Move one function
This commit is contained in:
parent
6541ee4002
commit
ae2f89f3cc
@ -115,7 +115,7 @@ For inverse kinematic analysis, it is assumed that the position ${}^A\bm{P}$ and
|
|||||||
From the geometry of the manipulator, the loop closure for each limb, $i = 1, 2, \dots, 6$ can be written as
|
From the geometry of the manipulator, the loop closure for each limb, $i = 1, 2, \dots, 6$ can be written as
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
l_i {}^A\hat{\bm{s}}_i &= {}^A\bm{A} + {}^A\bm{b}_i - {}^A\bm{a}_i \\
|
l_i {}^A\hat{\bm{s}}_i &= {}^A\bm{A} + {}^A\bm{b}_i - {}^A\bm{a}_i \\
|
||||||
&= {}^A\bm{A} + {}^A\bm{R}_b {}^B\bm{b}_i - {}^A\bm{a}_i
|
&= {}^A\bm{A} + {}^A\bm{R}_b {}^B\bm{b}_i - {}^A\bm{a}_i
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
To obtain the length of each actuator and eliminate $\hat{\bm{s}}_i$, it is sufficient to dot multiply each side by itself:
|
To obtain the length of each actuator and eliminate $\hat{\bm{s}}_i$, it is sufficient to dot multiply each side by itself:
|
||||||
|
@ -41,6 +41,7 @@
|
|||||||
#+PROPERTY: header-args:latex+ :output-dir figs
|
#+PROPERTY: header-args:latex+ :output-dir figs
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
|
* Introduction :ignore:
|
||||||
* General Subsystems
|
* General Subsystems
|
||||||
<<sec:helping functions>>
|
<<sec:helping functions>>
|
||||||
** Generate Reference Signals
|
** Generate Reference Signals
|
||||||
@ -191,6 +192,153 @@ This Matlab function is accessible [[file:../src/initializeInputs.m][here]].
|
|||||||
end
|
end
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
** Function that initialize the disturbances
|
||||||
|
:PROPERTIES:
|
||||||
|
:header-args:matlab+: :tangle ../src/initDisturbances.m
|
||||||
|
:header-args:matlab+: :comments none :mkdirp yes
|
||||||
|
:header-args:matlab+: :eval no :results none
|
||||||
|
:END:
|
||||||
|
<<sec:initDisturbances>>
|
||||||
|
|
||||||
|
This Matlab function is accessible [[file:src/initDisturbances.m][here]].
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
function [] = initDisturbances(opts_param)
|
||||||
|
% initDisturbances - Initialize the disturbances
|
||||||
|
%
|
||||||
|
% Syntax: [] = initDisturbances(opts_param)
|
||||||
|
%
|
||||||
|
% Inputs:
|
||||||
|
% - opts_param -
|
||||||
|
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Default values for the Options
|
||||||
|
#+begin_src matlab
|
||||||
|
%% Default values for opts
|
||||||
|
opts = struct();
|
||||||
|
|
||||||
|
%% Populate opts with input parameters
|
||||||
|
if exist('opts_param','var')
|
||||||
|
for opt = fieldnames(opts_param)'
|
||||||
|
opts.(opt{1}) = opts_param.(opt{1});
|
||||||
|
end
|
||||||
|
end
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Load Data
|
||||||
|
#+begin_src matlab
|
||||||
|
load('./disturbances/mat/dist_psd.mat', 'dist_f');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
We remove the first frequency point that usually is very large.
|
||||||
|
#+begin_src matlab :exports none
|
||||||
|
dist_f.f = dist_f.f(2:end);
|
||||||
|
dist_f.psd_gm = dist_f.psd_gm(2:end);
|
||||||
|
dist_f.psd_ty = dist_f.psd_ty(2:end);
|
||||||
|
dist_f.psd_rz = dist_f.psd_rz(2:end);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Parameters
|
||||||
|
We define some parameters that will be used in the algorithm.
|
||||||
|
#+begin_src matlab
|
||||||
|
Fs = 2*dist_f.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
|
||||||
|
N = 2*length(dist_f.f); % Number of Samples match the one of the wanted PSD
|
||||||
|
T0 = N/Fs; % Signal Duration [s]
|
||||||
|
df = 1/T0; % Frequency resolution of the DFT [Hz]
|
||||||
|
% Also equal to (dist_f.f(2)-dist_f.f(1))
|
||||||
|
t = linspace(0, T0, N+1)'; % Time Vector [s]
|
||||||
|
Ts = 1/Fs; % Sampling Time [s]
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Ground Motion
|
||||||
|
#+begin_src matlab
|
||||||
|
phi = dist_f.psd_gm;
|
||||||
|
C = zeros(N/2,1);
|
||||||
|
for i = 1:N/2
|
||||||
|
C(i) = sqrt(phi(i)*df);
|
||||||
|
end
|
||||||
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||||
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||||
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||||
|
u = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
|
||||||
|
% Dwx = struct('time', t, 'signals', struct('values', u));
|
||||||
|
Dwx = u;
|
||||||
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||||
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||||
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||||
|
u = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
|
||||||
|
Dwy = u;
|
||||||
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||||
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||||
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||||
|
u = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
|
||||||
|
Dwz = u;
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Translation Stage - X direction
|
||||||
|
#+begin_src matlab
|
||||||
|
phi = dist_f.psd_ty; % TODO - we take here the vertical direction which is wrong but approximate
|
||||||
|
C = zeros(N/2,1);
|
||||||
|
for i = 1:N/2
|
||||||
|
C(i) = sqrt(phi(i)*df);
|
||||||
|
end
|
||||||
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||||
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||||
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||||
|
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty x [N]
|
||||||
|
Fty_x = u;
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Translation Stage - Z direction
|
||||||
|
#+begin_src matlab
|
||||||
|
phi = dist_f.psd_ty;
|
||||||
|
C = zeros(N/2,1);
|
||||||
|
for i = 1:N/2
|
||||||
|
C(i) = sqrt(phi(i)*df);
|
||||||
|
end
|
||||||
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||||
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||||
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||||
|
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty z [N]
|
||||||
|
Fty_z = u;
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Spindle - Z direction
|
||||||
|
#+begin_src matlab
|
||||||
|
phi = dist_f.psd_rz;
|
||||||
|
C = zeros(N/2,1);
|
||||||
|
for i = 1:N/2
|
||||||
|
C(i) = sqrt(phi(i)*df);
|
||||||
|
end
|
||||||
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||||
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||||
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||||
|
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz z [N]
|
||||||
|
Frz_z = u;
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Direct Forces
|
||||||
|
#+begin_src matlab
|
||||||
|
u = zeros(length(t), 6);
|
||||||
|
Fd = u;
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Set initial value to zero
|
||||||
|
#+begin_src matlab
|
||||||
|
Dwx = Dwx - Dwx(1);
|
||||||
|
Dwy = Dwy - Dwy(1);
|
||||||
|
Dwz = Dwz - Dwz(1);
|
||||||
|
Fty_x = Fty_x - Fty_x(1);
|
||||||
|
Fty_z = Fty_z - Fty_z(1);
|
||||||
|
Frz_z = Frz_z - Frz_z(1);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Save
|
||||||
|
#+begin_src matlab
|
||||||
|
save('./mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_z', 'Fd', 'Ts', 't');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
* Initialize Elements
|
* Initialize Elements
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:ID: a0819dea-8d7a-4d55-b961-2b2ca2312344
|
:ID: a0819dea-8d7a-4d55-b961-2b2ca2312344
|
||||||
|
Loading…
Reference in New Issue
Block a user