the flexible joint axial stiffness, the dynamics is not much impact, and this should not be a problem for control.
|
||||
</p>
|
||||
@@ -439,7 +445,7 @@ We wish now to see what is the impact of the <b>axial</b> stiffness of the flexi
|
||||
Let’s consider the following values for the axial stiffness:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Kzs = [1e4, 1e5, 1e6, 1e7, 1e8, 1e9]; % [N/m]
|
||||
<pre class="src src-matlab">Kas = [1e4, 1e5, 1e6, 1e7, 1e8, 1e9]; <span class="org-comment">% [N/m]</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -448,8 +454,8 @@ We also consider here a nano-hexapod with the identified optimal actuator stiffn
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge13b41c" class="outline-4">
|
||||
<h4 id="orge13b41c"><span class="section-number-4">2.2.1</span> Direct Velocity Feedback</h4>
|
||||
<div id="outline-container-orgd87b94b" class="outline-4">
|
||||
<h4 id="orgd87b94b"><span class="section-number-4">2.2.1</span> Direct Velocity Feedback</h4>
|
||||
<div class="outline-text-4" id="text-2-2-1">
|
||||
<p>
|
||||
The dynamics from the actuators to the relative displacement sensor in each leg is identified and shown in Figure <a href="#orgab9ab86">8</a>.
|
||||
@@ -491,8 +497,8 @@ It can be seen that very little active damping can be achieve for axial stiffnes
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org15c2c08" class="outline-4">
|
||||
<h4 id="org15c2c08"><span class="section-number-4">2.2.2</span> Primary Control</h4>
|
||||
<div id="outline-container-orge5d1c12" class="outline-4">
|
||||
<h4 id="orge5d1c12"><span class="section-number-4">2.2.2</span> Primary Control</h4>
|
||||
<div class="outline-text-4" id="text-2-2-2">
|
||||
<p>
|
||||
The dynamics from \(\bm{\tau}^\prime\) to \(\bm{\epsilon}_{\mathcal{X}_n}\) (for the primary controller designed in the frame of the legs) is shown in Figure <a href="#org6070692">11</a>.
|
||||
@@ -508,10 +514,10 @@ The dynamics from \(\bm{\tau}^\prime\) to \(\bm{\epsilon}_{\mathcal{X}_n}\) (for
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgce1052e" class="outline-3">
|
||||
<h3 id="orgce1052e"><span class="section-number-3">2.3</span> Conclusion</h3>
|
||||
<div id="outline-container-org382b3cb" class="outline-3">
|
||||
<h3 id="org382b3cb"><span class="section-number-3">2.3</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-2-3">
|
||||
<div class="important">
|
||||
<div class="important" id="org422e802">
|
||||
<p>
|
||||
The axial stiffness of the flexible joints should be maximized.
|
||||
</p>
|
||||
@@ -533,14 +539,14 @@ We may interpolate the results and say that the axial joint stiffness should be
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org865157e" class="outline-2">
|
||||
<h2 id="org865157e"><span class="section-number-2">3</span> Conclusion</h2>
|
||||
<div id="outline-container-orgb6f6c0a" class="outline-2">
|
||||
<h2 id="orgb6f6c0a"><span class="section-number-2">3</span> Conclusion</h2>
|
||||
<div class="outline-text-2" id="text-3">
|
||||
<p>
|
||||
<a id="org6614f42"></a>
|
||||
</p>
|
||||
|
||||
<div class="important">
|
||||
<div class="important" id="org3cbf243">
|
||||
<p>
|
||||
In this study we considered the bending, torsional and axial stiffnesses of the flexible joints used for the nano-hexapod.
|
||||
</p>
|
||||
@@ -575,10 +581,80 @@ As there is generally a trade-off between bending stiffness and axial stiffness,
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-orgdf2870d" class="outline-2">
|
||||
<h2 id="orgdf2870d"><span class="section-number-2">4</span> Designed Flexible Joints</h2>
|
||||
<div class="outline-text-2" id="text-4">
|
||||
</div>
|
||||
<div id="outline-container-orgd355fcb" class="outline-3">
|
||||
<h3 id="orgd355fcb"><span class="section-number-3">4.1</span> Initialization</h3>
|
||||
<div class="outline-text-3" id="text-4-1">
|
||||
<p>
|
||||
Let’s initialize all the stages with default parameters.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
initializeMirror(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
initializeMirror();
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
Let’s consider the heaviest mass which should we the most problematic with it comes to the flexible joints.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">initializeSample(<span class="org-string">'mass'</span>, 50, <span class="org-string">'freq'</span>, 200<span class="org-type">*</span>ones(6,1));
|
||||
initializeReferences(<span class="org-string">'Rz_type'</span>, <span class="org-string">'rotating-not-filtered'</span>, <span class="org-string">'Rz_period'</span>, 60);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">flex_joint = load(<span class="org-string">'./mat/flexor_025.mat'</span>, <span class="org-string">'int_xyz'</span>, <span class="org-string">'int_i'</span>, <span class="org-string">'n_xyz'</span>, <span class="org-string">'n_i'</span>, <span class="org-string">'nodes'</span>, <span class="org-string">'M'</span>, <span class="org-string">'K'</span>);
|
||||
apa = load(<span class="org-string">'./mat/APA300ML_simplified_model.mat'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'amplified'</span>, ...
|
||||
<span class="org-string">'ke'</span>, apa.ke, <span class="org-string">'ka'</span>, apa.ka, <span class="org-string">'k1'</span>, apa.k1, <span class="org-string">'c1'</span>, apa.c1, <span class="org-string">'F_gain'</span>, apa.F_gain, ...
|
||||
<span class="org-string">'type_M'</span>, <span class="org-string">'spherical_3dof'</span>, ...
|
||||
<span class="org-string">'Kr_M'</span>, flex_joint.K(1,1)<span class="org-type">*</span>ones(6,1), ...
|
||||
<span class="org-string">'Ka_M'</span>, flex_joint.K(3,3)<span class="org-type">*</span>ones(6,1), ...
|
||||
<span class="org-string">'Kf_M'</span>, flex_joint.K(4,4)<span class="org-type">*</span>ones(6,1), ...
|
||||
<span class="org-string">'Kt_M'</span>, flex_joint.K(6,6)<span class="org-type">*</span>ones(6,1), ...
|
||||
<span class="org-string">'type_F'</span>, <span class="org-string">'spherical_3dof'</span>, ...
|
||||
<span class="org-string">'Kr_F'</span>, flex_joint.K(1,1)<span class="org-type">*</span>ones(6,1), ...
|
||||
<span class="org-string">'Ka_F'</span>, flex_joint.K(3,3)<span class="org-type">*</span>ones(6,1), ...
|
||||
<span class="org-string">'Kf_F'</span>, flex_joint.K(4,4)<span class="org-type">*</span>ones(6,1), ...
|
||||
<span class="org-string">'Kt_F'</span>, flex_joint.K(6,6)<span class="org-type">*</span>ones(6,1));
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">initializeNanoHexapod();
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org43c7d3c" class="outline-3">
|
||||
<h3 id="org43c7d3c"><span class="section-number-3">4.2</span> Direct Velocity Feedback</h3>
|
||||
</div>
|
||||
<div id="outline-container-org056a1de" class="outline-3">
|
||||
<h3 id="org056a1de"><span class="section-number-3">4.3</span> Integral Force Feedback</h3>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-05-05 mar. 11:50</p>
|
||||
<p class="date">Created: 2020-11-03 mar. 09:45</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user