Update Analysis

This commit is contained in:
Thomas Dehaeze 2019-10-25 12:33:08 +02:00
parent ff8df3a9d0
commit 9e41241e45
34 changed files with 1636 additions and 361 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

BIN
figs/uniaxial-plant.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

BIN
figs/uniaxial_dvf_plant.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

BIN
figs/uniaxial_iff_plant.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

BIN
figs/uniaxial_rmc_plant.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 163 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 151 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 134 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 123 KiB

View File

@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2019-10-24 jeu. 17:44 -->
<!-- 2019-10-25 ven. 12:32 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Simscape Uniaxial Model</title>
@ -246,6 +246,28 @@ for the JavaScript code in this tag.
}
/*]]>*///-->
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
displayAlign: "center",
displayIndent: "0em",
"HTML-CSS": { scale: 100,
linebreaks: { automatic: "false" },
webFont: "TeX"
},
SVG: {scale: 100,
linebreaks: { automatic: "false" },
font: "TeX"},
NativeMML: {scale: 100},
TeX: { equationNumbers: {autoNumber: "AMS"},
MultLineWidth: "85%",
TagSide: "right",
TagIndent: ".8em"
}
});
</script>
<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
</head>
<body>
<div id="org-div-home-and-up">
@ -258,51 +280,48 @@ for the JavaScript code in this tag.
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#orge60b193">1. Undamped System</a>
<li><a href="#orgd9a890c">1. Simscape Model</a></li>
<li><a href="#orgeafc497">2. Undamped System</a>
<ul>
<li><a href="#org46cb925">1.1. Init</a></li>
<li><a href="#orgbaff26c">1.2. Identification</a></li>
<li><a href="#orgf051d6b">1.3. Sensitivity to Disturbances</a></li>
<li><a href="#org809a04d">1.4. Plant</a></li>
<li><a href="#orge7de64d">1.5. Save</a></li>
<li><a href="#org631c716">2.1. Init</a></li>
<li><a href="#orgbbef650">2.2. Identification</a></li>
<li><a href="#orgb5102fd">2.3. Sensitivity to Disturbances</a></li>
<li><a href="#orgafe8970">2.4. Plant</a></li>
</ul>
</li>
<li><a href="#org0e4b7a2">2. Integral Force Feedback</a>
<li><a href="#orgeab4870">3. Integral Force Feedback</a>
<ul>
<li><a href="#orge7eac97">2.1. Control Design</a></li>
<li><a href="#org1da475f">2.2. Identification</a></li>
<li><a href="#orgba751b8">2.3. Sensitivity to Disturbance</a></li>
<li><a href="#org215411f">2.4. Damped Plant</a></li>
<li><a href="#org14fe313">2.5. Save</a></li>
<li><a href="#org00d3320">2.6. Conclusion</a></li>
<li><a href="#org6cf62a2">3.1. Control Design</a></li>
<li><a href="#orgf9a5f33">3.2. Identification</a></li>
<li><a href="#org7a80859">3.3. Sensitivity to Disturbance</a></li>
<li><a href="#org7bab9e9">3.4. Damped Plant</a></li>
<li><a href="#orgaac01c0">3.5. Conclusion</a></li>
</ul>
</li>
<li><a href="#org6ef0786">3. Relative Motion Control</a>
<li><a href="#org8d9b463">4. Relative Motion Control</a>
<ul>
<li><a href="#orgdcdfe4c">3.1. Control Design</a></li>
<li><a href="#orgc768160">3.2. Identification</a></li>
<li><a href="#org340b3bb">3.3. Sensitivity to Disturbance</a></li>
<li><a href="#org67127eb">3.4. Damped Plant</a></li>
<li><a href="#org21a13ba">3.5. Save</a></li>
<li><a href="#org6394f36">3.6. Conclusion</a></li>
<li><a href="#orgbf2540a">4.1. Control Design</a></li>
<li><a href="#org1d106d7">4.2. Identification</a></li>
<li><a href="#orgeb7d680">4.3. Sensitivity to Disturbance</a></li>
<li><a href="#org573eda0">4.4. Damped Plant</a></li>
<li><a href="#org02ca488">4.5. Conclusion</a></li>
</ul>
</li>
<li><a href="#org273e223">4. Direct Velocity Feedback</a>
<li><a href="#org57948ea">5. Direct Velocity Feedback</a>
<ul>
<li><a href="#org254f765">4.1. Control Design</a></li>
<li><a href="#org3f4f45f">4.2. Identification</a></li>
<li><a href="#org580de8a">4.3. Sensitivity to Disturbance</a></li>
<li><a href="#org5e7c1c3">4.4. Damped Plant</a></li>
<li><a href="#org0c0adf6">4.5. Save</a></li>
<li><a href="#orgbbb2968">4.6. Conclusion</a></li>
<li><a href="#org4b4d061">5.1. Control Design</a></li>
<li><a href="#orgd4f4973">5.2. Identification</a></li>
<li><a href="#org6cfeae5">5.3. Sensitivity to Disturbance</a></li>
<li><a href="#org89e0408">5.4. Damped Plant</a></li>
<li><a href="#orgc27bce5">5.5. Conclusion</a></li>
</ul>
</li>
<li><a href="#org9720eac">5. Comparison of Active Damping Techniques</a>
<li><a href="#org6dd07d9">6. Comparison of Active Damping Techniques</a>
<ul>
<li><a href="#org04bc1e0">5.1. Load the plants</a></li>
<li><a href="#orga979580">5.2. Sensitivity to Disturbance</a></li>
<li><a href="#orgc4c2c73">5.3. Damped Plant</a></li>
<li><a href="#org1c2b3da">5.4. Conclusion</a></li>
<li><a href="#orgd62929a">6.1. Load the plants</a></li>
<li><a href="#orgbd35b93">6.2. Sensitivity to Disturbance</a></li>
<li><a href="#org72ab5fd">6.3. Damped Plant</a></li>
<li><a href="#org2c43078">6.4. Conclusion</a></li>
</ul>
</li>
</ul>
@ -317,52 +336,102 @@ The idea is to use the same model as the full Simscape Model but to restrict the
This is done in order to more easily study the system and evaluate control techniques.
</p>
<div id="outline-container-orge60b193" class="outline-2">
<h2 id="orge60b193"><span class="section-number-2">1</span> Undamped System</h2>
<div id="outline-container-orgd9a890c" class="outline-2">
<h2 id="orgd9a890c"><span class="section-number-2">1</span> Simscape Model</h2>
<div class="outline-text-2" id="text-1">
<p>
A schematic of the uniaxial model used for simulations is represented in figure <a href="#org9234e2b">1</a>.
</p>
<p>
The perturbations \(w\) are:
</p>
<ul class="org-ul">
<li>\(F_s\): direct forces applied to the sample such as inertia forces and cable forces</li>
<li>\(F_{rz}\): parasitic forces due to the rotation of the spindle</li>
<li>\(F_{ty}\): parasitic forces due to scans with the translation stage</li>
<li>\(D_w\): ground motion</li>
</ul>
<p>
The quantity to \(z\) to control is:
</p>
<ul class="org-ul">
<li>\(D\): the position of the sample with respect to the granite</li>
</ul>
<p>
The measured quantities \(v\) are:
</p>
<ul class="org-ul">
<li>\(D\): the position of the sample with respect to the granite</li>
</ul>
<p>
We study the use of an additional sensor:
</p>
<ul class="org-ul">
<li>\(F_n\): a force sensor located in the nano-hexapod</li>
<li>\(v_n\): an absolute velocity sensor located on the top platform of the nano-hexapod</li>
<li>\(d_r\): a relative motion sensor located in the nano-hexapod</li>
</ul>
<p>
The control signal \(u\) is:
</p>
<ul class="org-ul">
<li>\(F\) the force applied by the nano-hexapod actuator</li>
</ul>
<div id="org9234e2b" class="figure">
<p><img src="figs/uniaxial-model-nass-flexible.png" alt="uniaxial-model-nass-flexible.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Schematic of the uniaxial model used</p>
</div>
<div id="outline-container-org46cb925" class="outline-3">
<h3 id="org46cb925"><span class="section-number-3">1.1</span> Init</h3>
<div class="outline-text-3" id="text-1-1">
<p>
Few active damping techniques will be compared in order to decide which sensor is to be included in the system.
Schematics of the active damping techniques are displayed in figure <a href="#org49f5486">2</a>.
</p>
<div id="org49f5486" class="figure">
<p><img src="figs/uniaxial-model-nass-flexible-active-damping.png" alt="uniaxial-model-nass-flexible-active-damping.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Comparison of used active damping techniques</p>
</div>
</div>
</div>
<div id="outline-container-orgeafc497" class="outline-2">
<h2 id="orgeafc497"><span class="section-number-2">2</span> Undamped System</h2>
<div class="outline-text-2" id="text-2">
<p>
Let's start by study the undamped system.
</p>
</div>
<div id="outline-container-org631c716" class="outline-3">
<h3 id="org631c716"><span class="section-number-3">2.1</span> Init</h3>
<div class="outline-text-3" id="text-2-1">
<p>
We initialize all the stages with the default parameters.
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeGround<span class="org-rainbow-delimiters-depth-1">()</span>;
initializeGranite<span class="org-rainbow-delimiters-depth-1">()</span>;
initializeTy<span class="org-rainbow-delimiters-depth-1">()</span>;
initializeRy<span class="org-rainbow-delimiters-depth-1">()</span>;
initializeRz<span class="org-rainbow-delimiters-depth-1">()</span>;
initializeMicroHexapod<span class="org-rainbow-delimiters-depth-1">()</span>;
initializeAxisc<span class="org-rainbow-delimiters-depth-1">()</span>;
initializeMirror<span class="org-rainbow-delimiters-depth-1">()</span>;
initializeNanoHexapod<span class="org-rainbow-delimiters-depth-1">(</span>struct<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
initializeSample<span class="org-rainbow-delimiters-depth-1">(</span>struct<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-string">'mass'</span>, <span class="org-highlight-numbers-number">50</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<p>
All the controllers are set to 0.
All the controllers are set to 0 (Open Loop).
</p>
<div class="org-src-container">
<pre class="src src-matlab">K = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>;
save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
K_iff = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>;
save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
K_rmc = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>;
save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
K_dvf = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>;
save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
</div>
</div>
<div id="outline-container-orgbaff26c" class="outline-3">
<h3 id="orgbaff26c"><span class="section-number-3">1.2</span> Identification</h3>
<div class="outline-text-3" id="text-1-2">
<div id="outline-container-orgbbef650" class="outline-3">
<h3 id="orgbbef650"><span class="section-number-3">2.2</span> Identification</h3>
<div class="outline-text-3" id="text-2-2">
<p>
We identify the dynamics of the system.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
@ -373,6 +442,9 @@ mdl = <span class="org-string">'sim_nano_station_uniaxial'</span>;
</pre>
</div>
<p>
The inputs and outputs are defined below and corresponds to the name of simulink blocks.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dw'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Ground Motion</span>
@ -389,6 +461,9 @@ io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highligh
</pre>
</div>
<p>
Finally, we use the <code>linearize</code> Matlab function to extract a state space model from the simscape model.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize<span class="org-rainbow-delimiters-depth-1">(</span>mdl, io, options<span class="org-rainbow-delimiters-depth-1">)</span>;
@ -404,62 +479,79 @@ G.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class=
<span class="org-string">'Vlm'</span><span class="org-rainbow-delimiters-depth-1">}</span>; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-orgf051d6b" class="outline-3">
<h3 id="orgf051d6b"><span class="section-number-3">1.3</span> Sensitivity to Disturbances</h3>
<div class="outline-text-3" id="text-1-3">
<div id="org4bc7134" class="figure">
<p><img src="figs/uniaxial-sensitivity-disturbances.png" alt="uniaxial-sensitivity-disturbances.png" />
<p>
Finally, we save the identified system dynamics for further analysis.
</p>
<p><span class="figure-number">Figure 1: </span>Sensitivity to disturbances (<a href="./figs/uniaxial-sensitivity-disturbances.png">png</a>, <a href="./figs/uniaxial-sensitivity-disturbances.pdf">pdf</a>)</p>
</div>
<div id="orga192bc9" class="figure">
<p><img src="figs/uniaxial-sensitivity-force-dist.png" alt="uniaxial-sensitivity-force-dist.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Sensitivity to disturbances (<a href="./figs/uniaxial-sensitivity-force-dist.png">png</a>, <a href="./figs/uniaxial-sensitivity-force-dist.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org809a04d" class="outline-3">
<h3 id="org809a04d"><span class="section-number-3">1.4</span> Plant</h3>
<div class="outline-text-3" id="text-1-4">
<div id="org1f07ded" class="figure">
<p><img src="figs/uniaxial-plant.png" alt="uniaxial-plant.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Bode plot of the Plant (<a href="./figs/uniaxial-plant.png">png</a>, <a href="./figs/uniaxial-plant.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orge7de64d" class="outline-3">
<h3 id="orge7de64d"><span class="section-number-3">1.5</span> Save</h3>
<div class="outline-text-3" id="text-1-5">
<div class="org-src-container">
<pre class="src src-matlab">save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
</div>
</div>
<div id="outline-container-orgb5102fd" class="outline-3">
<h3 id="orgb5102fd"><span class="section-number-3">2.3</span> Sensitivity to Disturbances</h3>
<div class="outline-text-3" id="text-2-3">
<p>
We show several plots representing the sensitivity to disturbances:
</p>
<ul class="org-ul">
<li>in figure <a href="#orge3abf0f">3</a> the transfer functions from ground motion \(D_w\) to the sample position \(D\) and the transfer function from direct force on the sample \(F_s\) to the sample position \(D\) are shown</li>
<li>in figure <a href="#org25d95cb">4</a>, it is the effect of parasitic forces of the positioning stages (\(F_{ty}\) and \(F_{rz}\)) on the position \(D\) of the sample that are shown</li>
</ul>
<div id="orge3abf0f" class="figure">
<p><img src="figs/uniaxial-sensitivity-disturbances.png" alt="uniaxial-sensitivity-disturbances.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Sensitivity to disturbances (<a href="./figs/uniaxial-sensitivity-disturbances.png">png</a>, <a href="./figs/uniaxial-sensitivity-disturbances.pdf">pdf</a>)</p>
</div>
<div id="outline-container-org0e4b7a2" class="outline-2">
<h2 id="org0e4b7a2"><span class="section-number-2">2</span> Integral Force Feedback</h2>
<div class="outline-text-2" id="text-2">
<p>
<a id="org8efbd63"></a>
<div id="org25d95cb" class="figure">
<p><img src="figs/uniaxial-sensitivity-force-dist.png" alt="uniaxial-sensitivity-force-dist.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Sensitivity to disturbances (<a href="./figs/uniaxial-sensitivity-force-dist.png">png</a>, <a href="./figs/uniaxial-sensitivity-force-dist.pdf">pdf</a>)</p>
</div>
<div id="outline-container-orge7eac97" class="outline-3">
<h3 id="orge7eac97"><span class="section-number-3">2.1</span> Control Design</h3>
<div class="outline-text-3" id="text-2-1">
</div>
</div>
<div id="outline-container-orgafe8970" class="outline-3">
<h3 id="orgafe8970"><span class="section-number-3">2.4</span> Plant</h3>
<div class="outline-text-3" id="text-2-4">
<p>
The transfer function from the force \(F\) applied by the nano-hexapod to the position of the sample \(D\) is shown in figure <a href="#org62d1d12">5</a>.
It corresponds to the plant to control.
</p>
<div id="org62d1d12" class="figure">
<p><img src="figs/uniaxial-plant.png" alt="uniaxial-plant.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Bode plot of the Plant (<a href="./figs/uniaxial-plant.png">png</a>, <a href="./figs/uniaxial-plant.pdf">pdf</a>)</p>
</div>
</div>
</div>
</div>
<div id="outline-container-orgeab4870" class="outline-2">
<h2 id="orgeab4870"><span class="section-number-2">3</span> Integral Force Feedback</h2>
<div class="outline-text-2" id="text-3">
<p>
<a id="org04c8f6e"></a>
</p>
<div id="orge50f87e" class="figure">
<p><img src="figs/uniaxial-model-nass-flexible-iff.png" alt="uniaxial-model-nass-flexible-iff.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Uniaxial IFF Control Schematic</p>
</div>
</div>
<div id="outline-container-org6cf62a2" class="outline-3">
<h3 id="org6cf62a2"><span class="section-number-3">3.1</span> Control Design</h3>
<div class="outline-text-3" id="text-3-1">
<div class="org-src-container">
<pre class="src src-matlab">load<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
@ -470,10 +562,10 @@ Let's look at the transfer function from actuator forces in the nano-hexapod to
</p>
<div id="org07202e9" class="figure">
<div id="org26ea3c1" class="figure">
<p><img src="figs/uniaxial_iff_plant.png" alt="uniaxial_iff_plant.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Transfer function from forces applied in the legs to force sensor (<a href="./figs/uniaxial_iff_plant.png">png</a>, <a href="./figs/uniaxial_iff_plant.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 7: </span>Transfer function from forces applied in the legs to force sensor (<a href="./figs/uniaxial_iff_plant.png">png</a>, <a href="./figs/uniaxial_iff_plant.pdf">pdf</a>)</p>
</div>
<p>
@ -485,17 +577,17 @@ The controller for each pair of actuator/sensor is:
</div>
<div id="org4918c15" class="figure">
<div id="org27d1bb0" class="figure">
<p><img src="figs/uniaxial_iff_open_loop.png" alt="uniaxial_iff_open_loop.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/uniaxial_iff_open_loop.png">png</a>, <a href="./figs/uniaxial_iff_open_loop.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 8: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/uniaxial_iff_open_loop.png">png</a>, <a href="./figs/uniaxial_iff_open_loop.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org1da475f" class="outline-3">
<h3 id="org1da475f"><span class="section-number-3">2.2</span> Identification</h3>
<div class="outline-text-3" id="text-2-2">
<div id="outline-container-orgf9a5f33" class="outline-3">
<h3 id="orgf9a5f33"><span class="section-number-3">3.2</span> Identification</h3>
<div class="outline-text-3" id="text-3-2">
<p>
Let's initialize the system prior to identification.
</p>
@ -569,43 +661,7 @@ G_iff.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span cl
<span class="org-string">'Vlm'</span><span class="org-rainbow-delimiters-depth-1">}</span>; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-orgba751b8" class="outline-3">
<h3 id="orgba751b8"><span class="section-number-3">2.3</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-2-3">
<div id="org433ca31" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_iff.png" alt="uniaxial_sensitivity_dist_iff.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Sensitivity to disturbance once the IFF controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_iff.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_iff.pdf">pdf</a>)</p>
</div>
<div id="org129b2c0" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_stages_iff.png" alt="uniaxial_sensitivity_dist_stages_iff.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Sensitivity to force disturbances in various stages when IFF is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_iff.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_iff.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org215411f" class="outline-3">
<h3 id="org215411f"><span class="section-number-3">2.4</span> Damped Plant</h3>
<div class="outline-text-3" id="text-2-4">
<div id="org9cbc1b3" class="figure">
<p><img src="figs/uniaxial_plant_iff_damped.png" alt="uniaxial_plant_iff_damped.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Damped Plant after IFF is applied (<a href="./figs/uniaxial_plant_iff_damped.png">png</a>, <a href="./figs/uniaxial_plant_iff_damped.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org14fe313" class="outline-3">
<h3 id="org14fe313"><span class="section-number-3">2.5</span> Save</h3>
<div class="outline-text-3" id="text-2-5">
<div class="org-src-container">
<pre class="src src-matlab">save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
@ -613,9 +669,40 @@ G_iff.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span cl
</div>
</div>
<div id="outline-container-org00d3320" class="outline-3">
<h3 id="org00d3320"><span class="section-number-3">2.6</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-6">
<div id="outline-container-org7a80859" class="outline-3">
<h3 id="org7a80859"><span class="section-number-3">3.3</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-3-3">
<div id="orgca12220" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_iff.png" alt="uniaxial_sensitivity_dist_iff.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Sensitivity to disturbance once the IFF controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_iff.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_iff.pdf">pdf</a>)</p>
</div>
<div id="org19c25c8" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_stages_iff.png" alt="uniaxial_sensitivity_dist_stages_iff.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Sensitivity to force disturbances in various stages when IFF is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_iff.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_iff.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org7bab9e9" class="outline-3">
<h3 id="org7bab9e9"><span class="section-number-3">3.4</span> Damped Plant</h3>
<div class="outline-text-3" id="text-3-4">
<div id="org60ea1f1" class="figure">
<p><img src="figs/uniaxial_plant_iff_damped.png" alt="uniaxial_plant_iff_damped.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Damped Plant after IFF is applied (<a href="./figs/uniaxial_plant_iff_damped.png">png</a>, <a href="./figs/uniaxial_plant_iff_damped.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orgaac01c0" class="outline-3">
<h3 id="orgaac01c0"><span class="section-number-3">3.5</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-5">
<div class="important">
<p>
Integral Force Feedback:
@ -626,19 +713,26 @@ Integral Force Feedback:
</div>
</div>
<div id="outline-container-org6ef0786" class="outline-2">
<h2 id="org6ef0786"><span class="section-number-2">3</span> Relative Motion Control</h2>
<div class="outline-text-2" id="text-3">
<div id="outline-container-org8d9b463" class="outline-2">
<h2 id="org8d9b463"><span class="section-number-2">4</span> Relative Motion Control</h2>
<div class="outline-text-2" id="text-4">
<p>
<a id="orgd075f22"></a>
<a id="orgdc4ae31"></a>
</p>
<p>
In the Relative Motion Control (RMC), a derivative feedback is applied between the measured actuator displacement to the actuator force input.
</p>
<div id="org46f85ef" class="figure">
<p><img src="figs/uniaxial-model-nass-flexible-rmc.png" alt="uniaxial-model-nass-flexible-rmc.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Uniaxial RMC Control Schematic</p>
</div>
<div id="outline-container-orgdcdfe4c" class="outline-3">
<h3 id="orgdcdfe4c"><span class="section-number-3">3.1</span> Control Design</h3>
<div class="outline-text-3" id="text-3-1">
</div>
<div id="outline-container-orgbf2540a" class="outline-3">
<h3 id="orgbf2540a"><span class="section-number-3">4.1</span> Control Design</h3>
<div class="outline-text-3" id="text-4-1">
<div class="org-src-container">
<pre class="src src-matlab">load<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
@ -649,10 +743,10 @@ Let's look at the transfer function from actuator forces in the nano-hexapod to
</p>
<div id="orgd4c9455" class="figure">
<div id="orgc47e343" class="figure">
<p><img src="figs/uniaxial_rmc_plant.png" alt="uniaxial_rmc_plant.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Transfer function from forces applied in the legs to leg displacement sensor (<a href="./figs/uniaxial_rmc_plant.png">png</a>, <a href="./figs/uniaxial_rmc_plant.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 13: </span>Transfer function from forces applied in the legs to leg displacement sensor (<a href="./figs/uniaxial_rmc_plant.png">png</a>, <a href="./figs/uniaxial_rmc_plant.pdf">pdf</a>)</p>
</div>
<p>
@ -665,17 +759,17 @@ A Low pass Filter is added to make the controller transfer function proper.
</div>
<div id="orgde55454" class="figure">
<div id="org9c157b6" class="figure">
<p><img src="figs/uniaxial_rmc_open_loop.png" alt="uniaxial_rmc_open_loop.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/uniaxial_rmc_open_loop.png">png</a>, <a href="./figs/uniaxial_rmc_open_loop.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 14: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/uniaxial_rmc_open_loop.png">png</a>, <a href="./figs/uniaxial_rmc_open_loop.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orgc768160" class="outline-3">
<h3 id="orgc768160"><span class="section-number-3">3.2</span> Identification</h3>
<div class="outline-text-3" id="text-3-2">
<div id="outline-container-org1d106d7" class="outline-3">
<h3 id="org1d106d7"><span class="section-number-3">4.2</span> Identification</h3>
<div class="outline-text-3" id="text-4-2">
<p>
Let's initialize the system prior to identification.
</p>
@ -749,44 +843,7 @@ G_rmc.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span cl
<span class="org-string">'Vlm'</span><span class="org-rainbow-delimiters-depth-1">}</span>; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-org340b3bb" class="outline-3">
<h3 id="org340b3bb"><span class="section-number-3">3.3</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-3-3">
<div id="orgc8a11d1" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_rmc.png" alt="uniaxial_sensitivity_dist_rmc.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Sensitivity to disturbance once the RMC controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_rmc.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_rmc.pdf">pdf</a>)</p>
</div>
<div id="org919dd9d" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_stages_rmc.png" alt="uniaxial_sensitivity_dist_stages_rmc.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Sensitivity to force disturbances in various stages when RMC is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_rmc.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_rmc.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org67127eb" class="outline-3">
<h3 id="org67127eb"><span class="section-number-3">3.4</span> Damped Plant</h3>
<div class="outline-text-3" id="text-3-4">
<div id="org8490305" class="figure">
<p><img src="figs/uniaxial_plant_rmc_damped.png" alt="uniaxial_plant_rmc_damped.png" />
</p>
<p><span class="figure-number">Figure 13: </span>Damped Plant after RMC is applied (<a href="./figs/uniaxial_plant_rmc_damped.png">png</a>, <a href="./figs/uniaxial_plant_rmc_damped.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org21a13ba" class="outline-3">
<h3 id="org21a13ba"><span class="section-number-3">3.5</span> Save</h3>
<div class="outline-text-3" id="text-3-5">
<div class="org-src-container">
<pre class="src src-matlab">save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G_rmc'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
@ -794,9 +851,41 @@ G_rmc.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span cl
</div>
</div>
<div id="outline-container-org6394f36" class="outline-3">
<h3 id="org6394f36"><span class="section-number-3">3.6</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-6">
<div id="outline-container-orgeb7d680" class="outline-3">
<h3 id="orgeb7d680"><span class="section-number-3">4.3</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-4-3">
<div id="org7a8bd68" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_rmc.png" alt="uniaxial_sensitivity_dist_rmc.png" />
</p>
<p><span class="figure-number">Figure 15: </span>Sensitivity to disturbance once the RMC controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_rmc.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_rmc.pdf">pdf</a>)</p>
</div>
<div id="orgb8fed93" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_stages_rmc.png" alt="uniaxial_sensitivity_dist_stages_rmc.png" />
</p>
<p><span class="figure-number">Figure 16: </span>Sensitivity to force disturbances in various stages when RMC is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_rmc.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_rmc.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org573eda0" class="outline-3">
<h3 id="org573eda0"><span class="section-number-3">4.4</span> Damped Plant</h3>
<div class="outline-text-3" id="text-4-4">
<div id="org1f8e935" class="figure">
<p><img src="figs/uniaxial_plant_rmc_damped.png" alt="uniaxial_plant_rmc_damped.png" />
</p>
<p><span class="figure-number">Figure 17: </span>Damped Plant after RMC is applied (<a href="./figs/uniaxial_plant_rmc_damped.png">png</a>, <a href="./figs/uniaxial_plant_rmc_damped.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org02ca488" class="outline-3">
<h3 id="org02ca488"><span class="section-number-3">4.5</span> Conclusion</h3>
<div class="outline-text-3" id="text-4-5">
<div class="important">
<p>
Relative Motion Control:
@ -807,29 +896,36 @@ Relative Motion Control:
</div>
</div>
<div id="outline-container-org273e223" class="outline-2">
<h2 id="org273e223"><span class="section-number-2">4</span> Direct Velocity Feedback</h2>
<div class="outline-text-2" id="text-4">
<div id="outline-container-org57948ea" class="outline-2">
<h2 id="org57948ea"><span class="section-number-2">5</span> Direct Velocity Feedback</h2>
<div class="outline-text-2" id="text-5">
<p>
<a id="org5a18f77"></a>
<a id="orgdd11541"></a>
</p>
<p>
In the Relative Motion Control (RMC), a feedback is applied between the measured velocity of the platform to the actuator force input.
</p>
<div id="org0fcd7e7" class="figure">
<p><img src="figs/uniaxial-model-nass-flexible-dvf.png" alt="uniaxial-model-nass-flexible-dvf.png" />
</p>
<p><span class="figure-number">Figure 18: </span>Uniaxial DVF Control Schematic</p>
</div>
<div id="outline-container-org254f765" class="outline-3">
<h3 id="org254f765"><span class="section-number-3">4.1</span> Control Design</h3>
<div class="outline-text-3" id="text-4-1">
</div>
<div id="outline-container-org4b4d061" class="outline-3">
<h3 id="org4b4d061"><span class="section-number-3">5.1</span> Control Design</h3>
<div class="outline-text-3" id="text-5-1">
<div class="org-src-container">
<pre class="src src-matlab">load<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<div id="org505b157" class="figure">
<div id="orgbf7145f" class="figure">
<p><img src="figs/uniaxial_dvf_plant.png" alt="uniaxial_dvf_plant.png" />
</p>
<p><span class="figure-number">Figure 14: </span>Transfer function from forces applied in the legs to leg velocity sensor (<a href="./figs/uniaxial_dvf_plant.png">png</a>, <a href="./figs/uniaxial_dvf_plant.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 19: </span>Transfer function from forces applied in the legs to leg velocity sensor (<a href="./figs/uniaxial_dvf_plant.png">png</a>, <a href="./figs/uniaxial_dvf_plant.pdf">pdf</a>)</p>
</div>
<div class="org-src-container">
@ -838,17 +934,17 @@ In the Relative Motion Control (RMC), a feedback is applied between the measured
</div>
<div id="org3ef68bd" class="figure">
<div id="org1b6adf4" class="figure">
<p><img src="figs/uniaxial_dvf_loop_gain.png" alt="uniaxial_dvf_loop_gain.png" />
</p>
<p><span class="figure-number">Figure 15: </span>Transfer function from forces applied in the legs to leg velocity sensor (<a href="./figs/uniaxial_dvf_loop_gain.png">png</a>, <a href="./figs/uniaxial_dvf_loop_gain.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 20: </span>Transfer function from forces applied in the legs to leg velocity sensor (<a href="./figs/uniaxial_dvf_loop_gain.png">png</a>, <a href="./figs/uniaxial_dvf_loop_gain.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org3f4f45f" class="outline-3">
<h3 id="org3f4f45f"><span class="section-number-3">4.2</span> Identification</h3>
<div class="outline-text-3" id="text-4-2">
<div id="outline-container-orgd4f4973" class="outline-3">
<h3 id="orgd4f4973"><span class="section-number-3">5.2</span> Identification</h3>
<div class="outline-text-3" id="text-5-2">
<p>
Let's initialize the system prior to identification.
</p>
@ -922,43 +1018,7 @@ G_dvf.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span cl
<span class="org-string">'Vlm'</span><span class="org-rainbow-delimiters-depth-1">}</span>; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-org580de8a" class="outline-3">
<h3 id="org580de8a"><span class="section-number-3">4.3</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-4-3">
<div id="orged4b1f3" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_dvf.png" alt="uniaxial_sensitivity_dist_dvf.png" />
</p>
<p><span class="figure-number">Figure 16: </span>Sensitivity to disturbance once the DVF controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_dvf.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_dvf.pdf">pdf</a>)</p>
</div>
<div id="org151dc83" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_stages_dvf.png" alt="uniaxial_sensitivity_dist_stages_dvf.png" />
</p>
<p><span class="figure-number">Figure 17: </span>Sensitivity to force disturbances in various stages when DVF is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_dvf.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_dvf.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org5e7c1c3" class="outline-3">
<h3 id="org5e7c1c3"><span class="section-number-3">4.4</span> Damped Plant</h3>
<div class="outline-text-3" id="text-4-4">
<div id="orgfb4eb8b" class="figure">
<p><img src="figs/uniaxial_plant_dvf_damped.png" alt="uniaxial_plant_dvf_damped.png" />
</p>
<p><span class="figure-number">Figure 18: </span>Damped Plant after DVF is applied (<a href="./figs/uniaxial_plant_dvf_damped.png">png</a>, <a href="./figs/uniaxial_plant_dvf_damped.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org0c0adf6" class="outline-3">
<h3 id="org0c0adf6"><span class="section-number-3">4.5</span> Save</h3>
<div class="outline-text-3" id="text-4-5">
<div class="org-src-container">
<pre class="src src-matlab">save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G_dvf'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
@ -966,9 +1026,40 @@ G_dvf.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span cl
</div>
</div>
<div id="outline-container-orgbbb2968" class="outline-3">
<h3 id="orgbbb2968"><span class="section-number-3">4.6</span> Conclusion</h3>
<div class="outline-text-3" id="text-4-6">
<div id="outline-container-org6cfeae5" class="outline-3">
<h3 id="org6cfeae5"><span class="section-number-3">5.3</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-5-3">
<div id="org6fb6e94" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_dvf.png" alt="uniaxial_sensitivity_dist_dvf.png" />
</p>
<p><span class="figure-number">Figure 21: </span>Sensitivity to disturbance once the DVF controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_dvf.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_dvf.pdf">pdf</a>)</p>
</div>
<div id="org6f13385" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_stages_dvf.png" alt="uniaxial_sensitivity_dist_stages_dvf.png" />
</p>
<p><span class="figure-number">Figure 22: </span>Sensitivity to force disturbances in various stages when DVF is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_dvf.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_dvf.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org89e0408" class="outline-3">
<h3 id="org89e0408"><span class="section-number-3">5.4</span> Damped Plant</h3>
<div class="outline-text-3" id="text-5-4">
<div id="org7051238" class="figure">
<p><img src="figs/uniaxial_plant_dvf_damped.png" alt="uniaxial_plant_dvf_damped.png" />
</p>
<p><span class="figure-number">Figure 23: </span>Damped Plant after DVF is applied (<a href="./figs/uniaxial_plant_dvf_damped.png">png</a>, <a href="./figs/uniaxial_plant_dvf_damped.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orgc27bce5" class="outline-3">
<h3 id="orgc27bce5"><span class="section-number-3">5.5</span> Conclusion</h3>
<div class="outline-text-3" id="text-5-5">
<div class="important">
<p>
Direct Velocity Feedback:
@ -978,16 +1069,16 @@ Direct Velocity Feedback:
</div>
</div>
</div>
<div id="outline-container-org9720eac" class="outline-2">
<h2 id="org9720eac"><span class="section-number-2">5</span> Comparison of Active Damping Techniques</h2>
<div class="outline-text-2" id="text-5">
<div id="outline-container-org6dd07d9" class="outline-2">
<h2 id="org6dd07d9"><span class="section-number-2">6</span> Comparison of Active Damping Techniques</h2>
<div class="outline-text-2" id="text-6">
<p>
<a id="org7404a5b"></a>
<a id="org5272a4c"></a>
</p>
</div>
<div id="outline-container-org04bc1e0" class="outline-3">
<h3 id="org04bc1e0"><span class="section-number-3">5.1</span> Load the plants</h3>
<div class="outline-text-3" id="text-5-1">
<div id="outline-container-orgd62929a" class="outline-3">
<h3 id="orgd62929a"><span class="section-number-3">6.1</span> Load the plants</h3>
<div class="outline-text-3" id="text-6-1">
<div class="org-src-container">
<pre class="src src-matlab">load<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'G_rmc'</span>, <span class="org-string">'G_dvf'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
@ -995,44 +1086,126 @@ Direct Velocity Feedback:
</div>
</div>
<div id="outline-container-orga979580" class="outline-3">
<h3 id="orga979580"><span class="section-number-3">5.2</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-5-2">
<div id="outline-container-orgbd35b93" class="outline-3">
<h3 id="orgbd35b93"><span class="section-number-3">6.2</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-6-2">
<div id="org076a7e7" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_comp.png" alt="uniaxial_sensitivity_dist_comp.png" />
<div id="org5eda09f" class="figure">
<p><img src="figs/uniaxial_sensitivity_ground_motion.png" alt="uniaxial_sensitivity_ground_motion.png" />
</p>
<p><span class="figure-number">Figure 19: </span>Sensitivity to disturbance - Comparison (<a href="./figs/uniaxial_sensitivity_dist_comp.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_comp.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 24: </span>Sensitivity to Ground Motion - Comparison (<a href="./figs/uniaxial_sensitivity_ground_motion.png">png</a>, <a href="./figs/uniaxial_sensitivity_ground_motion.pdf">pdf</a>)</p>
</div>
<div id="orgd0777da" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_stages_comp.png" alt="uniaxial_sensitivity_dist_stages_comp.png" />
<div id="org1fae0e7" class="figure">
<p><img src="figs/uniaxial_sensitivity_direct_force.png" alt="uniaxial_sensitivity_direct_force.png" />
</p>
<p><span class="figure-number">Figure 20: </span>Sensitivity to force disturbances - Comparison (<a href="./figs/uniaxial_sensitivity_dist_stages_comp.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_comp.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 25: </span>Sensitivity to disturbance - Comparison (<a href="./figs/uniaxial_sensitivity_direct_force.png">png</a>, <a href="./figs/uniaxial_sensitivity_direct_force.pdf">pdf</a>)</p>
</div>
<div id="orgb2bd39c" class="figure">
<p><img src="figs/uniaxial_sensitivity_fty.png" alt="uniaxial_sensitivity_fty.png" />
</p>
<p><span class="figure-number">Figure 26: </span>Sensitivity to force disturbances - Comparison (<a href="./figs/uniaxial_sensitivity_fty.png">png</a>, <a href="./figs/uniaxial_sensitivity_fty.pdf">pdf</a>)</p>
</div>
<div id="org1f00826" class="figure">
<p><img src="figs/uniaxial_sensitivity_frz.png" alt="uniaxial_sensitivity_frz.png" />
</p>
<p><span class="figure-number">Figure 27: </span>Sensitivity to force disturbances - Comparison (<a href="./figs/uniaxial_sensitivity_frz.png">png</a>, <a href="./figs/uniaxial_sensitivity_frz.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orgc4c2c73" class="outline-3">
<h3 id="orgc4c2c73"><span class="section-number-3">5.3</span> Damped Plant</h3>
<div class="outline-text-3" id="text-5-3">
<div id="outline-container-org72ab5fd" class="outline-3">
<h3 id="org72ab5fd"><span class="section-number-3">6.3</span> Damped Plant</h3>
<div class="outline-text-3" id="text-6-3">
<div id="orge2efd1a" class="figure">
<div id="org0296cfa" class="figure">
<p><img src="figs/uniaxial_plant_damped_comp.png" alt="uniaxial_plant_damped_comp.png" />
</p>
<p><span class="figure-number">Figure 21: </span>Damped Plant - Comparison (<a href="./figs/uniaxial_plant_damped_comp.png">png</a>, <a href="./figs/uniaxial_plant_damped_comp.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 28: </span>Damped Plant - Comparison (<a href="./figs/uniaxial_plant_damped_comp.png">png</a>, <a href="./figs/uniaxial_plant_damped_comp.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org1c2b3da" class="outline-3">
<h3 id="org1c2b3da"><span class="section-number-3">5.4</span> Conclusion</h3>
<div id="outline-container-org2c43078" class="outline-3">
<h3 id="org2c43078"><span class="section-number-3">6.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-6-4">
<table id="orga82a170" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 1:</span> Comparison of proposed active damping techniques</caption>
<colgroup>
<col class="org-left" />
<col class="org-left" />
<col class="org-left" />
<col class="org-left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">&#xa0;</th>
<th scope="col" class="org-left">IFF</th>
<th scope="col" class="org-left">RMC</th>
<th scope="col" class="org-left">DVF</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">Sensor Type</td>
<td class="org-left">Force sensor</td>
<td class="org-left">Relative Motion</td>
<td class="org-left">Inertial</td>
</tr>
<tr>
<td class="org-left">Guaranteed Stability</td>
<td class="org-left">+</td>
<td class="org-left">+</td>
<td class="org-left">-</td>
</tr>
<tr>
<td class="org-left">Sensitivity (\(D_w\))</td>
<td class="org-left">-</td>
<td class="org-left">+</td>
<td class="org-left">-</td>
</tr>
<tr>
<td class="org-left">Sensitivity (\(F_s\))</td>
<td class="org-left">- (at low freq)</td>
<td class="org-left">+</td>
<td class="org-left">+</td>
</tr>
<tr>
<td class="org-left">Sensitivity (\(F_{ty,rz}\))</td>
<td class="org-left">+</td>
<td class="org-left">-</td>
<td class="org-left">+</td>
</tr>
</tbody>
</table>
<div class="important">
<p>
The next step is to take into account the power spectral density of each disturbance.
</p>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2019-10-24 jeu. 17:44</p>
<p class="date">Created: 2019-10-25 ven. 12:32</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
</div>
</body>

File diff suppressed because it is too large Load Diff

Binary file not shown.