Remove unused matlab files

This commit is contained in:
Thomas Dehaeze 2019-12-11 14:46:45 +01:00
parent eda325fae2
commit 6a3481b8ac
8 changed files with 0 additions and 368 deletions

View File

@ -1,14 +0,0 @@
%%
clear; close all; clc;
%% Demonstration of stroke of each stage
% Initalize data for demonstration
run displacement_init.m
% Run the simulation
run displacement_sim.m
%% Test the measurement of sample position
run sample_pos_init.m
run sample_pos_sim.m

View File

@ -1,98 +0,0 @@
%%
clear; close all; clc;
%% Initialize simulation configuration
opts_sim = struct(...
'Tsim', 30 ...
);
initializeSimConf(opts_sim);
%% Initialize Inputs
load('./mat/sim_conf.mat', 'sim_conf')
time_vector = 0:sim_conf.Ts:sim_conf.Tsim;
% Translation Stage
T_ty = 4;
ty = zeros(length(time_vector), 1);
ty(1:T_ty/sim_conf.Ts) = 10e-3*sin(2*pi*(1/2)*time_vector(1:T_ty/sim_conf.Ts));
% Tilt Stage
T_ry = 4;
ry = zeros(length(time_vector), 1);
ry((T_ty)/sim_conf.Ts:(T_ty+T_ry)/sim_conf.Ts) = 2*pi*(3/360)*sin(2*pi*(1/2)*time_vector(T_ty/sim_conf.Ts:(T_ty+T_ry)/sim_conf.Ts));
% Spindle
T_rz = 4;
rz = zeros(length(time_vector), 1);
rz((T_ty+T_ry)/sim_conf.Ts:(T_ty+T_ry+T_rz)/sim_conf.Ts) = 2*pi*0.5*(time_vector((T_ty+T_ry)/sim_conf.Ts:(T_ty+T_ry+T_rz)/sim_conf.Ts)-time_vector((T_ty+T_ry)/sim_conf.Ts));
rz((T_ty+T_ry+T_rz)/sim_conf.Ts:end) = rz((T_ty+T_ry+T_rz)/sim_conf.Ts);
% Micro Hexapod
T_u_hexa = 10;
u_hexa = zeros(length(time_vector), 6);
% Tz
u_hexa((T_ty+T_ry+T_rz)/sim_conf.Ts:(T_ty+T_ry+T_rz+2)/sim_conf.Ts, 3) = 10e-3*sin(2*pi*(1/2)*(time_vector((T_ty+T_ry+T_rz)/sim_conf.Ts:(T_ty+T_ry+T_rz+2)/sim_conf.Ts)));
% Tx-Ty
u_hexa((T_ty+T_ry+T_rz+2)/sim_conf.Ts:(T_ty+T_ry+T_rz+3)/sim_conf.Ts, 1) = 10e-3*(time_vector((T_ty+T_ry+T_rz+2)/sim_conf.Ts:(T_ty+T_ry+T_rz+3)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+2)/sim_conf.Ts));
u_hexa((T_ty+T_ry+T_rz+3)/sim_conf.Ts:(T_ty+T_ry+T_rz+5)/sim_conf.Ts, 1) = 10e-3*cos(2*pi*(1/2)*(time_vector((T_ty+T_ry+T_rz+3)/sim_conf.Ts:(T_ty+T_ry+T_rz+5)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+3)/sim_conf.Ts)));
u_hexa((T_ty+T_ry+T_rz+3)/sim_conf.Ts:(T_ty+T_ry+T_rz+5)/sim_conf.Ts, 2) = 10e-3*sin(2*pi*(1/2)*(time_vector((T_ty+T_ry+T_rz+3)/sim_conf.Ts:(T_ty+T_ry+T_rz+5)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+3)/sim_conf.Ts)));
u_hexa((T_ty+T_ry+T_rz+5)/sim_conf.Ts:(T_ty+T_ry+T_rz+6)/sim_conf.Ts, 1) = 10e-3 - 10e-3*(time_vector((T_ty+T_ry+T_rz+5)/sim_conf.Ts:(T_ty+T_ry+T_rz+6)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+5)/sim_conf.Ts));
% Theta x Theta y
u_hexa((T_ty+T_ry+T_rz+6)/sim_conf.Ts:(T_ty+T_ry+T_rz+7)/sim_conf.Ts, 1) = 2*pi*(3/360)*(time_vector((T_ty+T_ry+T_rz+6)/sim_conf.Ts:(T_ty+T_ry+T_rz+7)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+6)/sim_conf.Ts));
u_hexa((T_ty+T_ry+T_rz+7)/sim_conf.Ts:(T_ty+T_ry+T_rz+9)/sim_conf.Ts, 1) = 2*pi*(3/360)*cos(2*pi*(1/2)*(time_vector((T_ty+T_ry+T_rz+7)/sim_conf.Ts:(T_ty+T_ry+T_rz+9)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+7)/sim_conf.Ts)));
u_hexa((T_ty+T_ry+T_rz+7)/sim_conf.Ts:(T_ty+T_ry+T_rz+9)/sim_conf.Ts, 2) = 2*pi*(3/360)*sin(2*pi*(1/2)*(time_vector((T_ty+T_ry+T_rz+7)/sim_conf.Ts:(T_ty+T_ry+T_rz+9)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+7)/sim_conf.Ts)));
u_hexa((T_ty+T_ry+T_rz+9)/sim_conf.Ts:(T_ty+T_ry+T_rz+10)/sim_conf.Ts, 1) = 2*pi*(3/360) - 2*pi*(3/360)*(time_vector((T_ty+T_ry+T_rz+9)/sim_conf.Ts:(T_ty+T_ry+T_rz+10)/sim_conf.Ts)-time_vector((T_ty+T_ry+T_rz+9)/sim_conf.Ts));
% Gravity Compensator system
T_mass_start = T_ty+T_ry+T_rz+T_u_hexa;
mass = zeros(length(time_vector), 2);
mass((T_mass_start)/sim_conf.Ts:(T_mass_start+2)/sim_conf.Ts, 1) = 2*pi*( 20/360)*(time_vector((T_mass_start)/sim_conf.Ts:(T_mass_start+2)/sim_conf.Ts)-time_vector(T_mass_start/sim_conf.Ts));
mass((T_mass_start)/sim_conf.Ts:(T_mass_start+2)/sim_conf.Ts, 2) = 2*pi*(-10/360)*(time_vector((T_mass_start)/sim_conf.Ts:(T_mass_start+2)/sim_conf.Ts)-time_vector(T_mass_start/sim_conf.Ts));
mass((T_mass_start+2)/sim_conf.Ts:(T_mass_start+3)/sim_conf.Ts, 1) = mass((T_mass_start+2)/sim_conf.Ts, 1);
mass((T_mass_start+2)/sim_conf.Ts:(T_mass_start+3)/sim_conf.Ts, 2) = mass((T_mass_start+2)/sim_conf.Ts, 2);
mass((T_mass_start+3)/sim_conf.Ts:(T_mass_start+5)/sim_conf.Ts, 1) = mass((T_mass_start+2)/sim_conf.Ts, 1)-2*pi*( 20/360)*(time_vector((T_mass_start+3)/sim_conf.Ts:(T_mass_start+5)/sim_conf.Ts)-time_vector((T_mass_start+3)/sim_conf.Ts));
mass((T_mass_start+3)/sim_conf.Ts:(T_mass_start+5)/sim_conf.Ts, 2) = mass((T_mass_start+2)/sim_conf.Ts, 2)-2*pi*(-10/360)*(time_vector((T_mass_start+3)/sim_conf.Ts:(T_mass_start+5)/sim_conf.Ts)-time_vector((T_mass_start+3)/sim_conf.Ts));
opts_inputs = struct(...
'Dy', ty, ...
'Ry', ry, ...
'Rz', rz, ...
'Dh', u_hexa, ...
'Rm', mass ...
);
initializeInputs(opts_inputs);
%% Initialize SolidWorks Data
initializeSolids();
%% Initialize Ground
initializeGround();
%% Initialize Granite
initializeGranite();
%% Initialize Translation stage
initializeTy();
%% Initialize Tilt Stage
initializeRy();
%% Initialize Spindle
initializeRz();
%% Initialize Hexapod Symétrie
initializeMicroHexapod();
%% Initialize Center of Gravity compensation
initializeAxisc();
%% Initialize NASS
initializeNanoHexapod(struct('actuator', 'lorentz'));
%% Initialize Sample
initializeSample(struct('mass', 20));

View File

@ -1,5 +0,0 @@
%%
clear; close all; clc;
%%
sim('sim_nano_station_disp.slx');

View File

@ -1,50 +0,0 @@
%% Plot all 6 errors expressed in the NASS base
figure;
%% Tx
subplot(2, 3, 1);
hold on;
plot(error_nass.Time, error_nass.Data(:, 1), 'k-', 'DisplayName', '$\epsilon_x$');
legend();
hold off;
xlabel('Time (s)'); ylabel('Position (m)');
%% Ty
subplot(2, 3, 2);
hold on;
plot(error_nass.Time, error_nass.Data(:, 2), 'k-', 'DisplayName', '$\epsilon_y$');
legend();
hold off;
xlabel('Time (s)'); ylabel('Position (m)');
%% Tz
subplot(2, 3, 3);
hold on;
plot(error_nass.Time, error_nass.Data(:, 3), 'k-', 'DisplayName', '$\epsilon_z$');
legend();
hold off;
xlabel('Time (s)'); ylabel('Position (m)');
%% Rx
subplot(2, 3, 4);
hold on;
plot(error_nass.Time, error_nass.Data(:, 4), 'k-', 'DisplayName', '$\epsilon_{\theta_x}$');
legend();
hold off;
xlabel('Time (s)'); ylabel('Rotation (rad)');
%% Ry
subplot(2, 3, 5);
hold on;
plot(error_nass.Time, error_nass.Data(:, 5), 'k-', 'DisplayName', '$\epsilon_{\theta_y}$');
legend();
hold off;
xlabel('Time (s)'); ylabel('Rotation (rad)');
%% Rz
subplot(2, 3, 6);
hold on;
plot(error_nass.Time, error_nass.Data(:, 6), 'k-', 'DisplayName', '$\epsilon_{\theta_z}$');
legend();
hold off;
xlabel('Time (s)'); ylabel('Rotation (rad)');

View File

@ -1,69 +0,0 @@
%%
clear; close all; clc;
%% Initialize simulation configuration
opts_sim = struct(...
'Tsim', 0.001 ...
);
initializeSimConf(opts_sim);
%% Initialize Inputs
load('./mat/sim_conf.mat', 'sim_conf')
time_vector = 0:sim_conf.Ts:sim_conf.Tsim;
% Translation Stage
Ty = 0*ones(length(time_vector), 1);
% Tilt Stage
Ry = 2*pi*(0/360)*ones(length(time_vector), 1);
% Ry = 2*pi*(3/360)*sin(2*pi*time_vector);
% Spindle
Rz = 2*pi*0*(time_vector);
% Rz = 2*pi*(190/360)*ones(length(time_vector), 1);
% Micro Hexapod
Dh = zeros(length(time_vector), 6);
% Gravity Compensator system
Dm = zeros(length(time_vector), 2);
Dm(:, 2) = pi;
opts_inputs = struct(...
'Ty', Ty, ...
'Ry', Ry, ...
'Rz', Rz, ...
'Dh', Dh, ...
'Dm', Dm ...
);
initializeInputs(opts_inputs);
%% Initialize Ground
initializeGround();
%% Initialize Granite
initializeGranite();
%% Initialize Translation stage
initializeTy();
%% Initialize Tilt Stage
initializeRy();
%% Initialize Spindle
initializeRz();
%% Initialize Hexapod Symétrie
initializeMicroHexapod();
%% Initialize Center of Gravity compensation
initializeAxisc();
%% Initialize NASS
initializeNanoHexapod(struct('actuator', 'piezo'));
%% Initialize Sample
initializeSample(struct('mass', 20));

View File

@ -1,5 +0,0 @@
%%
clear; close all; clc;
%%
sim('sim_nano_station_disp.slx');

View File

@ -1,56 +0,0 @@
%%
figure;
%% Tx
subplot(2, 3, 1);
hold on;
plot(pos.Time, pos.Data(:, 1), 'k-');
plot(setpoint.Time, setpoint.Data(:, 1), 'k--');
legend({'x - pos', 'x - setpoint'});
hold off;
xlabel('Time (s)'); ylabel('Position (m)');
%% Ty
subplot(2, 3, 2);
hold on;
plot(pos.Time, pos.Data(:, 2), 'k-');
plot(setpoint.Time, setpoint.Data(:, 2), 'k--');
legend({'y - pos', 'y - setpoint'});
hold off;
xlabel('Time (s)'); ylabel('Position (m)');
%% Tz
subplot(2, 3, 3);
hold on;
plot(pos.Time, pos.Data(:, 3), 'k-');
plot(setpoint.Time, setpoint.Data(:, 3), 'k--');
legend({'z - pos', 'z - setpoint'});
hold off;
xlabel('Time (s)'); ylabel('Position (m)');
%% Rx
subplot(2, 3, 4);
hold on;
plot(pos.Time, pos.Data(:, 4), 'k-');
plot(setpoint.Time, setpoint.Data(:, 4), 'k--');
legend({'$\theta_x$ - pos', '$\theta_x$ - setpoint'});
hold off;
xlabel('Time (s)'); ylabel('Rotation (rad)');
%% Ry
subplot(2, 3, 5);
hold on;
plot(pos.Time, pos.Data(:, 5), 'k-');
plot(setpoint.Time, setpoint.Data(:, 5), 'k--');
legend({'$\theta_y$ - pos', '$\theta_y$ - setpoint'});
hold off;
xlabel('Time (s)'); ylabel('Rotation (rad)');
%% Rz
subplot(2, 3, 6);
hold on;
plot(pos.Time, pos.Data(:, 6), 'k-');
plot(setpoint.Time, setpoint.Data(:, 6), 'k--');
legend({'$\theta_z$ - pos', '$\theta_z$ - setpoint'});
hold off;
xlabel('Time (s)'); ylabel('Rotation (rad)');

View File

@ -1,71 +0,0 @@
%% Compute position angle from R and Q
thetas_R = zeros(length(pos.Time), 3);
thetas_Q = zeros(length(pos.Time), 3);
for i = 1:length(pos.Time)
[thetax, thetay, thetaz] = RM2angle(R.Data(:, :, i));
thetas_R(i, 1) = thetax; thetas_R(i, 2) = thetay; thetas_R(i, 3) = thetaz;
[thetax, thetay, thetaz] = quaternionToEulerAngles(Q.Data(i, :));
thetas_Q(i, 1) = thetax; thetas_Q(i, 2) = thetay; thetas_Q(i, 3) = thetaz;
end
%% Compute setpoint
setpoint_c = zeros(length(pos.Time), 6);
for i = 1:length(pos.Time)
setpoint_c(i, :) = computeSetpoint(ty.Data(i), ry.Data(i), rz.Data(i));
end
%%
figure;
hold on;
plot(pos.Time, pos.Data(:, 1), 'k-', 'DisplayName', 'position');
plot(pos.Time, setpoint_c(:, 1), '--', 'DisplayName', 'Computed setpoint');
hold off;
legend();
xlabel('Time (s)'); ylabel('Translation (m)');
%%
figure;
hold on;
plot(pos.Time, pos.Data(:, 2), 'k-', 'DisplayName', 'position');
plot(pos.Time, setpoint_c(:, 2), '--', 'DisplayName', 'Computed setpoint');
hold off;
legend();
xlabel('Time (s)'); ylabel('Translation (m)');
%%
figure;
hold on;
plot(pos.Time, pos.Data(:, 3), 'k-', 'DisplayName', 'position');
plot(pos.Time, setpoint_c(:, 3), '--', 'DisplayName', 'Computed setpoint');
hold off;
legend();
xlabel('Time (s)'); ylabel('Translation (m)');
%%
figure;
hold on;
plot(pos.Time, pos.Data(:, 4), 'k-', 'DisplayName', 'position');
plot(pos.Time, setpoint_c(:, 4), '--', 'DisplayName', 'Computed setpoint');
hold off;
legend();
xlabel('Time (s)'); ylabel('Rotation (rad)');
%%
figure;
hold on;
plot(pos.Time, pos.Data(:, 5), 'k-', 'DisplayName', 'position');
plot(pos.Time, setpoint_c(:, 5), '--', 'DisplayName', 'Computed setpoint');
hold off;
legend();
xlabel('Time (s)'); ylabel('Rotation (rad)');
%%
figure;
hold on;
plot(pos.Time, pos.Data(:, 6), 'k-', 'DisplayName', 'position');
plot(pos.Time, setpoint_c(:, 6), '--', 'DisplayName', 'Computed setpoint');
hold off;
legend();
xlabel('Time (s)'); ylabel('Rotation (rad)');