Analysis of IFF with amplified actuators

This commit is contained in:
2020-05-20 16:55:50 +02:00
parent 1466105c77
commit 63da759b5f
11 changed files with 244 additions and 26 deletions

View File

@@ -657,8 +657,8 @@ Finally, we use the following controller for the Decentralized Direct Velocity F
*** Identification of the undamped plant :ignore:
#+begin_src matlab :exports none
Kdvf_backup = Kdvf;
Kdvf = tf(zeros(6));
Kiff_backup = Kiff;
Kiff = tf(zeros(6));
#+end_src
#+begin_src matlab :exports none
@@ -687,7 +687,7 @@ Finally, we use the following controller for the Decentralized Direct Velocity F
#+end_src
#+begin_src matlab :exports none
Kdvf = Kdvf_backup;
Kiff = Kiff_backup;
#+end_src
*** Identification of the damped plant :ignore:
@@ -790,6 +790,16 @@ Finally, we use the following controller for the Decentralized Direct Velocity F
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/amplified_piezo_iff_plant_damped_X.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:amplified_piezo_iff_plant_damped_X
#+caption: Primary plant in the task space with (dashed) and without (solid) IFF
#+RESULTS:
[[file:figs/amplified_piezo_iff_plant_damped_X.png]]
#+begin_src matlab :exports none
freqs = logspace(0, 3, 5000);
@@ -827,6 +837,16 @@ Finally, we use the following controller for the Decentralized Direct Velocity F
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/amplified_piezo_iff_damped_plant_L.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:amplified_piezo_iff_damped_plant_L
#+caption: Primary plant in the space of the legs with (dashed) and without (solid) IFF
#+RESULTS:
[[file:figs/amplified_piezo_iff_damped_plant_L.png]]
*** Effect of the Damping on the coupling dynamics :ignore:
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
@@ -849,6 +869,16 @@ Finally, we use the following controller for the Decentralized Direct Velocity F
ylim([1e-12, inf]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/amplified_piezo_iff_damped_coupling_X.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:amplified_piezo_iff_damped_coupling_X
#+caption: Coupling in the primary plant in the task with (dashed) and without (solid) IFF
#+RESULTS:
[[file:figs/amplified_piezo_iff_damped_coupling_X.png]]
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
@@ -869,3 +899,145 @@ Finally, we use the following controller for the Decentralized Direct Velocity F
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ylim([1e-9, inf]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/amplified_piezo_iff_damped_coupling_L.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:amplified_piezo_iff_damped_coupling_L
#+caption: Coupling in the primary plant in the space of the legs with (dashed) and without (solid) IFF
#+RESULTS:
[[file:figs/amplified_piezo_iff_damped_coupling_L.png]]
** Effect of the Low Authority Control on the Sensibility to Disturbances
*** Introduction :ignore:
*** Identification :ignore:
#+begin_src matlab :exports none
%% Name of the Simulink File
mdl = 'nass_model';
%% Micro-Hexapod
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Dwz'); io_i = io_i + 1; % Z Ground motion
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Fty_z'); io_i = io_i + 1; % Parasitic force Ty - Z
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Frz_z'); io_i = io_i + 1; % Parasitic force Rz - Z
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Fd'); io_i = io_i + 1; % Direct forces
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror
#+end_src
#+begin_src matlab :exports none
Kiff_backup = Kiff;
Kiff = tf(zeros(6));
#+end_src
#+begin_src matlab :exports none
Gd = {zeros(length(Ms), 1)};
for i = 1:length(Ms)
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
%% Run the linearization
G = linearize(mdl, io);
G.InputName = {'Dwz', 'Fty_z', 'Frz_z', 'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gd(i) = {G};
end
#+end_src
#+begin_src matlab :exports none
Kiff = Kiff_backup;
#+end_src
#+begin_src matlab :exports none
Gd_iff = {zeros(length(Ms), 1)};
for i = 1:length(Ms)
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
%% Run the linearization
G = linearize(mdl, io);
G.InputName = {'Dwz', 'Fty_z', 'Frz_z', 'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gd_iff(i) = {G};
end
#+end_src
*** Results :ignore:
#+begin_src matlab :exports none
freqs = logspace(0, 3, 5000);
figure;
subplot(2, 2, 1);
title('$D_{w,z}$ to $E_z$');
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Dwz'), freqs, 'Hz'))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd_iff{i}('Ez', 'Dwz'), freqs, 'Hz'))), '--', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/m]'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast');
subplot(2, 2, 2);
title('$F_{dz}$ to $E_z$');
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Fdz'), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd_iff{i}('Ez', 'Fdz'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/N]');
subplot(2, 2, 3);
title('$F_{T_y,z}$ to $E_z$');
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Fty_z'), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd_iff{i}('Ez', 'Fty_z'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
subplot(2, 2, 4);
title('$F_{R_z,z}$ to $E_z$');
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Frz_z'), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd_iff{i}('Ez', 'Frz_z'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/amplified_piezo_iff_disturbances.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:amplified_piezo_iff_disturbances
#+caption: Norm of the transfer function from vertical disturbances to vertical position error with (dashed) and without (solid) Integral Force Feedback applied
#+RESULTS:
[[file:figs/amplified_piezo_iff_disturbances.png]]
*** Conclusion :ignore:
#+begin_important
#+end_important