Rework the effect of the spindle rotation speed

This commit is contained in:
Thomas Dehaeze 2020-02-04 10:26:06 +01:00
parent 2fb08445ff
commit b2ca19bf05
13 changed files with 22 additions and 7 deletions

View File

@ -126,7 +126,11 @@ The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
We set the references to zero.
#+begin_src matlab
initializeReferences('Rz_type', 'rotating', 'Ry_period', 1);
initializeReferences();
#+end_src
#+begin_src matlab
initializeDisturbances('enable', false);
#+end_src
And all the controllers are set to 0.
@ -159,7 +163,7 @@ First, we identify the dynamics of the system using the =linearize= function.
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Vlm'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, 1, options);
G = linearize(mdl, io, 0.5, options);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
@ -2462,21 +2466,32 @@ We identify the dynamics for the following Spindle rotation periods.
Rz_periods = [60, 10, 1]; % [s]
#+end_src
#+begin_src matlab :exports none
The goal is to identify the dynamics:
- after the transient phase
- at the same spindle angle
#+begin_src matlab
Gw = {zeros(length(Rz_periods))};
Gw_iff = {zeros(length(Rz_periods))};
Gw_dvf = {zeros(length(Rz_periods))};
Gw_ine = {zeros(length(Rz_periods))};
for i = 1:length(Rz_periods)
initializeReferences('Rz_type', 'rotating', 'Rz_period', Rz_periods(i));
initializeReferences('Rz_type', 'rotating', ...
'Rz_period', Rz_periods(i), ... % Rotation period [s]
'Rz_amplitude', -0.5*(2*pi/Rz_periods(i))); % Angle offset [rad]
load('mat/nass_references.mat', 'Rz'); % We load the reference for the Spindle
[~, i_end] = min(abs(Rz.signals.values)); % Obtain the indice where the spindle angle is zero
t_sim = Rz.time(i_end) % Simulation time before identification [s]
%% Run the linearization
G = linearize(mdl, io, 0.5, options);
G = linearize(mdl, io, t_sim, options);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
'Vnlm1', 'Vnlm2', 'Vnlm3', 'Vnlm4', 'Vnlm5', 'Vnlm6'};
Gw(i) = {G};
Gw_iff(i) = {minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Gw_dvf(i) = {minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
@ -2707,7 +2722,7 @@ And all the controllers are set to 0.
We identify the dynamics for the following Tilt stage angles.
#+begin_src matlab
Ry_amplitudes = [0, 3*pi/180]; % [rad]
Ry_amplitudes = [0, 20*pi/180]; % [rad]
#+end_src
#+begin_src matlab :exports none
@ -2720,7 +2735,7 @@ We identify the dynamics for the following Tilt stage angles.
initializeReferences('Ry_type', 'constant', 'Ry_amplitude', Ry_amplitudes(i))
%% Run the linearization
G = linearize(mdl, io, 0.1, options);
G = linearize(mdl, io, 0.25, options);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...

Binary file not shown.

Before

Width:  |  Height:  |  Size: 95 KiB

After

Width:  |  Height:  |  Size: 109 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 82 KiB

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 125 KiB

After

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 103 KiB

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 104 KiB

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 KiB

After

Width:  |  Height:  |  Size: 76 KiB