Continue analysis of optimal_stiffness
This commit is contained in:
parent
764b1292eb
commit
9c6d397fe4
BIN
mat/conf_log.mat
BIN
mat/conf_log.mat
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
mat/optimal_stiffness_micro_station_compliance.mat
Normal file
BIN
mat/optimal_stiffness_micro_station_compliance.mat
Normal file
Binary file not shown.
BIN
mat/stages.mat
BIN
mat/stages.mat
Binary file not shown.
Binary file not shown.
1242
matlab/optimal_stiffness.m
Normal file
1242
matlab/optimal_stiffness.m
Normal file
File diff suppressed because it is too large
Load Diff
@ -22,7 +22,7 @@
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
#+PROPERTY: header-args:matlab+ :tangle no
|
||||
#+PROPERTY: header-args:matlab+ :tangle ../matlab/optimal_stiffness.m
|
||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||||
|
||||
#+PROPERTY: header-args:shell :eval no-export
|
||||
@ -73,6 +73,7 @@ The overall goal is to design a nano-hexapod that will allow the highest possibl
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
load('mat/conf_simulink.mat');
|
||||
open('nass_model.slx')
|
||||
#+end_src
|
||||
|
||||
@ -89,20 +90,15 @@ We initialize all the stages with the default parameters.
|
||||
initializeMirror();
|
||||
#+end_src
|
||||
|
||||
The worst case scenario is a rotation speed of 60rpm with a payload mass of 1Kg.
|
||||
The worst case scenario is a rotation speed of 60rpm with a payload mass of 10Kg.
|
||||
#+begin_src matlab
|
||||
initializeSample('mass', 10);
|
||||
#+end_src
|
||||
|
||||
We don't include gravity nor disturbances in this model as it adds complexity to the simulations and does not alter the obtained dynamics.
|
||||
#+begin_src matlab
|
||||
initializeSimscapeConfiguration('gravity', false);
|
||||
initializeSimscapeConfiguration('gravity', true);
|
||||
initializeDisturbances('enable', false);
|
||||
#+end_src
|
||||
|
||||
We set the controller type to Open-Loop, and we do not need to log any signal.
|
||||
#+begin_src matlab
|
||||
initializeController('type', 'stabilizing');
|
||||
initializeLoggingConfiguration('log', 'none');
|
||||
#+end_src
|
||||
|
||||
@ -121,20 +117,22 @@ We set the controller type to Open-Loop, and we do not need to log any signal.
|
||||
** Identification when not rotating
|
||||
We set the range of stiffness that we want to use.
|
||||
#+begin_src matlab
|
||||
Ks = logspace(3,9,7)
|
||||
Ks = logspace(3,9,7); % [N/m]
|
||||
#+end_src
|
||||
|
||||
We don't move any stage and no controller is used.
|
||||
#+begin_src matlab
|
||||
initializeReferences();
|
||||
initializeController();
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
Gk_iff = {zeros(length(Ks))};
|
||||
Gk_dvf = {zeros(length(Ks))};
|
||||
Gk_err = {zeros(length(Ks))};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
for i = 1:length(Ks)
|
||||
initializeNanoHexapod('k', Ks(i));
|
||||
|
||||
@ -156,6 +154,7 @@ We set the range of stiffness that we want to use.
|
||||
#+end_src
|
||||
|
||||
** Identification when rotating at maximum speed
|
||||
We now set the reference path such that the Spindle is rotating at 60rpm and such that it is at the zero position at the time of the identification.
|
||||
#+begin_src matlab
|
||||
Rz_rpm = 60;
|
||||
|
||||
@ -168,17 +167,20 @@ We set the range of stiffness that we want to use.
|
||||
t_sim = Rz.time(i_end); % Simulation time before identification [s]
|
||||
#+end_src
|
||||
|
||||
We here use a decentralized controller that is used to stabilize the nano-hexapod until the identification is made.
|
||||
This controller virtually adds stiffness in each of the nano-hexapod leg.
|
||||
#+begin_src matlab
|
||||
k_sta = -1e8;
|
||||
initializeController('type', 'stabilizing');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
Gk_wz_iff = {zeros(length(Ks))};
|
||||
Gk_wz_dvf = {zeros(length(Ks))};
|
||||
Gk_wz_err = {zeros(length(Ks))};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
for i = 1:length(Ks)
|
||||
initializeNanoHexapod('k', Ks(i));
|
||||
|
||||
@ -199,13 +201,17 @@ We set the range of stiffness that we want to use.
|
||||
end
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
save('mat/optimal_stiffness_Gk_wz.mat', 'Ks', ...
|
||||
'Gk_iff', 'Gk_dvf', 'Gk_err', ...
|
||||
'Gk_wz_iff', 'Gk_wz_dvf', 'Gk_wz_err');
|
||||
#+end_src
|
||||
|
||||
** Change of dynamics
|
||||
** TODO Change of dynamics
|
||||
- [ ] problem of dynamics at low frequency
|
||||
Check if gravity is a problem
|
||||
Think of a before way to identify the dynamics
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
load('mat/optimal_stiffness_Gk_wz.mat');
|
||||
#+end_src
|
||||
@ -409,9 +415,337 @@ Comparison of the coupling from $F_x$ to $D_y$ when rotating at 60rpm to the dir
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
load('mat/conf_simulink.mat');
|
||||
open('nass_model.slx')
|
||||
#+end_src
|
||||
|
||||
** Identification of the micro-station compliance
|
||||
We initialize all the stages with the default parameters.
|
||||
#+begin_src matlab
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod('type', 'compliance');
|
||||
#+end_src
|
||||
|
||||
We put nothing on top of the micro-hexapod.
|
||||
#+begin_src matlab
|
||||
initializeAxisc('type', 'none');
|
||||
initializeMirror('type', 'none');
|
||||
initializeNanoHexapod('type', 'none');
|
||||
initializeSample('type', 'none');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
initializeReferences();
|
||||
initializeDisturbances();
|
||||
initializeController();
|
||||
initializeSimscapeConfiguration();
|
||||
initializeLoggingConfiguration();
|
||||
#+end_src
|
||||
|
||||
And we identify the dynamics from forces/torques applied on the micro-hexapod top platform to the motion of the micro-hexapod top platform at the same point.
|
||||
#+begin_src matlab :exports noone
|
||||
%% Name of the Simulink File
|
||||
mdl = 'nass_model';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Compliance/Fm'], 1, 'openinput'); io_i = io_i + 1; % Direct Forces/Torques applied on the micro-hexapod top platform
|
||||
io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Compliance/Dm'], 1, 'output'); io_i = io_i + 1; % Absolute displacement of the top platform
|
||||
|
||||
%% Run the linearization
|
||||
Gm = linearize(mdl, io, 0);
|
||||
Gm.InputName = {'Fmx', 'Fmy', 'Fmz', 'Mmx', 'Mmy', 'Mmz'};
|
||||
Gm.OutputName = {'Dx', 'Dy', 'Dz', 'Drx', 'Dry', 'Drz'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
labels = {'$D_x/F_{x}$', '$D_y/F_{y}$', '$D_z/F_{z}$', '$R_{x}/M_{x}$', '$R_{y}/M_{y}$', '$R_{R}/M_{z}$'};
|
||||
|
||||
freqs = logspace(1, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Gm(1, 1), freqs, 'Hz'))), 'k-', 'DisplayName', labels{1});
|
||||
for i = 2:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gm(1, i), freqs, 'Hz'))), 'DisplayName', labels{i});
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]');
|
||||
ylabel('Compliance');
|
||||
legend('location', 'northwest');
|
||||
#+end_src
|
||||
|
||||
** Identification of the dynamics with a rigid micro-station
|
||||
*** Initialization
|
||||
#+begin_src matlab :exports none
|
||||
initializeReferences();
|
||||
initializeDisturbances();
|
||||
initializeController();
|
||||
initializeSimscapeConfiguration();
|
||||
initializeLoggingConfiguration();
|
||||
initializeSimscapeConfiguration('gravity', false);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
%% Name of the Simulink File
|
||||
mdl = 'nass_model';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'En'); io_i = io_i + 1;
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
Ks = logspace(3,9,7); % [N/m]
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
initializeSample('type', 'rigid', 'mass', 20);
|
||||
#+end_src
|
||||
|
||||
*** Rigid micro-station
|
||||
#+begin_src matlab
|
||||
initializeGround('type', 'rigid');
|
||||
initializeGranite('type', 'rigid');
|
||||
initializeTy('type', 'rigid');
|
||||
initializeRy('type', 'rigid');
|
||||
initializeRz('type', 'rigid');
|
||||
initializeMicroHexapod('type', 'rigid');
|
||||
|
||||
initializeAxisc('type', 'rigid');
|
||||
initializeMirror('type', 'rigid');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
Gmr_iff = {zeros(length(Ks))};
|
||||
Gmr_dvf = {zeros(length(Ks))};
|
||||
Gmr_err = {zeros(length(Ks))};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
for i = 1:length(Ks)
|
||||
initializeNanoHexapod('k', Ks(i));
|
||||
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
||||
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
|
||||
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
|
||||
'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
|
||||
|
||||
Gmr_iff(i) = {minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
|
||||
Gmr_dvf(i) = {minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
|
||||
|
||||
Jinvt = tf(inv(nano_hexapod.J)');
|
||||
Jinvt.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
||||
Jinvt.OutputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
||||
Gmr_err(i) = {-minreal(G({'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))*Jinvt};
|
||||
end
|
||||
#+end_src
|
||||
|
||||
** Identification of the dynamics with a flexible micro-station
|
||||
*** Flexible micro-station
|
||||
#+begin_src matlab
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
Gmf_iff = {zeros(length(Ks))};
|
||||
Gmf_dvf = {zeros(length(Ks))};
|
||||
Gmf_err = {zeros(length(Ks))};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
for i = 1:length(Ks)
|
||||
initializeNanoHexapod('k', Ks(i));
|
||||
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
||||
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
|
||||
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
|
||||
'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
|
||||
|
||||
Gmf_iff(i) = {minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
|
||||
Gmf_dvf(i) = {minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
|
||||
|
||||
Jinvt = tf(inv(nano_hexapod.J)');
|
||||
Jinvt.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
||||
Jinvt.OutputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
||||
Gmf_err(i) = {-minreal(G({'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))*Jinvt};
|
||||
end
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
save('mat/optimal_stiffness_micro_station_compliance.mat', 'Ks', ...
|
||||
'Gmr_iff', 'Gmr_dvf', 'Gmr_err', ...
|
||||
'Gmf_iff', 'Gmf_dvf', 'Gmf_err');
|
||||
#+end_src
|
||||
|
||||
** Obtained Dynamics
|
||||
#+begin_src matlab :exports none
|
||||
load('mat/optimal_stiffness_micro_station_compliance.mat');
|
||||
#+end_src
|
||||
|
||||
IFF plant
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(-1, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:length(Ks)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gmr_iff{i}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gmf_iff{i}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:length(Ks)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gmr_iff{i}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gmf_iff{i}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
#+end_src
|
||||
|
||||
DVF plant
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(-1, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:length(Ks)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gmr_dvf{i}('Dnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gmf_dvf{i}('Dnlm1', 'Fnl1'), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:length(Ks)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gmr_dvf{i}('Dnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gmf_dvf{i}('Dnlm1', 'Fnl1'), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
#+end_src
|
||||
|
||||
X direction
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(-1, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:length(Ks)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gmr_err{i}('Ex', 'Fx'), freqs, 'Hz'))), '-');
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gmf_err{i}('Ex', 'Fx'), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:length(Ks)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gmr_err{i}('Ex', 'Fx'), freqs, 'Hz'))), '-');
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gmf_err{i}('Ex', 'Fx'), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
#+end_src
|
||||
|
||||
Z direction
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(-1, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:length(Ks)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gmr_err{i}('Ez', 'Fz'), freqs, 'Hz'))), '-');
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gmf_err{i}('Ez', 'Fz'), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:length(Ks)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gmr_err{i}('Ez', 'Fz'), freqs, 'Hz'))), '-');
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gmf_err{i}('Ez', 'Fz'), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
#+end_src
|
||||
|
||||
** Conclusion :ignore:
|
||||
* Payload "Impedance" Effect
|
||||
<<sec:payload_impedance>>
|
||||
@ -432,6 +766,7 @@ Comparison of the coupling from $F_x$ to $D_y$ when rotating at 60rpm to the dir
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
load('mat/conf_simulink.mat');
|
||||
open('nass_model.slx')
|
||||
#+end_src
|
||||
|
||||
@ -448,16 +783,17 @@ We initialize all the stages with the default parameters.
|
||||
initializeMirror();
|
||||
#+end_src
|
||||
|
||||
We don't include gravity nor disturbances in this model as it adds complexity to the simulations and does not alter the obtained dynamics.
|
||||
We don't include disturbances in this model as it adds complexity to the simulations and does not alter the obtained dynamics.
|
||||
#+begin_src matlab
|
||||
initializeSimscapeConfiguration('gravity', false);
|
||||
initializeSimscapeConfiguration('gravity', true);
|
||||
initializeDisturbances('enable', false);
|
||||
#+end_src
|
||||
|
||||
We set the controller type to Open-Loop, and we do not need to log any signal.
|
||||
#+begin_src matlab
|
||||
initializeController('type', 'stabilizing');
|
||||
initializeController();
|
||||
initializeLoggingConfiguration('log', 'none');
|
||||
initializeReferences();
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
@ -472,27 +808,24 @@ We set the controller type to Open-Loop, and we do not need to log any signal.
|
||||
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'En'); io_i = io_i + 1;
|
||||
#+end_src
|
||||
|
||||
** Change of payload dynamics
|
||||
** Identification of the dynamics while change the payload dynamics
|
||||
- Change of mass: from 1kg to 50kg
|
||||
- Change of resonance frequency: from 50Hz to 500Hz
|
||||
- The damping ratio of the payload is fixed to $\xi = 0.2$
|
||||
|
||||
#+begin_src matlab
|
||||
initializeReferences();
|
||||
Ks = logspace(3,9,7) % [N/m]
|
||||
#+end_src
|
||||
|
||||
We identify the dynamics for the following payload masses =Ms= and nano-hexapod leg's stiffnesses =Ks=:
|
||||
#+begin_src matlab
|
||||
Ms = [1, 20, 50]; % [Kg]
|
||||
Ks = logspace(3,9,7); % [N/m]
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
Gm_iff = {zeros(length(Ks), length(Ms))};
|
||||
Gm_dvf = {zeros(length(Ks), length(Ms))};
|
||||
Gm_err = {zeros(length(Ks), length(Ms))};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
for i = 1:length(Ks)
|
||||
for j = 1:length(Ms)
|
||||
initializeNanoHexapod('k', Ks(i));
|
||||
@ -515,17 +848,18 @@ We set the controller type to Open-Loop, and we do not need to log any signal.
|
||||
end
|
||||
#+end_src
|
||||
|
||||
We then identify the dynamics for the following payload resonance frequencies =Fs=:
|
||||
#+begin_src matlab
|
||||
Fs = [50, 200, 500]; % [Hz]
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
Gf_iff = {zeros(length(Ks), length(Fs))};
|
||||
Gf_dvf = {zeros(length(Ks), length(Fs))};
|
||||
Gf_err = {zeros(length(Ks), length(Fs))};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
for i = 1:length(Ks)
|
||||
for j = 1:length(Fs)
|
||||
initializeNanoHexapod('k', Ks(i));
|
||||
@ -548,13 +882,12 @@ We set the controller type to Open-Loop, and we do not need to log any signal.
|
||||
end
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
save('mat/optimal_stiffness_Gm_Gf.mat', 'Ks', 'Ms', 'Fs', ...
|
||||
'Gm_iff', 'Gm_dvf', 'Gm_err', ...
|
||||
'Gf_iff', 'Gf_dvf', 'Gf_err');
|
||||
#+end_src
|
||||
|
||||
** Plots
|
||||
** Change of optimal gain for decentralized control
|
||||
For each payload, compute the optimal gain for the IFF control.
|
||||
The optimal value corresponds to critical damping to *all* the 6 modes of the nano-hexapod.
|
||||
@ -1061,6 +1394,5 @@ For a stiff nano-hexapod
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
#+end_src
|
||||
|
||||
|
||||
** Conclusion :ignore:
|
||||
|
||||
* Total Change of dynamics
|
||||
|
Loading…
Reference in New Issue
Block a user