Remove unused matlab files
This commit is contained in:
parent
eda325fae2
commit
6a3481b8ac
@ -1,14 +0,0 @@
|
||||
%%
|
||||
clear; close all; clc;
|
||||
|
||||
%% Demonstration of stroke of each stage
|
||||
% Initalize data for demonstration
|
||||
run displacement_init.m
|
||||
|
||||
% Run the simulation
|
||||
run displacement_sim.m
|
||||
|
||||
%% Test the measurement of sample position
|
||||
run sample_pos_init.m
|
||||
|
||||
run sample_pos_sim.m
|
@ -1,98 +0,0 @@
|
||||
%%
|
||||
clear; close all; clc;
|
||||
|
||||
%% Initialize simulation configuration
|
||||
opts_sim = struct(...
|
||||
'Tsim', 30 ...
|
||||
);
|
||||
|
||||
initializeSimConf(opts_sim);
|
||||
|
||||
%% Initialize Inputs
|
||||
load('./mat/sim_conf.mat', 'sim_conf')
|
||||
|
||||
time_vector = 0:sim_conf.Ts:sim_conf.Tsim;
|
||||
|
||||
% Translation Stage
|
||||
T_ty = 4;
|
||||
ty = zeros(length(time_vector), 1);
|
||||
ty(1:T_ty/sim_conf.Ts) = 10e-3*sin(2*pi*(1/2)*time_vector(1:T_ty/sim_conf.Ts));
|
||||
|
||||
% Tilt Stage
|
||||
T_ry = 4;
|
||||
ry = zeros(length(time_vector), 1);
|
||||
ry((T_ty)/sim_conf.Ts:(T_ty+T_ry)/sim_conf.Ts) = 2*pi*(3/360)*sin(2*pi*(1/2)*time_vector(T_ty/sim_conf.Ts:(T_ty+T_ry)/sim_conf.Ts));
|
||||
|
||||
% Spindle
|
||||
T_rz = 4;
|
||||
|
||||
rz = zeros(length(time_vector), 1);
|
||||
rz((T_ty+T_ry)/sim_conf.Ts:(T_ty+T_ry+T_rz)/sim_conf.Ts) = 2*pi*0.5*(time_vector((T_ty+T_ry)/sim_conf.Ts:(T_ty+T_ry+T_rz)/sim_conf.Ts)-time_vector((T_ty+T_ry)/sim_conf.Ts));
|
||||
rz((T_ty+T_ry+T_rz)/sim_conf.Ts:end) = rz((T_ty+T_ry+T_rz)/sim_conf.Ts);
|
||||
|
||||
% Micro Hexapod
|
||||
T_u_hexa = 10;
|
||||
u_hexa = zeros(length(time_vector), 6);
|
||||
% Tz
|
||||
u_hexa((T_ty+T_ry+T_rz)/sim_conf.Ts:(T_ty+T_ry+T_rz+2)/sim_conf.Ts, 3) = 10e-3*sin(2*pi*(1/2)*(time_vector((T_ty+T_ry+T_rz)/sim_conf.Ts:(T_ty+T_ry+T_rz+2)/sim_conf.Ts)));
|
||||
% Tx-Ty
|
||||
u_hexa((T_ty+T_ry+T_rz+2)/sim_conf.Ts:(T_ty+T_ry+T_rz+3)/sim_conf.Ts, 1) = 10e-3*(time_vector((T_ty+T_ry+T_rz+2)/sim_conf.Ts:(T_ty+T_ry+T_rz+3)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+2)/sim_conf.Ts));
|
||||
u_hexa((T_ty+T_ry+T_rz+3)/sim_conf.Ts:(T_ty+T_ry+T_rz+5)/sim_conf.Ts, 1) = 10e-3*cos(2*pi*(1/2)*(time_vector((T_ty+T_ry+T_rz+3)/sim_conf.Ts:(T_ty+T_ry+T_rz+5)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+3)/sim_conf.Ts)));
|
||||
u_hexa((T_ty+T_ry+T_rz+3)/sim_conf.Ts:(T_ty+T_ry+T_rz+5)/sim_conf.Ts, 2) = 10e-3*sin(2*pi*(1/2)*(time_vector((T_ty+T_ry+T_rz+3)/sim_conf.Ts:(T_ty+T_ry+T_rz+5)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+3)/sim_conf.Ts)));
|
||||
u_hexa((T_ty+T_ry+T_rz+5)/sim_conf.Ts:(T_ty+T_ry+T_rz+6)/sim_conf.Ts, 1) = 10e-3 - 10e-3*(time_vector((T_ty+T_ry+T_rz+5)/sim_conf.Ts:(T_ty+T_ry+T_rz+6)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+5)/sim_conf.Ts));
|
||||
% Theta x Theta y
|
||||
u_hexa((T_ty+T_ry+T_rz+6)/sim_conf.Ts:(T_ty+T_ry+T_rz+7)/sim_conf.Ts, 1) = 2*pi*(3/360)*(time_vector((T_ty+T_ry+T_rz+6)/sim_conf.Ts:(T_ty+T_ry+T_rz+7)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+6)/sim_conf.Ts));
|
||||
u_hexa((T_ty+T_ry+T_rz+7)/sim_conf.Ts:(T_ty+T_ry+T_rz+9)/sim_conf.Ts, 1) = 2*pi*(3/360)*cos(2*pi*(1/2)*(time_vector((T_ty+T_ry+T_rz+7)/sim_conf.Ts:(T_ty+T_ry+T_rz+9)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+7)/sim_conf.Ts)));
|
||||
u_hexa((T_ty+T_ry+T_rz+7)/sim_conf.Ts:(T_ty+T_ry+T_rz+9)/sim_conf.Ts, 2) = 2*pi*(3/360)*sin(2*pi*(1/2)*(time_vector((T_ty+T_ry+T_rz+7)/sim_conf.Ts:(T_ty+T_ry+T_rz+9)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+7)/sim_conf.Ts)));
|
||||
u_hexa((T_ty+T_ry+T_rz+9)/sim_conf.Ts:(T_ty+T_ry+T_rz+10)/sim_conf.Ts, 1) = 2*pi*(3/360) - 2*pi*(3/360)*(time_vector((T_ty+T_ry+T_rz+9)/sim_conf.Ts:(T_ty+T_ry+T_rz+10)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+9)/sim_conf.Ts));
|
||||
|
||||
% Gravity Compensator system
|
||||
T_mass_start = T_ty+T_ry+T_rz+T_u_hexa;
|
||||
mass = zeros(length(time_vector), 2);
|
||||
|
||||
mass((T_mass_start)/sim_conf.Ts:(T_mass_start+2)/sim_conf.Ts, 1) = 2*pi*( 20/360)*(time_vector((T_mass_start)/sim_conf.Ts:(T_mass_start+2)/sim_conf.Ts)-time_vector(T_mass_start/sim_conf.Ts));
|
||||
mass((T_mass_start)/sim_conf.Ts:(T_mass_start+2)/sim_conf.Ts, 2) = 2*pi*(-10/360)*(time_vector((T_mass_start)/sim_conf.Ts:(T_mass_start+2)/sim_conf.Ts)-time_vector(T_mass_start/sim_conf.Ts));
|
||||
mass((T_mass_start+2)/sim_conf.Ts:(T_mass_start+3)/sim_conf.Ts, 1) = mass((T_mass_start+2)/sim_conf.Ts, 1);
|
||||
mass((T_mass_start+2)/sim_conf.Ts:(T_mass_start+3)/sim_conf.Ts, 2) = mass((T_mass_start+2)/sim_conf.Ts, 2);
|
||||
mass((T_mass_start+3)/sim_conf.Ts:(T_mass_start+5)/sim_conf.Ts, 1) = mass((T_mass_start+2)/sim_conf.Ts, 1)-2*pi*( 20/360)*(time_vector((T_mass_start+3)/sim_conf.Ts:(T_mass_start+5)/sim_conf.Ts)-time_vector((T_mass_start+3)/sim_conf.Ts));
|
||||
mass((T_mass_start+3)/sim_conf.Ts:(T_mass_start+5)/sim_conf.Ts, 2) = mass((T_mass_start+2)/sim_conf.Ts, 2)-2*pi*(-10/360)*(time_vector((T_mass_start+3)/sim_conf.Ts:(T_mass_start+5)/sim_conf.Ts)-time_vector((T_mass_start+3)/sim_conf.Ts));
|
||||
|
||||
opts_inputs = struct(...
|
||||
'Dy', ty, ...
|
||||
'Ry', ry, ...
|
||||
'Rz', rz, ...
|
||||
'Dh', u_hexa, ...
|
||||
'Rm', mass ...
|
||||
);
|
||||
|
||||
initializeInputs(opts_inputs);
|
||||
|
||||
%% Initialize SolidWorks Data
|
||||
initializeSolids();
|
||||
|
||||
%% Initialize Ground
|
||||
initializeGround();
|
||||
|
||||
%% Initialize Granite
|
||||
initializeGranite();
|
||||
|
||||
%% Initialize Translation stage
|
||||
initializeTy();
|
||||
|
||||
%% Initialize Tilt Stage
|
||||
initializeRy();
|
||||
|
||||
%% Initialize Spindle
|
||||
initializeRz();
|
||||
|
||||
%% Initialize Hexapod Symétrie
|
||||
initializeMicroHexapod();
|
||||
|
||||
%% Initialize Center of Gravity compensation
|
||||
initializeAxisc();
|
||||
|
||||
%% Initialize NASS
|
||||
initializeNanoHexapod(struct('actuator', 'lorentz'));
|
||||
|
||||
%% Initialize Sample
|
||||
initializeSample(struct('mass', 20));
|
@ -1,5 +0,0 @@
|
||||
%%
|
||||
clear; close all; clc;
|
||||
|
||||
%%
|
||||
sim('sim_nano_station_disp.slx');
|
@ -1,50 +0,0 @@
|
||||
%% Plot all 6 errors expressed in the NASS base
|
||||
figure;
|
||||
|
||||
%% Tx
|
||||
subplot(2, 3, 1);
|
||||
hold on;
|
||||
plot(error_nass.Time, error_nass.Data(:, 1), 'k-', 'DisplayName', '$\epsilon_x$');
|
||||
legend();
|
||||
hold off;
|
||||
xlabel('Time (s)'); ylabel('Position (m)');
|
||||
|
||||
%% Ty
|
||||
subplot(2, 3, 2);
|
||||
hold on;
|
||||
plot(error_nass.Time, error_nass.Data(:, 2), 'k-', 'DisplayName', '$\epsilon_y$');
|
||||
legend();
|
||||
hold off;
|
||||
xlabel('Time (s)'); ylabel('Position (m)');
|
||||
|
||||
%% Tz
|
||||
subplot(2, 3, 3);
|
||||
hold on;
|
||||
plot(error_nass.Time, error_nass.Data(:, 3), 'k-', 'DisplayName', '$\epsilon_z$');
|
||||
legend();
|
||||
hold off;
|
||||
xlabel('Time (s)'); ylabel('Position (m)');
|
||||
|
||||
%% Rx
|
||||
subplot(2, 3, 4);
|
||||
hold on;
|
||||
plot(error_nass.Time, error_nass.Data(:, 4), 'k-', 'DisplayName', '$\epsilon_{\theta_x}$');
|
||||
legend();
|
||||
hold off;
|
||||
xlabel('Time (s)'); ylabel('Rotation (rad)');
|
||||
|
||||
%% Ry
|
||||
subplot(2, 3, 5);
|
||||
hold on;
|
||||
plot(error_nass.Time, error_nass.Data(:, 5), 'k-', 'DisplayName', '$\epsilon_{\theta_y}$');
|
||||
legend();
|
||||
hold off;
|
||||
xlabel('Time (s)'); ylabel('Rotation (rad)');
|
||||
|
||||
%% Rz
|
||||
subplot(2, 3, 6);
|
||||
hold on;
|
||||
plot(error_nass.Time, error_nass.Data(:, 6), 'k-', 'DisplayName', '$\epsilon_{\theta_z}$');
|
||||
legend();
|
||||
hold off;
|
||||
xlabel('Time (s)'); ylabel('Rotation (rad)');
|
@ -1,69 +0,0 @@
|
||||
%%
|
||||
clear; close all; clc;
|
||||
|
||||
%% Initialize simulation configuration
|
||||
opts_sim = struct(...
|
||||
'Tsim', 0.001 ...
|
||||
);
|
||||
|
||||
initializeSimConf(opts_sim);
|
||||
|
||||
%% Initialize Inputs
|
||||
load('./mat/sim_conf.mat', 'sim_conf')
|
||||
|
||||
time_vector = 0:sim_conf.Ts:sim_conf.Tsim;
|
||||
|
||||
% Translation Stage
|
||||
Ty = 0*ones(length(time_vector), 1);
|
||||
|
||||
% Tilt Stage
|
||||
Ry = 2*pi*(0/360)*ones(length(time_vector), 1);
|
||||
% Ry = 2*pi*(3/360)*sin(2*pi*time_vector);
|
||||
|
||||
% Spindle
|
||||
Rz = 2*pi*0*(time_vector);
|
||||
% Rz = 2*pi*(190/360)*ones(length(time_vector), 1);
|
||||
|
||||
% Micro Hexapod
|
||||
Dh = zeros(length(time_vector), 6);
|
||||
|
||||
% Gravity Compensator system
|
||||
Dm = zeros(length(time_vector), 2);
|
||||
Dm(:, 2) = pi;
|
||||
|
||||
opts_inputs = struct(...
|
||||
'Ty', Ty, ...
|
||||
'Ry', Ry, ...
|
||||
'Rz', Rz, ...
|
||||
'Dh', Dh, ...
|
||||
'Dm', Dm ...
|
||||
);
|
||||
|
||||
initializeInputs(opts_inputs);
|
||||
|
||||
%% Initialize Ground
|
||||
initializeGround();
|
||||
|
||||
%% Initialize Granite
|
||||
initializeGranite();
|
||||
|
||||
%% Initialize Translation stage
|
||||
initializeTy();
|
||||
|
||||
%% Initialize Tilt Stage
|
||||
initializeRy();
|
||||
|
||||
%% Initialize Spindle
|
||||
initializeRz();
|
||||
|
||||
%% Initialize Hexapod Symétrie
|
||||
initializeMicroHexapod();
|
||||
|
||||
%% Initialize Center of Gravity compensation
|
||||
initializeAxisc();
|
||||
|
||||
%% Initialize NASS
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
|
||||
%% Initialize Sample
|
||||
initializeSample(struct('mass', 20));
|
@ -1,5 +0,0 @@
|
||||
%%
|
||||
clear; close all; clc;
|
||||
|
||||
%%
|
||||
sim('sim_nano_station_disp.slx');
|
@ -1,56 +0,0 @@
|
||||
%%
|
||||
figure;
|
||||
|
||||
%% Tx
|
||||
subplot(2, 3, 1);
|
||||
hold on;
|
||||
plot(pos.Time, pos.Data(:, 1), 'k-');
|
||||
plot(setpoint.Time, setpoint.Data(:, 1), 'k--');
|
||||
legend({'x - pos', 'x - setpoint'});
|
||||
hold off;
|
||||
xlabel('Time (s)'); ylabel('Position (m)');
|
||||
|
||||
%% Ty
|
||||
subplot(2, 3, 2);
|
||||
hold on;
|
||||
plot(pos.Time, pos.Data(:, 2), 'k-');
|
||||
plot(setpoint.Time, setpoint.Data(:, 2), 'k--');
|
||||
legend({'y - pos', 'y - setpoint'});
|
||||
hold off;
|
||||
xlabel('Time (s)'); ylabel('Position (m)');
|
||||
|
||||
%% Tz
|
||||
subplot(2, 3, 3);
|
||||
hold on;
|
||||
plot(pos.Time, pos.Data(:, 3), 'k-');
|
||||
plot(setpoint.Time, setpoint.Data(:, 3), 'k--');
|
||||
legend({'z - pos', 'z - setpoint'});
|
||||
hold off;
|
||||
xlabel('Time (s)'); ylabel('Position (m)');
|
||||
|
||||
%% Rx
|
||||
subplot(2, 3, 4);
|
||||
hold on;
|
||||
plot(pos.Time, pos.Data(:, 4), 'k-');
|
||||
plot(setpoint.Time, setpoint.Data(:, 4), 'k--');
|
||||
legend({'$\theta_x$ - pos', '$\theta_x$ - setpoint'});
|
||||
hold off;
|
||||
xlabel('Time (s)'); ylabel('Rotation (rad)');
|
||||
|
||||
%% Ry
|
||||
subplot(2, 3, 5);
|
||||
hold on;
|
||||
plot(pos.Time, pos.Data(:, 5), 'k-');
|
||||
plot(setpoint.Time, setpoint.Data(:, 5), 'k--');
|
||||
legend({'$\theta_y$ - pos', '$\theta_y$ - setpoint'});
|
||||
hold off;
|
||||
xlabel('Time (s)'); ylabel('Rotation (rad)');
|
||||
|
||||
%% Rz
|
||||
subplot(2, 3, 6);
|
||||
hold on;
|
||||
plot(pos.Time, pos.Data(:, 6), 'k-');
|
||||
plot(setpoint.Time, setpoint.Data(:, 6), 'k--');
|
||||
legend({'$\theta_z$ - pos', '$\theta_z$ - setpoint'});
|
||||
hold off;
|
||||
xlabel('Time (s)'); ylabel('Rotation (rad)');
|
@ -1,71 +0,0 @@
|
||||
%% Compute position angle from R and Q
|
||||
thetas_R = zeros(length(pos.Time), 3);
|
||||
thetas_Q = zeros(length(pos.Time), 3);
|
||||
|
||||
for i = 1:length(pos.Time)
|
||||
[thetax, thetay, thetaz] = RM2angle(R.Data(:, :, i));
|
||||
thetas_R(i, 1) = thetax; thetas_R(i, 2) = thetay; thetas_R(i, 3) = thetaz;
|
||||
|
||||
[thetax, thetay, thetaz] = quaternionToEulerAngles(Q.Data(i, :));
|
||||
thetas_Q(i, 1) = thetax; thetas_Q(i, 2) = thetay; thetas_Q(i, 3) = thetaz;
|
||||
end
|
||||
|
||||
%% Compute setpoint
|
||||
setpoint_c = zeros(length(pos.Time), 6);
|
||||
|
||||
for i = 1:length(pos.Time)
|
||||
setpoint_c(i, :) = computeSetpoint(ty.Data(i), ry.Data(i), rz.Data(i));
|
||||
end
|
||||
|
||||
%%
|
||||
figure;
|
||||
hold on;
|
||||
plot(pos.Time, pos.Data(:, 1), 'k-', 'DisplayName', 'position');
|
||||
plot(pos.Time, setpoint_c(:, 1), '--', 'DisplayName', 'Computed setpoint');
|
||||
hold off;
|
||||
legend();
|
||||
xlabel('Time (s)'); ylabel('Translation (m)');
|
||||
|
||||
%%
|
||||
figure;
|
||||
hold on;
|
||||
plot(pos.Time, pos.Data(:, 2), 'k-', 'DisplayName', 'position');
|
||||
plot(pos.Time, setpoint_c(:, 2), '--', 'DisplayName', 'Computed setpoint');
|
||||
hold off;
|
||||
legend();
|
||||
xlabel('Time (s)'); ylabel('Translation (m)');
|
||||
%%
|
||||
figure;
|
||||
hold on;
|
||||
plot(pos.Time, pos.Data(:, 3), 'k-', 'DisplayName', 'position');
|
||||
plot(pos.Time, setpoint_c(:, 3), '--', 'DisplayName', 'Computed setpoint');
|
||||
hold off;
|
||||
legend();
|
||||
xlabel('Time (s)'); ylabel('Translation (m)');
|
||||
|
||||
%%
|
||||
figure;
|
||||
hold on;
|
||||
plot(pos.Time, pos.Data(:, 4), 'k-', 'DisplayName', 'position');
|
||||
plot(pos.Time, setpoint_c(:, 4), '--', 'DisplayName', 'Computed setpoint');
|
||||
hold off;
|
||||
legend();
|
||||
xlabel('Time (s)'); ylabel('Rotation (rad)');
|
||||
|
||||
%%
|
||||
figure;
|
||||
hold on;
|
||||
plot(pos.Time, pos.Data(:, 5), 'k-', 'DisplayName', 'position');
|
||||
plot(pos.Time, setpoint_c(:, 5), '--', 'DisplayName', 'Computed setpoint');
|
||||
hold off;
|
||||
legend();
|
||||
xlabel('Time (s)'); ylabel('Rotation (rad)');
|
||||
|
||||
%%
|
||||
figure;
|
||||
hold on;
|
||||
plot(pos.Time, pos.Data(:, 6), 'k-', 'DisplayName', 'position');
|
||||
plot(pos.Time, setpoint_c(:, 6), '--', 'DisplayName', 'Computed setpoint');
|
||||
hold off;
|
||||
legend();
|
||||
xlabel('Time (s)'); ylabel('Rotation (rad)');
|
Loading…
Reference in New Issue
Block a user