[WIP] add amplified piezo for the nano-hexapod
This commit is contained in:
@@ -1,10 +1,9 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-05-05 mar. 10:33 -->
|
||||
<!-- 2020-05-20 mer. 15:49 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<title>Determination of the optimal nano-hexapod’s stiffness</title>
|
||||
<meta name="generator" content="Org mode" />
|
||||
@@ -37,7 +36,7 @@
|
||||
<ul>
|
||||
<li><a href="#org157c07d">1. Spindle Rotation Speed</a>
|
||||
<ul>
|
||||
<li><a href="#orgd45a5be">1.1. Initialization</a></li>
|
||||
<li><a href="#org654fcb6">1.1. Initialization</a></li>
|
||||
<li><a href="#org687bdef">1.2. Identification when rotating at maximum speed</a></li>
|
||||
<li><a href="#org7dcfddb">1.3. Change of dynamics</a></li>
|
||||
</ul>
|
||||
@@ -52,7 +51,7 @@
|
||||
</li>
|
||||
<li><a href="#org19559b0">3. Payload “Impedance” Effect</a>
|
||||
<ul>
|
||||
<li><a href="#org654fcb6">3.1. Initialization</a></li>
|
||||
<li><a href="#orgd20f43d">3.1. Initialization</a></li>
|
||||
<li><a href="#org73f1c6e">3.2. Identification of the dynamics while change the payload dynamics</a></li>
|
||||
<li><a href="#orgd7a519b">3.3. Change of dynamics for the primary controller</a>
|
||||
<ul>
|
||||
@@ -109,8 +108,8 @@ The rotation speed will have an effect due to the Coriolis effect.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd45a5be" class="outline-3">
|
||||
<h3 id="orgd45a5be"><span class="section-number-3">1.1</span> Initialization</h3>
|
||||
<div id="outline-container-org654fcb6" class="outline-3">
|
||||
<h3 id="org654fcb6"><span class="section-number-3">1.1</span> Initialization</h3>
|
||||
<div class="outline-text-3" id="text-1-1">
|
||||
<p>
|
||||
We initialize all the stages with the default parameters.
|
||||
@@ -386,8 +385,8 @@ When the nano-hexapod is stiff (\(k>10^7\ [N/m]\)), the compliance of the micro-
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org654fcb6" class="outline-3">
|
||||
<h3 id="org654fcb6"><span class="section-number-3">3.1</span> Initialization</h3>
|
||||
<div id="outline-container-orgd20f43d" class="outline-3">
|
||||
<h3 id="orgd20f43d"><span class="section-number-3">3.1</span> Initialization</h3>
|
||||
<div class="outline-text-3" id="text-3-1">
|
||||
<p>
|
||||
We initialize all the stages with the default parameters.
|
||||
@@ -470,7 +469,7 @@ We can see two mass lines for the soft nano-hexapod (Figure <a href="#org00db693
|
||||
<div id="org00db693" class="figure">
|
||||
<p><img src="figs/opt_stiffness_payload_freq_fz_dz.png" alt="opt_stiffness_payload_freq_fz_dz.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 11: </span>Dynamics from \(\mathcal{F}_z\) to \(\mathcal{X}_z\) for varying payload resonance frequency, both for a soft nano-hexapod and a stiff nano-hexapod (<a href="./figs/opt_stiffness_payload_freq_fz_dz.png">png</a>, <a href="./figs/opt_stiffness_payload_freq_fz_dz.pdf">pdf</a>)</p>
|
||||
<p><span class="figure-number">Figure 11: </span>Dynamics from \(\mathcal{F}_z\) to \(\mathcal{X}_z\) for varying payload resonance frequency, both for a soft nano-hexapod and a stiff nano-hexapod</p>
|
||||
</div>
|
||||
|
||||
|
||||
@@ -507,7 +506,7 @@ We can see here that for the soft nano-hexapod:
|
||||
<div id="orga1343a7" class="figure">
|
||||
<p><img src="figs/opt_stiffness_payload_mass_fz_dz.png" alt="opt_stiffness_payload_mass_fz_dz.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 13: </span>Dynamics from \(\mathcal{F}_z\) to \(\mathcal{X}_z\) for varying payload mass, both for a soft nano-hexapod and a stiff nano-hexapod (<a href="./figs/opt_stiffness_payload_mass_fz_dz.png">png</a>, <a href="./figs/opt_stiffness_payload_mass_fz_dz.pdf">pdf</a>)</p>
|
||||
<p><span class="figure-number">Figure 13: </span>Dynamics from \(\mathcal{F}_z\) to \(\mathcal{X}_z\) for varying payload mass, both for a soft nano-hexapod and a stiff nano-hexapod</p>
|
||||
</div>
|
||||
|
||||
|
||||
@@ -629,7 +628,7 @@ And finally, in Figures <a href="#orge05feb5">21</a> and <a href="#org17c5c95">2
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-05-05 mar. 10:33</p>
|
||||
<p class="date">Created: 2020-05-20 mer. 15:49</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
Reference in New Issue
Block a user