Update metrology page

This commit is contained in:
Thomas Dehaeze 2019-12-09 09:01:45 +01:00
parent 7835cdd4dc
commit b14de47379
2 changed files with 983 additions and 44 deletions

889
metrology/index.html Normal file
View File

@ -0,0 +1,889 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2019-12-06 ven. 12:02 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Metrology</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
<link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
<script type="text/javascript" src="../js/jquery.min.js"></script>
<script type="text/javascript" src="../js/bootstrap.min.js"></script>
<script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
<script type="text/javascript" src="../js/readtheorg.js"></script>
<script type="text/javascript">
/*
@licstart The following is the entire license notice for the
JavaScript code in this tag.
Copyright (C) 2012-2019 Free Software Foundation, Inc.
The JavaScript code in this tag is free software: you can
redistribute it and/or modify it under the terms of the GNU
General Public License (GNU GPL) as published by the Free Software
Foundation, either version 3 of the License, or (at your option)
any later version. The code is distributed WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
As additional permission under GNU GPL version 3 section 7, you
may distribute non-source (e.g., minimized or compacted) forms of
that code without the copy of the GNU GPL normally required by
section 4, provided you include this license notice and a URL
through which recipients can access the Corresponding Source.
@licend The above is the entire license notice
for the JavaScript code in this tag.
*/
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
displayAlign: "center",
displayIndent: "0em",
"HTML-CSS": { scale: 100,
linebreaks: { automatic: "false" },
webFont: "TeX"
},
SVG: {scale: 100,
linebreaks: { automatic: "false" },
font: "TeX"},
NativeMML: {scale: 100},
TeX: { equationNumbers: {autoNumber: "AMS"},
MultLineWidth: "85%",
TagSide: "right",
TagIndent: ".8em"
}
});
</script>
<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="../index.html"> UP </a>
|
<a accesskey="H" href="../index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Metrology</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org756e44b">1. Verify that the function to compute the reference pose is correct</a>
<ul>
<li><a href="#org2c3c43f">1.1. Prepare the Simulation</a></li>
<li><a href="#org85e8e2b">1.2. Verify that the pose of the sample is the same as the computed one</a></li>
<li><a href="#org37d3573">1.3. Conclusion</a></li>
</ul>
</li>
<li><a href="#orgf9354ae">2. Verify that the function to convert the position error in the frame fixed to the nano-hexapod is working</a>
<ul>
<li><a href="#org17b1563">2.1. Prepare the Simulation</a></li>
<li><a href="#orge719d33">2.2. Compute the wanted pose of the sample in the NASS Base from the metrology and the reference</a></li>
<li><a href="#org42e7fa5">2.3. Verify that be imposing the error motion on the nano-hexapod, we indeed have zero error at the end</a></li>
<li><a href="#org4609b8f">2.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#orgcea5e9e">3. Functions</a>
<ul>
<li><a href="#org1ce366c">3.1. computeReferencePose</a></li>
</ul>
</li>
</ul>
</div>
</div>
<p>
In this document, we suppose that we are able to measure perfectly the position of the sample with respect to the granite.
Also, all the stages can be perfectly positioned.
</p>
<p>
In section <a href="#org0e13e1c">1</a>, we verify that the function developed to compute the wanted pose (translation and orientation) of the sample with respect to the granite can be determined from the wanted position of each stage (translation stage, tilt stage, spindle and micro-hexapod).
To do so, we impose a perfect displacement and all the stage, we perfectly measure the position of the sample with respect to the granite, and we verify that this measured position corresponds to the computed wanted pose of the sample.
</p>
<p>
Then, in section <a href="#orgef14317">2</a>, we introduce some positioning error in the position stages.
The positioning error of the sample expressed with respect to the granite frame (the one measured) is expressed in a frame connected to the NASS top platform.
Finally, we move the NASS such that it compensate for the positioning error that are expressed in the frame of the NASS, and we verify that the positioning error of the sample is well compensated.
</p>
<div id="outline-container-org756e44b" class="outline-2">
<h2 id="org756e44b"><span class="section-number-2">1</span> Verify that the function to compute the reference pose is correct</h2>
<div class="outline-text-2" id="text-1">
<p>
<a id="org0e13e1c"></a>
</p>
<p>
The goal here is to perfectly move the station and verify that there is no mismatch between the metrology measurement and the computation of the reference pose.
</p>
</div>
<div id="outline-container-org2c3c43f" class="outline-3">
<h3 id="org2c3c43f"><span class="section-number-3">1.1</span> Prepare the Simulation</h3>
<div class="outline-text-3" id="text-1-1">
<p>
We load the configuration.
</p>
<div class="org-src-container">
<pre class="src src-matlab">load<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'simscape/conf_simscape.mat'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<p>
We set a small <code>StopTime</code>.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-simulink-keyword">set_param</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, '<span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">5</span><span class="org-type">'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<p>
We setup the reference path to be constant.
</p>
<div class="org-src-container">
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span> ...
<span class="org-string">'Ts'</span>, <span class="org-highlight-numbers-number">1e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">3</span>, ...<span class="org-comment"> % Sampling Frequency [s]</span>
<span class="org-string">'Dy_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "triangular" / "sinusoidal"</span>
<span class="org-string">'Dy_amplitude'</span>, <span class="org-highlight-numbers-number">5e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">3</span>, ...<span class="org-comment"> % Amplitude of the displacement [m]</span>
<span class="org-string">'Dy_period'</span>, <span class="org-highlight-numbers-number">1</span>, ...<span class="org-comment"> % Period of the displacement [s]</span>
<span class="org-string">'Ry_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "triangular" / "sinusoidal"</span>
<span class="org-string">'Ry_amplitude'</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">1</span>, ...<span class="org-comment"> % Amplitude [deg]</span>
<span class="org-string">'Ry_period'</span>, <span class="org-highlight-numbers-number">10</span>, ...<span class="org-comment"> % Period of the displacement [s]</span>
<span class="org-string">'Rz_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "rotating"</span>
<span class="org-string">'Rz_amplitude'</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">135</span>, ...<span class="org-comment"> % Initial angle [deg]</span>
<span class="org-string">'Rz_period'</span>, <span class="org-highlight-numbers-number">1</span>, ...<span class="org-comment"> % Period of the rotating [s]</span>
<span class="org-string">'Dh_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Dh_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-type">-</span><span class="org-highlight-numbers-number">3</span>; <span class="org-highlight-numbers-number">1</span>; <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">]</span>, ...<span class="org-comment"> % Initial position [m,m,m,deg,deg,deg] of the top platform</span>
<span class="org-string">'Rm_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Rm_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-constant">pi</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-type">'</span>, ...<span class="org-comment"> % Initial position of the two masses</span>
<span class="org-string">'Dn_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Dn_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span> ...<span class="org-comment"> % Initial position [m,m,m,deg,deg,deg] of the top platform</span>
<span class="org-rainbow-delimiters-depth-1">)</span>;
initializeReferences<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<p>
No position error for now (perfect positioning).
</p>
<div class="org-src-container">
<pre class="src src-matlab">Dye = <span class="org-highlight-numbers-number">0</span>; <span class="org-comment">% [m]</span>
Rye = <span class="org-highlight-numbers-number">0</span>; <span class="org-comment">% [rad]</span>
Rze = <span class="org-highlight-numbers-number">0</span>; <span class="org-comment">% [rad]</span>
Dhe = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% [m,rad]</span>
</pre>
</div>
<p>
And we run the simulation.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-simulink-keyword">sim</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'simscape/sim_nano_station_metrology.slx'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
</div>
</div>
<div id="outline-container-org85e8e2b" class="outline-3">
<h3 id="org85e8e2b"><span class="section-number-3">1.2</span> Verify that the pose of the sample is the same as the computed one</h3>
<div class="outline-text-3" id="text-1-2">
<p>
Let's denote:
</p>
<ul class="org-ul">
<li>\(\{W\}\) the initial fixed frame (base in which the interferometric measurement is done)</li>
<li>\(\{R\}\) the reference frame corresponding to the wanted pose of the sample</li>
<li>\(\{M\}\) the frame corresponding to the measured pose of the sample</li>
</ul>
<p>
We have then computed:
</p>
<ul class="org-ul">
<li>\({}^W\boldsymbol{T}_R\) which corresponds to the wanted pose of the sample with respect to the granite</li>
<li>\({}^W\boldsymbol{T}_M\) which corresponds to the measured pose of the sample with respect to the granite</li>
</ul>
<p>
We load the reference and we compute the desired trajectory of the sample in the form of an homogeneous transformation matrix \({}^WT_R\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">n = length<span class="org-rainbow-delimiters-depth-1">(</span>Dref.Dy.Time<span class="org-rainbow-delimiters-depth-1">)</span>;
WTr = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, n<span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:n</span>
WTr<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span> = computeReferencePose<span class="org-rainbow-delimiters-depth-1">(</span>Dref.Dy.Data<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span>, Dref.Ry.Data<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span>, Dref.Rz.Data<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span>, Dref.Dh.Data<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-keyword">end</span>
</pre>
</div>
<p>
As the displacement is perfect, we also measure in simulation the pose of the sample with respect to the granite.
From that we can compute the homogeneous transformation matrix \({}^WT_M\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">n = length<span class="org-rainbow-delimiters-depth-1">(</span>Dsm.R.Time<span class="org-rainbow-delimiters-depth-1">)</span>;
WTm = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, n<span class="org-rainbow-delimiters-depth-1">)</span>;
WTm<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = Dsm.R.Data;
WTm<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">4</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-rainbow-delimiters-depth-1">[</span>Dsm.x.Data<span class="org-type">'</span> ; Dsm.y.Data<span class="org-type">'</span> ; Dsm.z.Data<span class="org-type">'</span><span class="org-rainbow-delimiters-depth-1">]</span>;
WTm<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-highlight-numbers-number">1</span>;
</pre>
</div>
<p>
As the simulation is perfect (no measurement error and no motion error), we should have that
\[ {}^W\boldsymbol{T}_R = {}^W\boldsymbol{T}_M \]
</p>
<p>
Or are least:
\[ {}^W\boldsymbol{T}_R(1:3, 4) = {}^W\boldsymbol{T}_M(1:3, 4) \]
\[ {}^W\boldsymbol{R}_R^t \cdot {}^W\boldsymbol{R}_M = \boldsymbol{I}_3 \]
</p>
<div class="org-src-container">
<pre class="src src-matlab">WTr<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">4</span>, end<span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">-</span>WTm<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">4</span>, end<span class="org-rainbow-delimiters-depth-1">)</span>
WTr<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, end<span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">'*</span>WTm<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, end<span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">-</span>eye<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>
</pre>
</div>
<pre class="example">
WTr(1:3, 4, end)-WTm(1:3, 4, end)
ans =
5.38287405101034e-15
9.42822209193395e-15
-7.25141518012618e-16
WTr(1:3, 1:3, end)'*WTm(1:3, 1:3, end)-eye(3)
ans =
1.53210777398272e-14 -1.60173523749974e-14 -7.42461647718073e-16
1.60683098771042e-14 1.53210777398272e-14 -2.33146835171283e-15
-3.95516952522712e-16 -1.72084568816899e-15 9.2370555648813e-14
</pre>
</div>
</div>
<div id="outline-container-org37d3573" class="outline-3">
<h3 id="org37d3573"><span class="section-number-3">1.3</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-3">
<div class="important">
<p>
We are able to compute the wanted position and orientation of the sample.
Both the measurement and the theory gives the same result.
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-orgf9354ae" class="outline-2">
<h2 id="orgf9354ae"><span class="section-number-2">2</span> Verify that the function to convert the position error in the frame fixed to the nano-hexapod is working</h2>
<div class="outline-text-2" id="text-2">
<p>
<a id="orgef14317"></a>
</p>
<p>
We now introduce some positioning error in the stage.
This will induce a global positioning error of the sample with respect to the desired pose that we can compute.
</p>
<p>
We want to verify that we are able to measure this positioning error and convert it in the frame attached to the Nano-hexapod.
</p>
</div>
<div id="outline-container-org17b1563" class="outline-3">
<h3 id="org17b1563"><span class="section-number-3">2.1</span> Prepare the Simulation</h3>
<div class="outline-text-3" id="text-2-1">
<p>
We load the configuration.
</p>
<div class="org-src-container">
<pre class="src src-matlab">load<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'simscape/conf_simscape.mat'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<p>
We set a small <code>StopTime</code>.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-simulink-keyword">set_param</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, '<span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">5</span><span class="org-type">'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<p>
We setup the reference path to be constant.
</p>
<div class="org-src-container">
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span> ...
<span class="org-string">'Ts'</span>, <span class="org-highlight-numbers-number">1e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">3</span>, ...<span class="org-comment"> % Sampling Frequency [s]</span>
<span class="org-string">'Dy_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "triangular" / "sinusoidal"</span>
<span class="org-string">'Dy_amplitude'</span>, <span class="org-highlight-numbers-number">0</span>, ...<span class="org-comment"> % Amplitude of the displacement [m]</span>
<span class="org-string">'Ry_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "triangular" / "sinusoidal"</span>
<span class="org-string">'Ry_amplitude'</span>, <span class="org-highlight-numbers-number">0</span>, ...<span class="org-comment"> % Amplitude [deg]</span>
<span class="org-string">'Rz_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % Either "constant" / "rotating"</span>
<span class="org-string">'Rz_amplitude'</span>, <span class="org-highlight-numbers-number">180</span>, ...<span class="org-comment"> % Initial angle [deg]</span>
<span class="org-string">'Dh_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Dh_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span>, ...<span class="org-comment"> % Initial position [m,m,m,deg,deg,deg] of the top platform</span>
<span class="org-string">'Rm_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Rm_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-constant">pi</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-type">'</span>, ...<span class="org-comment"> % Initial position of the two masses</span>
<span class="org-string">'Dn_type'</span>, <span class="org-string">'constant'</span>, ...<span class="org-comment"> % For now, only constant is implemented</span>
<span class="org-string">'Dn_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span>; <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span> ...<span class="org-comment"> % Initial position [m,m,m,deg,deg,deg] of the top platform</span>
<span class="org-rainbow-delimiters-depth-1">)</span>;
initializeReferences<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<p>
Now we introduce some positioning error.
</p>
<div class="org-src-container">
<pre class="src src-matlab">Dye = <span class="org-highlight-numbers-number">0</span>; <span class="org-comment">% [m]</span>
Rye = <span class="org-highlight-numbers-number">0</span>; <span class="org-comment">% [rad]</span>
Rze = <span class="org-highlight-numbers-number">0</span>; <span class="org-comment">% [rad]</span>
Dhe = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">1e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">3</span> ; <span class="org-highlight-numbers-number">3e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">3</span> ; <span class="org-highlight-numbers-number">2e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">3</span> ; <span class="org-highlight-numbers-number">1e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">3</span> ; <span class="org-highlight-numbers-number">2e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">3</span> ; <span class="org-highlight-numbers-number">3e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">]</span>; <span class="org-comment">% [m,rad]</span>
</pre>
</div>
<p>
And we run the simulation.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-simulink-keyword">sim</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'simscape/sim_nano_station_metrology.slx'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
</div>
</div>
<div id="outline-container-orge719d33" class="outline-3">
<h3 id="orge719d33"><span class="section-number-3">2.2</span> Compute the wanted pose of the sample in the NASS Base from the metrology and the reference</h3>
<div class="outline-text-3" id="text-2-2">
<p>
Now that we have introduced some positioning error, the computed wanted pose and the measured pose will not be the same.
</p>
<p>
We would like to compute \({}^M\boldsymbol{T}_R\) which corresponds to the wanted pose of the sample expressed in a frame attached to the top platform of the nano-hexapod (frame \(\{M\}\)).
</p>
<p>
We have:
</p>
\begin{align}
{}^M\boldsymbol{T}_R &= {}^M\boldsymbol{T}_W \cdot {}^W\boldsymbol{T}_R \\
&= {}^W{\boldsymbol{T}_M}^{-1} \cdot {}^W\boldsymbol{T}_R
\end{align}
<p>
The top platform of the nano-hexapod is considered to be rigidly connected to the sample, thus, \({}^M\boldsymbol{T}_R\) corresponds to the pose error of the sample with respect to the nano-hexapod platform.
</p>
<p>
We load the reference and we compute the desired trajectory of the sample in the form of an homogeneous transformation matrix \({}^W\boldsymbol{T}_R\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">n = length<span class="org-rainbow-delimiters-depth-1">(</span>Dref.Dy.Time<span class="org-rainbow-delimiters-depth-1">)</span>;
WTr = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, n<span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:n</span>
WTr<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span> = computeReferencePose<span class="org-rainbow-delimiters-depth-1">(</span>Dref.Dy.Data<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span>, Dref.Ry.Data<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span>, Dref.Rz.Data<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span>, Dref.Dh.Data<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-keyword">end</span>
</pre>
</div>
<p>
We also measure in simulation the pose of the sample with respect to the granite.
From that we can compute the homogeneous transformation matrix \({}^W\boldsymbol{T}_M\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">n = length<span class="org-rainbow-delimiters-depth-1">(</span>Dsm.R.Time<span class="org-rainbow-delimiters-depth-1">)</span>;
WTm = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, n<span class="org-rainbow-delimiters-depth-1">)</span>;
WTm<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = Dsm.R.Data;
WTm<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">4</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-rainbow-delimiters-depth-1">[</span>Dsm.x.Data<span class="org-type">'</span> ; Dsm.y.Data<span class="org-type">'</span> ; Dsm.z.Data<span class="org-type">'</span><span class="org-rainbow-delimiters-depth-1">]</span>;
WTm<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-highlight-numbers-number">1</span>;
</pre>
</div>
<p>
The <b>inverse of the transformation matrix</b> can be obtain by (it is less computation intensive than doing a full inverse)
</p>
\begin{equation}
{}^B\boldsymbol{T}_A = {}^A\boldsymbol{T}_B^{-1} =
\left[ \begin{array}{ccc|c}
& & & \\
& {}^A\boldsymbol{R}_B^T & & -{}^A \boldsymbol{R}_B^T {}^A\boldsymbol{P}_{O_B} \\
& & & \\
\hline
0 & 0 & 0 & 1 \\
\end{array} \right]
\end{equation}
<p>
Finally, we compute \({}^M\boldsymbol{T}_R\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">MTr = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, n<span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:n</span>
MTr<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-rainbow-delimiters-depth-1">[</span>WTm<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>,<span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>,<span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">'</span>, <span class="org-type">-</span>WTm<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>,<span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>,<span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">'*</span>WTm<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>,<span class="org-highlight-numbers-number">4</span>,<span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span> ; <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span><span class="org-type">*</span>WTr<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>,<span class="org-type">:</span>,<span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-keyword">end</span>
</pre>
</div>
<p>
Verify that the pose error corresponds to the positioning error of the stages.
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">&#xa0;</th>
<th scope="col" class="org-right">Edx [m]</th>
<th scope="col" class="org-right">Edy [m]</th>
<th scope="col" class="org-right">Edz [m]</th>
<th scope="col" class="org-right">Erx [rad]</th>
<th scope="col" class="org-right">Ery [rad]</th>
<th scope="col" class="org-right">Erz [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">Error</td>
<td class="org-right">-1.0e-03</td>
<td class="org-right">-3.0e-03</td>
<td class="org-right">-2.0e-03</td>
<td class="org-right">-1.0e-03</td>
<td class="org-right">-2.0e-03</td>
<td class="org-right">-3.0e-03</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="outline-container-org42e7fa5" class="outline-3">
<h3 id="org42e7fa5"><span class="section-number-3">2.3</span> Verify that be imposing the error motion on the nano-hexapod, we indeed have zero error at the end</h3>
<div class="outline-text-3" id="text-2-3">
<p>
We now impose a displacement of the nano hexapod corresponding to the measured position error.
</p>
<div class="org-src-container">
<pre class="src src-matlab">opts.Dn_pos = <span class="org-rainbow-delimiters-depth-1">[</span>Edx, Edy, Edz, <span class="org-highlight-numbers-number">180</span><span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">*</span>Erx, <span class="org-highlight-numbers-number">180</span><span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">*</span>Ery, <span class="org-highlight-numbers-number">180</span><span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">*</span>Erz<span class="org-rainbow-delimiters-depth-1">]</span><span class="org-type">'</span>;
initializeReferences<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<p>
And we run the simulation.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-simulink-keyword">sim</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'simscape/sim_nano_station_metrology.slx'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<p>
We load the reference and we compute the desired trajectory of the sample in the form of an homogeneous transformation matrix \({}^WT_R\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">n = length<span class="org-rainbow-delimiters-depth-1">(</span>Dref.Dy.Time<span class="org-rainbow-delimiters-depth-1">)</span>;
WTr = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, n<span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:n</span>
WTr<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span> = computeReferencePose<span class="org-rainbow-delimiters-depth-1">(</span>Dref.Dy.Data<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span>, Dref.Ry.Data<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span>, Dref.Rz.Data<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span>, Dref.Dh.Data<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-keyword">end</span>
</pre>
</div>
<p>
As the displacement is perfect, we also measure in simulation the pose of the sample with respect to the granite.
From that we can compute the homogeneous transformation matrix \({}^WT_M\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">n = length<span class="org-rainbow-delimiters-depth-1">(</span>Dsm.R.Time<span class="org-rainbow-delimiters-depth-1">)</span>;
WTm = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, n<span class="org-rainbow-delimiters-depth-1">)</span>;
WTm<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = Dsm.R.Data;
WTm<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">4</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-rainbow-delimiters-depth-1">[</span>Dsm.x.Data<span class="org-type">'</span> ; Dsm.y.Data<span class="org-type">'</span> ; Dsm.z.Data<span class="org-type">'</span><span class="org-rainbow-delimiters-depth-1">]</span>;
WTm<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-highlight-numbers-number">1</span>;
</pre>
</div>
<p>
Finally, we compute \({}^MT_R\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">MTr = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, n<span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:n</span>
MTr<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-rainbow-delimiters-depth-1">[</span>WTm<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>,<span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>,<span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">'</span>, <span class="org-type">-</span>WTm<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>,<span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>,<span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">'*</span>WTm<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>,<span class="org-highlight-numbers-number">4</span>,<span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-2">)</span> ; <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span><span class="org-type">*</span>WTr<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>,<span class="org-type">:</span>,<span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-keyword">end</span>
</pre>
</div>
<p>
Verify that the pose error is small.
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">&#xa0;</th>
<th scope="col" class="org-right">Edx [m]</th>
<th scope="col" class="org-right">Edy [m]</th>
<th scope="col" class="org-right">Edz [m]</th>
<th scope="col" class="org-right">Erx [rad]</th>
<th scope="col" class="org-right">Ery [rad]</th>
<th scope="col" class="org-right">Erz [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">Error</td>
<td class="org-right">1.2e-16</td>
<td class="org-right">3.3e-16</td>
<td class="org-right">2.3e-16</td>
<td class="org-right">-6.2e-17</td>
<td class="org-right">1.1e-16</td>
<td class="org-right">2.2e-16</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="outline-container-org4609b8f" class="outline-3">
<h3 id="org4609b8f"><span class="section-number-3">2.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-4">
<div class="important">
<p>
Indeed, we are able to convert the position error in the frame of the NASS and then compensate these errors with the NASS.
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-orgcea5e9e" class="outline-2">
<h2 id="orgcea5e9e"><span class="section-number-2">3</span> Functions</h2>
<div class="outline-text-2" id="text-3">
</div>
<div id="outline-container-org1ce366c" class="outline-3">
<h3 id="org1ce366c"><span class="section-number-3">3.1</span> computeReferencePose</h3>
<div class="outline-text-3" id="text-3-1">
<p>
<a id="org89b0447"></a>
</p>
<p>
This Matlab function is accessible <a href="src/computeReferencePose.m">here</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-variable-name">WTr</span><span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">]</span></span> = <span class="org-function-name">computeReferencePose</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">Dy</span>, <span class="org-variable-name">Ry</span>, <span class="org-variable-name">Rz</span>, <span class="org-variable-name">Dh</span><span class="org-rainbow-delimiters-depth-1">)</span>
<span class="org-comment">% computeReferencePose - Compute the homogeneous transformation matrix corresponding to the wanted pose of the sample</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [WTr] = computeReferencePose(Dy, Ry, Rz, Dh)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - Dy, Ry, Rz, Dh -</span>
<span class="org-comment">%</span>
<span class="org-comment">% Outputs:</span>
<span class="org-comment">% - WTr -</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Translation Stage</span></span>
Rty = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span>;
<span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> Dy;
<span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span>;
<span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Tilt Stage - Pure rotating aligned with Ob</span></span>
Rry = <span class="org-rainbow-delimiters-depth-1">[</span> cos<span class="org-rainbow-delimiters-depth-2">(</span>Ry<span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-highlight-numbers-number">0</span> sin<span class="org-rainbow-delimiters-depth-2">(</span>Ry<span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-highlight-numbers-number">0</span>;
<span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span>;
<span class="org-type">-</span>sin<span class="org-rainbow-delimiters-depth-2">(</span>Ry<span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-highlight-numbers-number">0</span> cos<span class="org-rainbow-delimiters-depth-2">(</span>Ry<span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-highlight-numbers-number">0</span>;
<span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Spindle - Rotation along the Z axis</span></span>
Rrz = <span class="org-rainbow-delimiters-depth-1">[</span>cos<span class="org-rainbow-delimiters-depth-2">(</span>Rz<span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-type">-</span>sin<span class="org-rainbow-delimiters-depth-2">(</span>Rz<span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> ;
sin<span class="org-rainbow-delimiters-depth-2">(</span>Rz<span class="org-rainbow-delimiters-depth-2">)</span> cos<span class="org-rainbow-delimiters-depth-2">(</span>Rz<span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> ;
<span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> ;
<span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> <span class="org-rainbow-delimiters-depth-1">]</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Micro-Hexapod</span></span>
Rhx = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span>;
<span class="org-highlight-numbers-number">0</span> cos<span class="org-rainbow-delimiters-depth-2">(</span>Dh<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">4</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-type">-</span>sin<span class="org-rainbow-delimiters-depth-2">(</span>Dh<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">4</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span>;
<span class="org-highlight-numbers-number">0</span> sin<span class="org-rainbow-delimiters-depth-2">(</span>Dh<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">4</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span> cos<span class="org-rainbow-delimiters-depth-2">(</span>Dh<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">4</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">]</span>;
Rhy = <span class="org-rainbow-delimiters-depth-1">[</span> cos<span class="org-rainbow-delimiters-depth-2">(</span>Dh<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">5</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-highlight-numbers-number">0</span> sin<span class="org-rainbow-delimiters-depth-2">(</span>Dh<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">5</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span>;
<span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span>;
<span class="org-type">-</span>sin<span class="org-rainbow-delimiters-depth-2">(</span>Dh<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">5</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-highlight-numbers-number">0</span> cos<span class="org-rainbow-delimiters-depth-2">(</span>Dh<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">5</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">]</span>;
Rhz = <span class="org-rainbow-delimiters-depth-1">[</span>cos<span class="org-rainbow-delimiters-depth-2">(</span>Dh<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-type">-</span>sin<span class="org-rainbow-delimiters-depth-2">(</span>Dh<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-highlight-numbers-number">0</span>;
sin<span class="org-rainbow-delimiters-depth-2">(</span>Dh<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span> cos<span class="org-rainbow-delimiters-depth-2">(</span>Dh<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-highlight-numbers-number">0</span>;
<span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
Rh = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> Dh<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span> ;
<span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> Dh<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span> ;
<span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> Dh<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span> ;
<span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> <span class="org-rainbow-delimiters-depth-1">]</span>;
Rh<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> = Rhx<span class="org-type">*</span>Rhy<span class="org-type">*</span>Rhz;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Total Homogeneous transformation</span></span>
WTr = Rty<span class="org-type">*</span>Rry<span class="org-type">*</span>Rrz<span class="org-type">*</span>Rh;
<span class="org-keyword">end</span>
</pre>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2019-12-06 ven. 12:02</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
</div>
</body>
</html>

View File

@ -45,6 +45,8 @@
In this document, we suppose that we are able to measure perfectly the position of the sample with respect to the granite. In this document, we suppose that we are able to measure perfectly the position of the sample with respect to the granite.
Also, all the stages can be perfectly positioned. Also, all the stages can be perfectly positioned.
First, in section [[sec:measurement_principle]], is explained how the measurement of the position of the sample with respect to the granite is performed.
In section [[sec:compute_reference]], we verify that the function developed to compute the wanted pose (translation and orientation) of the sample with respect to the granite can be determined from the wanted position of each stage (translation stage, tilt stage, spindle and micro-hexapod). In section [[sec:compute_reference]], we verify that the function developed to compute the wanted pose (translation and orientation) of the sample with respect to the granite can be determined from the wanted position of each stage (translation stage, tilt stage, spindle and micro-hexapod).
To do so, we impose a perfect displacement and all the stage, we perfectly measure the position of the sample with respect to the granite, and we verify that this measured position corresponds to the computed wanted pose of the sample. To do so, we impose a perfect displacement and all the stage, we perfectly measure the position of the sample with respect to the granite, and we verify that this measured position corresponds to the computed wanted pose of the sample.
@ -52,6 +54,20 @@ Then, in section [[sec:compute_pos_error]], we introduce some positioning error
The positioning error of the sample expressed with respect to the granite frame (the one measured) is expressed in a frame connected to the NASS top platform. The positioning error of the sample expressed with respect to the granite frame (the one measured) is expressed in a frame connected to the NASS top platform.
Finally, we move the NASS such that it compensate for the positioning error that are expressed in the frame of the NASS, and we verify that the positioning error of the sample is well compensated. Finally, we move the NASS such that it compensate for the positioning error that are expressed in the frame of the NASS, and we verify that the positioning error of the sample is well compensated.
* How do we measure the position of the sample with respect to the granite
<<sec:measurement_principle>>
A transform sensor block gives the translation and orientation of the follower frame with respect to the base frame.
The base frame is fixed to the granite and located at the initial sample location that defines the zero position.
The follower frame is attached to the sample (or more precisely to the reflector).
The outputs of the transform sensor are:
- the 3 translations x, y and z in meter
- the rotation matrix $\boldsymbol{R}$ that permits to rotate the base frame into the follower frame.
We can then determine extract other orientation conventions such that Euler angles or screw axis.
* Verify that the function to compute the reference pose is correct * Verify that the function to compute the reference pose is correct
<<sec:compute_reference>> <<sec:compute_reference>>
** Introduction :ignore: ** Introduction :ignore:
@ -93,17 +109,17 @@ We setup the reference path to be constant.
'Dy_amplitude', 5e-3, ... % Amplitude of the displacement [m] 'Dy_amplitude', 5e-3, ... % Amplitude of the displacement [m]
'Dy_period', 1, ... % Period of the displacement [s] 'Dy_period', 1, ... % Period of the displacement [s]
'Ry_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal" 'Ry_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
'Ry_amplitude', -1, ... % Amplitude [deg] 'Ry_amplitude', -1*pi/180, ... % Amplitude [rad]
'Ry_period', 10, ... % Period of the displacement [s] 'Ry_period', 10, ... % Period of the displacement [s]
'Rz_type', 'constant', ... % Either "constant" / "rotating" 'Rz_type', 'constant', ... % Either "constant" / "rotating"
'Rz_amplitude', -135, ... % Initial angle [deg] 'Rz_amplitude', -135*pi/180, ... % Initial angle [rad]
'Rz_period', 1, ... % Period of the rotating [s] 'Rz_period', 1, ... % Period of the rotating [s]
'Dh_type', 'constant', ... % For now, only constant is implemented 'Dh_type', 'constant', ... % For now, only constant is implemented
'Dh_pos', [0; 0; 0; -3; 1; 3], ... % Initial position [m,m,m,deg,deg,deg] of the top platform 'Dh_pos', [0; 0; 0; -3*pi/180; 1*pi/180; 3*pi/180], ... % Initial position [m,m,m,rad,rad,rad] of the top platform
'Rm_type', 'constant', ... % For now, only constant is implemented 'Rm_type', 'constant', ... % For now, only constant is implemented
'Rm_pos', [0, pi]', ... % Initial position of the two masses 'Rm_pos', [0, pi]', ... % Initial position of the two masses
'Dn_type', 'constant', ... % For now, only constant is implemented 'Dn_type', 'constant', ... % For now, only constant is implemented
'Dn_pos', [0; 0; 0; 0; 0; 0] ... % Initial position [m,m,m,deg,deg,deg] of the top platform 'Dn_pos', [1e-3; 0; 0; 1*pi/180; 0; 1*pi/180] ... % Initial position [m,m,m,rad,rad,rad] of the top platform
); );
initializeReferences(opts); initializeReferences(opts);
@ -115,6 +131,7 @@ No position error for now (perfect positioning).
Rye = 0; % [rad] Rye = 0; % [rad]
Rze = 0; % [rad] Rze = 0; % [rad]
Dhe = zeros(6,1); % [m,rad] Dhe = zeros(6,1); % [m,rad]
Dne = zeros(6,1); % [m,rad]
#+end_src #+end_src
And we run the simulation. And we run the simulation.
@ -135,10 +152,9 @@ We have then computed:
We load the reference and we compute the desired trajectory of the sample in the form of an homogeneous transformation matrix ${}^WT_R$. We load the reference and we compute the desired trajectory of the sample in the form of an homogeneous transformation matrix ${}^WT_R$.
#+begin_src matlab #+begin_src matlab
n = length(Dref.Dy.Time); n = length(Dref.Dy.Time);
WTr = zeros(4, 4, n); WTr = zeros(4, 4, n);
for i = 1:n for i = 1:n
WTr(:, :, i) = computeReferencePose(Dref.Dy.Data(i), Dref.Ry.Data(i), Dref.Rz.Data(i), Dref.Dh.Data(i,:)); WTr(:, :, i) = computeReferencePose(Dref.Dy.Data(i), Dref.Ry.Data(i), Dref.Rz.Data(i), Dref.Dh.Data(i,:), Dref.Dn.Data(i,:));
end end
#+end_src #+end_src
@ -168,14 +184,14 @@ Or are least:
#+begin_example #+begin_example
WTr(1:3, 4, end)-WTm(1:3, 4, end) WTr(1:3, 4, end)-WTm(1:3, 4, end)
ans = ans =
5.38287405101034e-15 -8.47173893536723e-15
9.42822209193395e-15 -1.38430933382949e-15
-7.25141518012618e-16 -8.88361324636402e-16
WTr(1:3, 1:3, end)'*WTm(1:3, 1:3, end)-eye(3) WTr(1:3, 1:3, end)'*WTm(1:3, 1:3, end)-eye(3)
ans = ans =
1.53210777398272e-14 -1.60173523749974e-14 -7.42461647718073e-16 2.66453525910038e-15 1.19459143341844e-15 -1.07098845850834e-17
1.60683098771042e-14 1.53210777398272e-14 -2.33146835171283e-15 -1.185456383777e-15 2.66453525910038e-15 2.9392720896082e-16
-3.95516952522712e-16 -1.72084568816899e-15 9.2370555648813e-14 1.07732002978906e-17 -2.9392720896082e-16 2.88657986402541e-15
#+end_example #+end_example
** Conclusion ** Conclusion
@ -227,15 +243,15 @@ We setup the reference path to be constant.
'Dy_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal" 'Dy_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
'Dy_amplitude', 0, ... % Amplitude of the displacement [m] 'Dy_amplitude', 0, ... % Amplitude of the displacement [m]
'Ry_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal" 'Ry_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
'Ry_amplitude', 0, ... % Amplitude [deg] 'Ry_amplitude', 0, ... % Amplitude [rad]
'Rz_type', 'constant', ... % Either "constant" / "rotating" 'Rz_type', 'constant', ... % Either "constant" / "rotating"
'Rz_amplitude', 180, ... % Initial angle [deg] 'Rz_amplitude', 0*pi/180, ... % Initial angle [rad]
'Dh_type', 'constant', ... % For now, only constant is implemented 'Dh_type', 'constant', ... % For now, only constant is implemented
'Dh_pos', [0; 0; 0; 0; 0; 0], ... % Initial position [m,m,m,deg,deg,deg] of the top platform 'Dh_pos', [0; 0; 0; 0; 0; 0], ... % Initial position [m,m,m,rad,rad,rad] of the top platform
'Rm_type', 'constant', ... % For now, only constant is implemented 'Rm_type', 'constant', ... % For now, only constant is implemented
'Rm_pos', [0, pi]', ... % Initial position of the two masses 'Rm_pos', [0, pi]', ... % Initial position of the two masses
'Dn_type', 'constant', ... % For now, only constant is implemented 'Dn_type', 'constant', ... % For now, only constant is implemented
'Dn_pos', [0; 0; 0; 0; 0; 0] ... % Initial position [m,m,m,deg,deg,deg] of the top platform 'Dn_pos', [0; 0; 0; 0; 0; 0] ... % Initial position [m,m,m,rad,rad,rad] of the top platform
); );
initializeReferences(opts); initializeReferences(opts);
@ -246,7 +262,10 @@ Now we introduce some positioning error.
Dye = 0; % [m] Dye = 0; % [m]
Rye = 0; % [rad] Rye = 0; % [rad]
Rze = 0; % [rad] Rze = 0; % [rad]
Dhe = [1e-3 ; 3e-3 ; 2e-3 ; 1e-3 ; 2e-3 ; 3e-3]; % [m,rad] Dhe = [1e-3 ; 0 ; 2e-3 ; 1e-3 ; 0 ; 3e-3]; % [m,rad]
% Dhe = zeros(6,1);
% Dne = [1e-3 ; 0 ; 2e-3 ; 0 ; 3e-3 ; 1e-3]; % [m,rad]
Dne = zeros(6,1);
#+end_src #+end_src
And we run the simulation. And we run the simulation.
@ -270,10 +289,9 @@ The top platform of the nano-hexapod is considered to be rigidly connected to th
We load the reference and we compute the desired trajectory of the sample in the form of an homogeneous transformation matrix ${}^W\boldsymbol{T}_R$. We load the reference and we compute the desired trajectory of the sample in the form of an homogeneous transformation matrix ${}^W\boldsymbol{T}_R$.
#+begin_src matlab #+begin_src matlab
n = length(Dref.Dy.Time); n = length(Dref.Dy.Time);
WTr = zeros(4, 4, n); WTr = zeros(4, 4, n);
for i = 1:n for i = 1:n
WTr(:, :, i) = computeReferencePose(Dref.Dy.Data(i), Dref.Ry.Data(i), Dref.Rz.Data(i), Dref.Dh.Data(i,:)); WTr(:, :, i) = computeReferencePose(Dref.Dy.Data(i), Dref.Ry.Data(i), Dref.Rz.Data(i), Dref.Dh.Data(i,:), Dref.Dn.Data(i,:));
end end
#+end_src #+end_src
@ -288,7 +306,7 @@ From that we can compute the homogeneous transformation matrix ${}^W\boldsymbol{
#+end_src #+end_src
The *inverse of the transformation matrix* can be obtain by (it is less computation intensive than doing a full inverse) The *inverse of the transformation matrix* can be obtain by (it is less computation intensive than doing a full inverse)
\begin{equation} \begin{equation}
{}^B\boldsymbol{T}_A = {}^A\boldsymbol{T}_B^{-1} = {}^B\boldsymbol{T}_A = {}^A\boldsymbol{T}_B^{-1} =
\left[ \begin{array}{ccc|c} \left[ \begin{array}{ccc|c}
& & & \\ & & & \\
@ -298,6 +316,7 @@ The *inverse of the transformation matrix* can be obtain by (it is less computat
0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\
\end{array} \right] \end{array} \right]
\end{equation} \end{equation}
Finally, we compute ${}^M\boldsymbol{T}_R$. Finally, we compute ${}^M\boldsymbol{T}_R$.
#+begin_src matlab #+begin_src matlab
MTr = zeros(4, 4, n); MTr = zeros(4, 4, n);
@ -312,24 +331,39 @@ Verify that the pose error corresponds to the positioning error of the stages.
Edy = MTr(2, 4, end); Edy = MTr(2, 4, end);
Edz = MTr(3, 4, end); Edz = MTr(3, 4, end);
% The angles obtained are u-v-w Euler angles (rotations in the moving frame) % The angles obtained are u-v-w Euler angles (rotations in the moving frame)
Ery = atan2(MTr(1, 3, end), sqrt(MTr(1, 1, end)^2 + MTr(1, 2, end)^2)); Ery = atan2( MTr(1, 3, end), sqrt(MTr(1, 1, end)^2 + MTr(1, 2, end)^2));
Erx = atan2(-MTr(2, 3, end)/cos(Ery), MTr(3, 3, end)/cos(Ery)); Erx = atan2(-MTr(2, 3, end)/cos(Ery), MTr(3, 3, end)/cos(Ery));
Erz = atan2(-MTr(1, 2, end)/cos(Ery), MTr(1, 1, end)/cos(Ery)); Erz = atan2(-MTr(1, 2, end)/cos(Ery), MTr(1, 1, end)/cos(Ery));
#+end_src #+end_src
#+begin_src matlab
MTr(1:3, 1:3, end)
Rx = [1 0 0;
0 cos(Erx) -sin(Erx);
0 sin(Erx) cos(Erx)];
Ry = [ cos(Ery) 0 sin(Ery);
0 1 0;
-sin(Ery) 0 cos(Ery)];
Rz = [cos(Erz) -sin(Erz) 0;
sin(Erz) cos(Erz) 0;
0 0 1];
#+end_src
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
data2orgtable([Edx, Edy, Edz, Erx, Ery, Erz], {'Error'}, {'Edx [m]', 'Edy [m]', 'Edz [m]', 'Erx [rad]', 'Ery [rad]', 'Erz [rad]'}, ' %.1e '); data2orgtable([Edx, Edy, Edz, Erx, Ery, Erz], {'Error'}, {'Edx [m]', 'Edy [m]', 'Edz [m]', 'Erx [rad]', 'Ery [rad]', 'Erz [rad]'}, ' %.1e ');
#+end_src #+end_src
#+RESULTS: #+RESULTS:
| | Edx [m] | Edy [m] | Edz [m] | Erx [rad] | Ery [rad] | Erz [rad] | | | Edx [m] | Edy [m] | Edz [m] | Erx [rad] | Ery [rad] | Erz [rad] |
|-------+----------+----------+----------+-----------+-----------+-----------| |-------+----------+---------+----------+-----------+-----------+-----------|
| Error | -1.0e-03 | -3.0e-03 | -2.0e-03 | -1.0e-03 | -2.0e-03 | -3.0e-03 | | Error | -1.0e-03 | 1.0e-06 | -2.0e-03 | -1.0e-03 | 3.0e-06 | -3.0e-03 |
** Verify that be imposing the error motion on the nano-hexapod, we indeed have zero error at the end ** Verify that be imposing the error motion on the nano-hexapod, we indeed have zero error at the end
We now impose a displacement of the nano hexapod corresponding to the measured position error. We now keep the wanted pose but we impose a displacement of the nano hexapod corresponding to the measured position error.
#+begin_src matlab #+begin_src matlab
opts.Dn_pos = [Edx, Edy, Edz, 180/pi*Erx, 180/pi*Ery, 180/pi*Erz]'; opts.Dn_pos = [Edx, Edy, Edz, Erx, Ery, Erz]';
initializeReferences(opts); initializeReferences(opts);
#+end_src #+end_src
@ -338,18 +372,10 @@ And we run the simulation.
sim('simscape/sim_nano_station_metrology.slx'); sim('simscape/sim_nano_station_metrology.slx');
#+end_src #+end_src
We load the reference and we compute the desired trajectory of the sample in the form of an homogeneous transformation matrix ${}^WT_R$. We keep the old computed computed reference pose ${}^W\boldsymbol{T}_r$ even though we have change the nano hexapod reference, but this is not a real wanted reference but rather a adaptation to reject the positioning errors.
#+begin_src matlab
n = length(Dref.Dy.Time);
WTr = zeros(4, 4, n);
for i = 1:n
WTr(:, :, i) = computeReferencePose(Dref.Dy.Data(i), Dref.Ry.Data(i), Dref.Rz.Data(i), Dref.Dh.Data(i,:));
end
#+end_src
As the displacement is perfect, we also measure in simulation the pose of the sample with respect to the granite. As the displacement is perfect, we also measure in simulation the pose of the sample with respect to the granite.
From that we can compute the homogeneous transformation matrix ${}^WT_M$. From that we can compute the homogeneous transformation matrix ${}^W\boldsymbol{T}_M$.
#+begin_src matlab #+begin_src matlab
n = length(Dsm.R.Time); n = length(Dsm.R.Time);
WTm = zeros(4, 4, n); WTm = zeros(4, 4, n);
@ -358,7 +384,7 @@ From that we can compute the homogeneous transformation matrix ${}^WT_M$.
WTm(4, 4, :) = 1; WTm(4, 4, :) = 1;
#+end_src #+end_src
Finally, we compute ${}^MT_R$. Finally, we compute ${}^M\boldsymbol{T}_R$.
#+begin_src matlab #+begin_src matlab
MTr = zeros(4, 4, n); MTr = zeros(4, 4, n);
for i = 1:n for i = 1:n
@ -382,8 +408,8 @@ Verify that the pose error is small.
#+RESULTS: #+RESULTS:
| | Edx [m] | Edy [m] | Edz [m] | Erx [rad] | Ery [rad] | Erz [rad] | | | Edx [m] | Edy [m] | Edz [m] | Erx [rad] | Ery [rad] | Erz [rad] |
|-------+---------+---------+---------+-----------+-----------+-----------| |-------+----------+----------+---------+-----------+-----------+-----------|
| Error | 1.2e-16 | 3.3e-16 | 2.3e-16 | -6.2e-17 | 1.1e-16 | 2.2e-16 | | Error | -3.0e-09 | -1.0e-09 | 3.0e-09 | 2.0e-09 | -1.0e-09 | 3.0e-09 |
** Conclusion ** Conclusion
#+begin_important #+begin_important
@ -402,13 +428,17 @@ Verify that the pose error is small.
This Matlab function is accessible [[file:src/computeReferencePose.m][here]]. This Matlab function is accessible [[file:src/computeReferencePose.m][here]].
#+begin_src matlab #+begin_src matlab
function [WTr] = computeReferencePose(Dy, Ry, Rz, Dh) function [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn)
% computeReferencePose - Compute the homogeneous transformation matrix corresponding to the wanted pose of the sample % computeReferencePose - Compute the homogeneous transformation matrix corresponding to the wanted pose of the sample
% %
% Syntax: [WTr] = computeReferencePose(Dy, Ry, Rz, Dh) % Syntax: [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn)
% %
% Inputs: % Inputs:
% - Dy, Ry, Rz, Dh - % - Dy - Reference of the Translation Stage [m]
% - Ry - Reference of the Tilt Stage [rad]
% - Rz - Reference of the Spindle [rad]
% - Dh - Reference of the Micro Hexapod [m, m, m, rad, rad, rad]
% - Dn - Reference of the Nano Hexapod [m, m, m, rad, rad, rad]
% %
% Outputs: % Outputs:
% - WTr - % - WTr -
@ -452,8 +482,28 @@ This Matlab function is accessible [[file:src/computeReferencePose.m][here]].
Rh(1:3, 1:3) = Rhx*Rhy*Rhz; Rh(1:3, 1:3) = Rhx*Rhy*Rhz;
%% Nano-Hexapod
Rnx = [1 0 0;
0 cos(Dn(4)) -sin(Dn(4));
0 sin(Dn(4)) cos(Dn(4))];
Rny = [ cos(Dn(5)) 0 sin(Dn(5));
0 1 0;
-sin(Dn(5)) 0 cos(Dn(5))];
Rnz = [cos(Dn(6)) -sin(Dn(6)) 0;
sin(Dn(6)) cos(Dn(6)) 0;
0 0 1];
Rn = [1 0 0 Dn(1) ;
0 1 0 Dn(2) ;
0 0 1 Dn(3) ;
0 0 0 1 ];
Rn(1:3, 1:3) = Rnx*Rny*Rnz;
%% Total Homogeneous transformation %% Total Homogeneous transformation
WTr = Rty*Rry*Rrz*Rh; WTr = Rty*Rry*Rrz*Rh*Rn;
end end
#+end_src #+end_src