Update Analysis
This commit is contained in:
@@ -82,6 +82,8 @@ Active damping techniques are applied to the full Simscape model.
|
||||
In this file are gathered all studies about the control the Nano-Active-Stabilization-System.
|
||||
|
||||
* Nano-Hexapod Simscape Model ([[file:nano_hexapod.org][link]])
|
||||
The nano-hexapod simscape model is described and used for simulations.
|
||||
|
||||
* Useful Matlab Functions ([[./functions.org][link]])
|
||||
Many matlab functions are shared among all the files of the projects.
|
||||
|
||||
|
@@ -264,9 +264,10 @@ exportFig('figs/nano_hexapod_effect_encoder.pdf', 'width', 'full', 'height', 'ta
|
||||
#+RESULTS:
|
||||
[[file:figs/nano_hexapod_effect_encoder.png]]
|
||||
|
||||
#+begin_question
|
||||
Why do we have zeros at 400Hz and 800Hz when the encoders are fixed on the struts?
|
||||
#+end_question
|
||||
#+begin_important
|
||||
The zeros at 400Hz and 800Hz should corresponds to resonances of the system when one of the APA is blocked.
|
||||
It is linked to the axial stiffness of the flexible joints: increasing the axial stiffness of the joints will increase the frequency of the zeros.
|
||||
#+end_important
|
||||
|
||||
** Effect of APA flexibility
|
||||
<<sec:effect_apa_flexibility>>
|
||||
@@ -2446,6 +2447,46 @@ exportFig('figs/nano_hexapod_dvf_compare_compliance_plates.pdf', 'width', 'wide'
|
||||
[[file:figs/nano_hexapod_dvf_compare_compliance_plates.png]]
|
||||
|
||||
* To-order :noexport:
|
||||
** Why Zero when encoder on the struts
|
||||
#+begin_src matlab
|
||||
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
||||
'flex_top_type', '4dof', ...
|
||||
'motion_sensor_type', 'struts', ...
|
||||
'actuator_type', '2dof');
|
||||
#+end_src
|
||||
|
||||
The transfer function from actuator inputs to force sensors outputs is identified.
|
||||
#+begin_src matlab
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'test_apa300ml';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/dLs'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
|
||||
io(io_i) = linio([mdl, '/dLp'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
|
||||
|
||||
G = linearize(mdl, io, 0.0, options);
|
||||
G.InputName = {'F'};
|
||||
G.OutputName = {'dLs', 'dLp'};
|
||||
|
||||
bodeFig({G(1), G(2)}, logspace(1,4,1000))
|
||||
#+end_src
|
||||
|
||||
The zero seems to be linked to the axial flexibility of the top joint.
|
||||
|
||||
In this mode, the APA does not experience any motion (hence the zero).
|
||||
The resonance frequency then corresponds to the top mass on top of the axial stiffness of the two joints in series.
|
||||
|
||||
For the nano-hexapod, it corresponds to the resonance of the top mass when all (or *just one*?) of the APA is blocked.
|
||||
|
||||
#+begin_src matlab
|
||||
sqrt((n_hexapod.flex_bot.kz(1)/2)/(55/3))/2/pi
|
||||
#+end_src
|
||||
|
||||
** Verify why unstable strut
|
||||
#+begin_src matlab :results value replace
|
||||
|
Reference in New Issue
Block a user