Change initialization of simulation configuration

This commit is contained in:
Thomas Dehaeze
2018-06-21 11:42:46 +02:00
parent e065ab61e8
commit 91ab166b3e
14 changed files with 88 additions and 45 deletions

View File

@@ -8,7 +8,7 @@ function [axisc] = initializeAxisc()
axisc.m = smiData.Solid(30).mass;
axisc.k.ax = 1; % TODO [N*m/deg)]
axisc.c.ax = axisc.k.ax/1000;
axisc.c.ax = (1/1)*sqrt(axisc.k.ax/axisc.m);
%% Save if no output argument
if nargout == 0

View File

@@ -8,8 +8,8 @@ function [granite] = initializeGranite()
granite.m = smiData.Solid(5).mass;
granite.k.ax = 1e8; % x-y-z Stiffness of the granite [N/m]
granite.c.ax = granite.k.ax/1000;
granite.c.ax = 100*(1/1)*sqrt(granite.k.ax/granite.m);
%% Save if no output argument
if nargout == 0
save('./mat/granite.mat', 'granite');

View File

@@ -15,24 +15,14 @@ function [inputs] = initializeInputs(opts_param)
end
%% Load Sampling Time and Simulation Time
run init_sim_configuration.m
load('./mat/sim_conf.mat', 'sim_conf');
%% Define the time vector
time_vector = 0:Ts:Tsim;
time_vector = 0:sim_conf.Ts:sim_conf.Tsim;
%% Create the input Structure that will contain all the inputs
inputs = struct();
%% Set point [m, rad]
if opts.setpoint
setpoint = zeros(length(time_vector), 6);
setpoint(ceil(10/Ts):end, 2) = 1e-6; % Step of 1 micro-meter in y direction
else
setpoint = zeros(length(time_vector), 6);
end
inputs.setpoint = timeseries(setpoint, time_vector);
%% Ground motion
if opts.ground_motion
load('./mat/weight_Wxg.mat', 'Wxg');
@@ -56,7 +46,7 @@ function [inputs] = initializeInputs(opts_param)
inputs.ty = timeseries(ty, time_vector);
%% Tilt Stage [rad]
if opts.ty
if opts.ry
ry = 3*(2*pi/360)*sin(2*pi*0.2*time_vector);
else
ry = zeros(length(time_vector), 1);
@@ -65,7 +55,7 @@ function [inputs] = initializeInputs(opts_param)
inputs.ry = timeseries(ry, time_vector);
%% Spindle [rad]
if opts.ty
if opts.rz
rz = 2*pi*0.5*time_vector;
else
rz = zeros(length(time_vector), 1);
@@ -88,9 +78,20 @@ function [inputs] = initializeInputs(opts_param)
inputs.nano_hexapod = timeseries(n_hexa, time_vector);
%% Set point [m, rad]
if opts.setpoint
setpoint = zeros(length(time_vector), 6);
setpoint(ceil(10/sim_conf.Ts):end, 2) = 1e-6; % Step of 1 micro-meter in y direction
else
setpoint = zeros(length(time_vector), 6);
end
setpoint(:, 6) = rz;
inputs.setpoint = timeseries(setpoint, time_vector);
%% Save if no output argument
if nargout == 0
save('./mat/inputs.mat', 'inputs');
end
end

View File

@@ -1,6 +1,6 @@
function [nano_hexapod] = initializeNanoHexapod(opts_param)
%% Default values for opts
opts = struct();
opts = struct('actuator', 'piezo');
%% Populate opts with input parameters
if exist('opts_param','var')
@@ -42,7 +42,11 @@ function [nano_hexapod] = initializeNanoHexapod(opts_param)
Leg = struct();
Leg.stroke = 80e-6; % Maximum Stroke of each leg [m]
Leg.k.ax = 5e7; % Stiffness of each leg [N/m]
if strcmp(opts.actuator, 'piezo')
Leg.k.ax = 5e7; % Stiffness of each leg [N/m]
else
Leg.k.ax = 1e5; % Stiffness of each leg [N/m]
end
Leg.ksi.ax = 10; % Maximum amplification at resonance []
Leg.rad.bottom = 12; % Radius of the cylinder of the bottom part [mm]
Leg.rad.top = 10; % Radius of the cylinder of the top part [mm]

View File

@@ -12,10 +12,10 @@ function [ry] = initializeRy()
ry.k.rrad = 238e6/4; % Stiffness in the side direction [N/m]
ry.k.tilt = 1e4 ; % Rotation stiffness around y [N*m/deg]
ry.c.h = ry.k.h/1000;
ry.c.rad = ry.k.rad/1000;
ry.c.rrad = ry.k.rrad/1000;
ry.c.tilt = ry.k.tilt/1000;
ry.c.h = 10*(1/5)*sqrt(ry.k.h/ry.m);
ry.c.rad = 10*(1/5)*sqrt(ry.k.rad/ry.m);
ry.c.rrad = 10*(1/5)*sqrt(ry.k.rrad/ry.m);
ry.c.tilt = 10*(1/1)*sqrt(ry.k.tilt/ry.m);
%% Save if no output argument
if nargout == 0

View File

@@ -9,17 +9,16 @@ function [rz] = initializeRz()
rz.k.ax = 2e9; % Axial Stiffness [N/m]
rz.k.rad = 7e8; % Radial Stiffness [N/m]
rz.k.tilt = 1e5; % TODO
rz.k.rot = 1e5; % Rotational Stiffness [N*m/deg]
rz.k.tilt = 1e2; % TODO [N*m/deg]
rz.k.rot = 1e2; % Rotational Stiffness [N*m/deg]
rz.c.ax = rz.k.ax/1000;
rz.c.rad = rz.k.rad/1000;
rz.c.tilt = rz.k.tilt/1000;
rz.c.rot = rz.k.rot/1000;
rz.c.ax = 10*(1/5)*sqrt(rz.k.ax/rz.m);
rz.c.rad = 10*(1/5)*sqrt(rz.k.rad/rz.m);
rz.c.tilt = 100*(1/1)*sqrt(rz.k.tilt/rz.m);
rz.c.rot = 100*(1/1)*sqrt(rz.k.rot/rz.m);
%% Save if no output argument
if nargout == 0
save('./mat/rz.mat', 'rz');
end
end

View File

@@ -0,0 +1,35 @@
function [] = initializeSimConf(opts_param)
%% Default values for opts
opts = struct('Ts', 1e-4, ... % Sampling time [s]
'Tsim', 10, ... % Simulation time [s]
'cl_time', 0, ... % Close Loop time [s]
'gravity', false ... % Gravity along the z axis [m/s^2]
);
%% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
%%
sim_conf = struct();
%%
sim_conf.Ts = opts.Ts;
sim_conf.Tsim = opts.Tsim;
sim_conf.cl_time = opts.cl_time;
%% Gravity
if opts.gravity
sim_conf.g = -9.8;
else
sim_conf.g = 0;
end
%% Save
save('./mat/sim_conf.mat', 'sim_conf');
end

View File

@@ -18,8 +18,8 @@ function [ty] = initializeTy()
ty.k.ax = 1e7/4; % Axial Stiffness for each of the 4 guidance (y) [N/m]
ty.k.rad = 9e9/4; % Radial Stiffness for each of the 4 guidance (x-z) [N/m]
ty.c.ax = ty.k.ax/1000;
ty.c.rad = ty.k.rad/1000;
ty.c.ax = 100*(1/5)*sqrt(ty.k.ax/ty.m);
ty.c.rad = 100*(1/5)*sqrt(ty.k.rad/ty.m);
%% Save if no output argument
if nargout == 0