Update the metrology study.

This commit is contained in:
2019-12-06 12:03:16 +01:00
parent 2a564881c5
commit 7032f05ef5
15 changed files with 1697 additions and 252 deletions

View File

@@ -0,0 +1,64 @@
% computeReferencePose
% :PROPERTIES:
% :header-args:matlab+: :tangle ../src/computeReferencePose.m
% :header-args:matlab+: :comments org :mkdirp yes
% :header-args:matlab+: :eval no :results none
% :END:
% <<sec:computeReferencePose>>
% This Matlab function is accessible [[file:src/computeReferencePose.m][here]].
function [WTr] = computeReferencePose(Dy, Ry, Rz, Dh)
% computeReferencePose - Compute the homogeneous transformation matrix corresponding to the wanted pose of the sample
%
% Syntax: [WTr] = computeReferencePose(Dy, Ry, Rz, Dh)
%
% Inputs:
% - Dy, Ry, Rz, Dh -
%
% Outputs:
% - WTr -
%% Translation Stage
Rty = [1 0 0 0;
0 1 0 Dy;
0 0 1 0;
0 0 0 1];
%% Tilt Stage - Pure rotating aligned with Ob
Rry = [ cos(Ry) 0 sin(Ry) 0;
0 1 0 0;
-sin(Ry) 0 cos(Ry) 0;
0 0 0 1];
%% Spindle - Rotation along the Z axis
Rrz = [cos(Rz) -sin(Rz) 0 0 ;
sin(Rz) cos(Rz) 0 0 ;
0 0 1 0 ;
0 0 0 1 ];
%% Micro-Hexapod
Rhx = [1 0 0;
0 cos(Dh(4)) -sin(Dh(4));
0 sin(Dh(4)) cos(Dh(4))];
Rhy = [ cos(Dh(5)) 0 sin(Dh(5));
0 1 0;
-sin(Dh(5)) 0 cos(Dh(5))];
Rhz = [cos(Dh(6)) -sin(Dh(6)) 0;
sin(Dh(6)) cos(Dh(6)) 0;
0 0 1];
Rh = [1 0 0 Dh(1) ;
0 1 0 Dh(2) ;
0 0 1 Dh(3) ;
0 0 0 1 ];
Rh(1:3, 1:3) = Rhx*Rhy*Rhz;
%% Total Homogeneous transformation
WTr = Rty*Rry*Rrz*Rh;
end

72
src/identifyPlantFRF.m Normal file
View File

@@ -0,0 +1,72 @@
% identifyPlantFRF
% :PROPERTIES:
% :header-args:matlab+: :tangle ../src/identifyPlantFRF.m
% :header-args:matlab+: :comments org :mkdirp yes
% :header-args:matlab+: :eval no :results none
% :END:
% <<sec:identifyPlant>>
% This Matlab function is accessible [[file:../src/identifyPlant.m][here]].
function [sys] = identifyPlantFRF(opts_param)
%% Default values for opts
opts = struct();
%% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
%% Name of the Simulink File
mdl = 'sim_nano_station_id';
%% Input/Output definition
io(1) = linio([mdl, '/Fn'], 1, 'input'); % Cartesian forces applied by NASS
io(2) = linio([mdl, '/Dw'], 1, 'input'); % Ground Motion
io(3) = linio([mdl, '/Fs'], 1, 'input'); % External forces on the sample
io(4) = linio([mdl, '/Fnl'], 1, 'input'); % Forces applied on the NASS's legs
io(5) = linio([mdl, '/Fd'], 1, 'input'); % Disturbance Forces
io(6) = linio([mdl, '/Dsm'], 1, 'output'); % Displacement of the sample
io(7) = linio([mdl, '/Fnlm'], 1, 'output'); % Force sensor in NASS's legs
io(8) = linio([mdl, '/Dnlm'], 1, 'output'); % Displacement of NASS's legs
io(9) = linio([mdl, '/Es'], 1, 'output'); % Position Error w.r.t. NASS base
io(10) = linio([mdl, '/Vlm'], 1, 'output'); % Measured absolute velocity of the legs
input = frest.Random('Ts',1e-4);
%% Run the linearization
G = frestimate(mdl, io, input);
% G.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz', ...
% 'Dgx', 'Dgy', 'Dgz', ...
% 'Fsx', 'Fsy', 'Fsz', 'Msx', 'Msy', 'Msz', ...
% 'F1', 'F2', 'F3', 'F4', 'F5', 'F6', ...
% 'Frzz', 'Ftyx', 'Ftyz'};
% G.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz', ...
% 'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6', ...
% 'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6', ...
% 'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz', ...
% 'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
% %% Create the sub transfer functions
% minreal_tol = sqrt(eps);
% % From forces applied in the cartesian frame to displacement of the sample in the cartesian frame
% sys.G_cart = minreal(G({'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}, {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'}), minreal_tol, false);
% % From ground motion to Sample displacement
% sys.G_gm = minreal(G({'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}, {'Dgx', 'Dgy', 'Dgz'}), minreal_tol, false);
% % From direct forces applied on the sample to displacement of the sample
% sys.G_fs = minreal(G({'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}, {'Fsx', 'Fsy', 'Fsz', 'Msx', 'Msy', 'Msz'}), minreal_tol, false);
% % From forces applied on NASS's legs to force sensor in each leg
% sys.G_iff = minreal(G({'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), minreal_tol, false);
% % From forces applied on NASS's legs to displacement of each leg
% sys.G_dleg = minreal(G({'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), minreal_tol, false);
% % From forces/torques applied by the NASS to position error
% sys.G_plant = minreal(G({'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'}, {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'}), minreal_tol, false);
% % From forces/torques applied by the NASS to velocity of the actuator
% sys.G_geoph = minreal(G({'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), minreal_tol, false);
% % From various disturbance forces to position error
% sys.G_dist = minreal(G({'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}, {'Frzz', 'Ftyx', 'Ftyz'}), minreal_tol, false);
end

135
src/initDisturbances.m Normal file
View File

@@ -0,0 +1,135 @@
% Function that initialize the disturbances
% :PROPERTIES:
% :header-args:matlab+: :tangle ../src/initDisturbances.m
% :header-args:matlab+: :comments org :mkdirp yes
% :header-args:matlab+: :eval no :results none
% :END:
% <<sec:initDisturbances>>
% This Matlab function is accessible [[file:src/initDisturbances.m][here]].
function [] = initDisturbances(opts_param)
% initDisturbances - Initialize the disturbances
%
% Syntax: [] = initDisturbances(opts_param)
%
% Inputs:
% - opts_param -
% Default values for the Options
%% Default values for opts
opts = struct();
%% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
% Load Data
load('./disturbances/mat/dist_psd.mat', 'dist_f');
% We remove the first frequency point that usually is very large.
dist_f.f = dist_f.f(2:end);
dist_f.psd_gm = dist_f.psd_gm(2:end);
dist_f.psd_ty = dist_f.psd_ty(2:end);
dist_f.psd_rz = dist_f.psd_rz(2:end);
% Parameters
% We define some parameters that will be used in the algorithm.
Fs = 2*dist_f.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(dist_f.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
df = 1/T0; % Frequency resolution of the DFT [Hz]
% Also equal to (dist_f.f(2)-dist_f.f(1))
t = linspace(0, T0, N+1)'; % Time Vector [s]
Ts = 1/Fs; % Sampling Time [s]
% Ground Motion
phi = dist_f.psd_gm;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)*df);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
% Dwx = struct('time', t, 'signals', struct('values', u));
Dwx = u;
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
Dwy = u;
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
Dwz = u;
% Translation Stage - X direction
phi = dist_f.psd_ty; % TODO - we take here the vertical direction which is wrong but approximate
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)*df);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty x [N]
Fty_x = u;
% Translation Stage - Z direction
phi = dist_f.psd_ty;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)*df);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty z [N]
Fty_z = u;
% Spindle - Z direction
phi = dist_f.psd_rz;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)*df);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz z [N]
Frz_z = u;
% Direct Forces
u = zeros(length(t), 6);
Fd = u;
% Set initial value to zero
Dwx = Dwx - Dwx(1);
Dwy = Dwy - Dwy(1);
Dwz = Dwz - Dwz(1);
Fty_x = Fty_x - Fty_x(1);
Fty_z = Fty_z - Fty_z(1);
Frz_z = Frz_z - Frz_z(1);
% Save
save('./mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_z', 'Fd', 'Ts', 't');

128
src/initializeReferences.m Normal file
View File

@@ -0,0 +1,128 @@
% Generate Reference Signals
% :PROPERTIES:
% :header-args:matlab+: :tangle ../src/initializeReferences.m
% :header-args:matlab+: :comments org :mkdirp yes
% :header-args:matlab+: :eval no :results none
% :END:
% <<sec:initializeReferences>>
% This Matlab function is accessible [[file:../src/initializeInputs.m][here]].
function [ref] = initializeReferences(opts_param)
%% Default values for opts
opts = struct( ...
'Ts', 1e-3, ... % Sampling Frequency [s]
'Dy_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
'Dy_amplitude', 0, ... % Amplitude of the displacement [m]
'Dy_period', 1, ... % Period of the displacement [s]
'Ry_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
'Ry_amplitude', 0, ... % Amplitude [deg]
'Ry_period', 10, ... % Period of the displacement [s]
'Rz_type', 'constant', ... % Either "constant" / "rotating"
'Rz_amplitude', 0, ... % Initial angle [deg]
'Rz_period', 1, ... % Period of the rotating [s]
'Dh_type', 'constant', ... % For now, only constant is implemented
'Dh_pos', [0; 0; 0; 0; 0; 0], ... % Initial position [m,m,m,rad,rad,rad] of the top platform
'Rm_type', 'constant', ... % For now, only constant is implemented
'Rm_pos', [0; pi], ... % Initial position of the two masses
'Dn_type', 'constant', ... % For now, only constant is implemented
'Dn_pos', [0; 0; 0; 0; 0; 0] ... % Initial position [m,m,m,rad,rad,rad] of the top platform
);
%% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
%% Set Sampling Time
Ts = opts.Ts;
%% Translation stage - Dy
t = 0:Ts:opts.Dy_period-Ts; % Time Vector [s]
Dy = zeros(length(t), 1);
switch opts.Dy_type
case 'constant'
Dy(:) = opts.Dy_amplitude;
case 'triangular'
Dy(:) = -4*opts.Dy_amplitude + 4*opts.Dy_amplitude/opts.Dy_period*t;
Dy(t<0.75*opts.Dy_period) = 2*opts.Dy_amplitude - 4*opts.Dy_amplitude/opts.Dy_period*t(t<0.75*opts.Dy_period);
Dy(t<0.25*opts.Dy_period) = 4*opts.Dy_amplitude/opts.Dy_period*t(t<0.25*opts.Dy_period);
case 'sinusoidal'
Dy(:) = opts.Dy_amplitude*sin(2*pi/opts.Dy_period*t);
otherwise
warning('Dy_type is not set correctly');
end
Dy = struct('time', t, 'signals', struct('values', Dy));
%% Tilt Stage - Ry
t = 0:Ts:opts.Ry_period-Ts;
Ry = zeros(length(t), 1);
switch opts.Ry_type
case 'constant'
Ry(:) = pi/180*opts.Ry_amplitude;
case 'triangular'
Ry(:) = -4*(pi/180*opts.Ry_amplitude) + 4*(pi/180*opts.Ry_amplitude)/opts.Ry_period*t;
Ry(t<0.75*opts.Ry_period) = 2*(pi/180*opts.Ry_amplitude) - 4*(pi/180*opts.Ry_amplitude)/opts.Ry_period*t(t<0.75*opts.Ry_period);
Ry(t<0.25*opts.Ry_period) = 4*(pi/180*opts.Ry_amplitude)/opts.Ry_period*t(t<0.25*opts.Ry_period);
case 'sinusoidal'
Ry(:) = opts.Ry_amplitude*sin(2*pi/opts.Ry_period*t);
otherwise
warning('Ry_type is not set correctly');
end
Ry = struct('time', t, 'signals', struct('values', Ry));
%% Spindle - Rz
t = 0:Ts:opts.Rz_period-Ts;
Rz = zeros(length(t), 1);
switch opts.Rz_type
case 'constant'
Rz(:) = pi/180*opts.Rz_amplitude;
case 'rotating'
Rz(:) = pi/180*opts.Rz_amplitude+2*pi/opts.Rz_period*t;
otherwise
warning('Rz_type is not set correctly');
end
Rz = struct('time', t, 'signals', struct('values', Rz));
%% Micro-Hexapod
t = [0, Ts];
Dh = zeros(length(t), 6);
opts.Dh_pos(4:6) = pi/180*opts.Dh_pos(4:6); % convert from [deg] to [rad]
switch opts.Dh_type
case 'constant'
Dh = [opts.Dh_pos, opts.Dh_pos];
otherwise
warning('Dh_type is not set correctly');
end
Dh = struct('time', t, 'signals', struct('values', Dh));
%% Axis Compensation - Rm
t = [0, Ts];
Rm = [opts.Rm_pos, opts.Rm_pos];
Rm = struct('time', t, 'signals', struct('values', Rm));
%% Nano-Hexapod
t = [0, Ts];
Dn = zeros(length(t), 6);
opts.Dn_pos(4:6) = pi/180*opts.Dn_pos(4:6); % convert from [deg] to [rad]
switch opts.Dn_type
case 'constant'
Dn = [opts.Dn_pos, opts.Dn_pos];
otherwise
warning('Dn_type is not set correctly');
end
Dn = struct('time', t, 'signals', struct('values', Dn));
%% Save
save('./mat/nass_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Rm', 'Dn', 'Ts');
end