Publish html
This commit is contained in:
@@ -4,7 +4,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-03-26 jeu. 17:24 -->
|
||||
<!-- 2020-04-01 mer. 16:14 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Effect of Uncertainty on the support’s dynamics on the isolation platform dynamics</title>
|
||||
@@ -202,50 +202,28 @@
|
||||
<script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
|
||||
<script type="text/javascript" src="./js/readtheorg.js"></script>
|
||||
<script type="text/javascript">
|
||||
/*
|
||||
@licstart The following is the entire license notice for the
|
||||
JavaScript code in this tag.
|
||||
|
||||
Copyright (C) 2012-2020 Free Software Foundation, Inc.
|
||||
|
||||
The JavaScript code in this tag is free software: you can
|
||||
redistribute it and/or modify it under the terms of the GNU
|
||||
General Public License (GNU GPL) as published by the Free Software
|
||||
Foundation, either version 3 of the License, or (at your option)
|
||||
any later version. The code is distributed WITHOUT ANY WARRANTY;
|
||||
without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
|
||||
|
||||
As additional permission under GNU GPL version 3 section 7, you
|
||||
may distribute non-source (e.g., minimized or compacted) forms of
|
||||
that code without the copy of the GNU GPL normally required by
|
||||
section 4, provided you include this license notice and a URL
|
||||
through which recipients can access the Corresponding Source.
|
||||
|
||||
|
||||
@licend The above is the entire license notice
|
||||
for the JavaScript code in this tag.
|
||||
*/
|
||||
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
|
||||
<!--/*--><![CDATA[/*><!--*/
|
||||
function CodeHighlightOn(elem, id)
|
||||
{
|
||||
var target = document.getElementById(id);
|
||||
if(null != target) {
|
||||
elem.cacheClassElem = elem.className;
|
||||
elem.cacheClassTarget = target.className;
|
||||
target.className = "code-highlighted";
|
||||
elem.className = "code-highlighted";
|
||||
}
|
||||
}
|
||||
function CodeHighlightOff(elem, id)
|
||||
{
|
||||
var target = document.getElementById(id);
|
||||
if(elem.cacheClassElem)
|
||||
elem.className = elem.cacheClassElem;
|
||||
if(elem.cacheClassTarget)
|
||||
target.className = elem.cacheClassTarget;
|
||||
}
|
||||
/*]]>*///-->
|
||||
function CodeHighlightOn(elem, id)
|
||||
{
|
||||
var target = document.getElementById(id);
|
||||
if(null != target) {
|
||||
elem.cacheClassElem = elem.className;
|
||||
elem.cacheClassTarget = target.className;
|
||||
target.className = "code-highlighted";
|
||||
elem.className = "code-highlighted";
|
||||
}
|
||||
}
|
||||
function CodeHighlightOff(elem, id)
|
||||
{
|
||||
var target = document.getElementById(id);
|
||||
if(elem.cacheClassElem)
|
||||
elem.className = elem.cacheClassElem;
|
||||
if(elem.cacheClassTarget)
|
||||
target.className = elem.cacheClassTarget;
|
||||
}
|
||||
/*]]>*///-->
|
||||
// @license-end
|
||||
</script>
|
||||
<script>
|
||||
MathJax = {
|
||||
@@ -271,20 +249,20 @@ for the JavaScript code in this tag.
|
||||
<ul>
|
||||
<li><a href="#orgbe6e0b8">1. Simple Introductory Example</a>
|
||||
<ul>
|
||||
<li><a href="#org440a84d">1.1. Equations of motion</a></li>
|
||||
<li><a href="#org283e8c3">1.1. Equations of motion</a></li>
|
||||
<li><a href="#org8bd2a4a">1.2. Initialization of the support dynamics</a></li>
|
||||
<li><a href="#orgefb9b71">1.3. Initialization of the isolation platform</a></li>
|
||||
<li><a href="#org3bc4ad1">1.4. Comparison</a></li>
|
||||
<li><a href="#orgc2af076">1.5. Conclusion</a></li>
|
||||
<li><a href="#orgd28ebd8">1.5. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orge1d3484">2. Generalization to arbitrary dynamics</a>
|
||||
<ul>
|
||||
<li><a href="#org3948d1f">2.1. Introduction</a></li>
|
||||
<li><a href="#org283e8c3">2.2. Equations of motion</a></li>
|
||||
<li><a href="#org28c48e3">2.2. Equations of motion</a></li>
|
||||
<li><a href="#orgc20cabb">2.3. Compliance of the Support</a></li>
|
||||
<li><a href="#orgf1c8c33">2.4. Effect of the Isolation platform Stiffness.</a></li>
|
||||
<li><a href="#org67810a4">2.5. Equivalent Inverse Multiplicative Uncertainty</a></li>
|
||||
<li><a href="#org67810a4">2.4. Equivalent Inverse Multiplicative Uncertainty</a></li>
|
||||
<li><a href="#orge950395">2.5. Effect of the Isolation platform Stiffness</a></li>
|
||||
<li><a href="#org6967854">2.6. Reduce the Uncertainty on the plant</a>
|
||||
<ul>
|
||||
<li><a href="#orgafebadd">2.6.1. Effect of the platform’s stiffness \(k\)</a></li>
|
||||
@@ -292,7 +270,7 @@ for the JavaScript code in this tag.
|
||||
<li><a href="#orgd2fc303">2.6.3. Effect of the platform’s mass \(m\)</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgd28ebd8">2.7. Conclusion</a></li>
|
||||
<li><a href="#org718f0f1">2.7. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
@@ -346,8 +324,8 @@ The goal is to stabilize \(x\) using \(F\) in spite of uncertainty on the suppor
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org440a84d" class="outline-3">
|
||||
<h3 id="org440a84d"><span class="section-number-3">1.1</span> Equations of motion</h3>
|
||||
<div id="outline-container-org283e8c3" class="outline-3">
|
||||
<h3 id="org283e8c3"><span class="section-number-3">1.1</span> Equations of motion</h3>
|
||||
<div class="outline-text-3" id="text-1-1">
|
||||
<p>
|
||||
If we write the equation of motion of the system in Figure <a href="#org41bc770">1</a>, we obtain:
|
||||
@@ -451,8 +429,8 @@ The obtained dynamics from \(F\) to \(x\) for the three isolation platform are s
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgc2af076" class="outline-3">
|
||||
<h3 id="orgc2af076"><span class="section-number-3">1.5</span> Conclusion</h3>
|
||||
<div id="outline-container-orgd28ebd8" class="outline-3">
|
||||
<h3 id="orgd28ebd8"><span class="section-number-3">1.5</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-1-5">
|
||||
<div class="important">
|
||||
<p>
|
||||
@@ -497,8 +475,8 @@ Now let’s consider the system consisting of a mass-spring-system (the isol
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org283e8c3" class="outline-3">
|
||||
<h3 id="org283e8c3"><span class="section-number-3">2.2</span> Equations of motion</h3>
|
||||
<div id="outline-container-org28c48e3" class="outline-3">
|
||||
<h3 id="org28c48e3"><span class="section-number-3">2.2</span> Equations of motion</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<p>
|
||||
We have to following equations of motion:
|
||||
@@ -581,7 +559,7 @@ The parameters are defined below.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">r0 = 0.5;
|
||||
tau = 1<span class="org-type">/</span>(50<span class="org-type">*</span>2<span class="org-type">*</span><span class="org-constant">pi</span>);
|
||||
tau = 1<span class="org-type">/</span>(100<span class="org-type">*</span>2<span class="org-type">*</span><span class="org-constant">pi</span>);
|
||||
rinf = 10;
|
||||
|
||||
wI = (tau<span class="org-type">*</span>s <span class="org-type">+</span> r0)<span class="org-type">/</span>((tau<span class="org-type">/</span>rinf)<span class="org-type">*</span>s <span class="org-type">+</span> 1);
|
||||
@@ -617,10 +595,48 @@ A set of uncertainty support’s compliance transfer functions is shown in F
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgf1c8c33" class="outline-3">
|
||||
<h3 id="orgf1c8c33"><span class="section-number-3">2.4</span> Effect of the Isolation platform Stiffness.</h3>
|
||||
<div id="outline-container-org67810a4" class="outline-3">
|
||||
<h3 id="org67810a4"><span class="section-number-3">2.4</span> Equivalent Inverse Multiplicative Uncertainty</h3>
|
||||
<div class="outline-text-3" id="text-2-4">
|
||||
<p>
|
||||
Let’s express the uncertainty of the plant \(x/F\) as a function of the parameters as well as of the uncertainty on the platform’s compliance:
|
||||
</p>
|
||||
\begin{align*}
|
||||
\frac{x}{F} &= \frac{1}{ms^2 + cs + k + ms^2(cs + k)G_0^\prime(s)(1 + w_I(s)\Delta(s))}\\
|
||||
&= \frac{1}{ms^2 + cs + k + ms^2(cs + k)G_0^\prime(s) + ms^2(cs + k)G_0^\prime(s) w_I(s)\Delta(s)}\\
|
||||
&= \frac{1}{ms^2 + cs + k + ms^2(cs + k)G_0^\prime(s)} \cdot \frac{1}{1 + \frac{ms^2(cs + k)G_0^\prime(s) w_I(s)}{ms^2 + cs + k + ms^2(cs + k)G_0^\prime(s)} \Delta(s)}\\
|
||||
\end{align*}
|
||||
|
||||
<div class="important">
|
||||
<p>
|
||||
We can the plant dynamics that as an inverse multiplicative uncertainty (Figure <a href="#orge738173">8</a>):
|
||||
</p>
|
||||
\begin{equation}
|
||||
\frac{x}{F} = G_0(s) (1 + w_{iI}(s) \Delta(s))^{-1}
|
||||
\end{equation}
|
||||
<p>
|
||||
with:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>\(G_0(s) = \frac{1}{ms^2 + cs + k + ms^2(cs + k)G_0^\prime(s)}\)</li>
|
||||
<li>\(w_{iI}(s) = \frac{ms^2(cs + k)G_0^\prime(s) w_I(s)}{ms^2 + cs + k + ms^2(cs + k)G_0^\prime(s)} = G_0(s) ms^2(cs + k)G_0^\prime(s) w_I(s)\)</li>
|
||||
</ul>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<div id="orge738173" class="figure">
|
||||
<p><img src="figs/inverse_uncertainty_set.png" alt="inverse_uncertainty_set.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 8: </span>Inverse Multiplicative Uncertainty</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge950395" class="outline-3">
|
||||
<h3 id="orge950395"><span class="section-number-3">2.5</span> Effect of the Isolation platform Stiffness</h3>
|
||||
<div class="outline-text-3" id="text-2-5">
|
||||
<p>
|
||||
Let’s first fix the mass of the payload to be isolated:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
@@ -645,6 +661,8 @@ Soft Isolation Platform:
|
||||
c_soft = 0.1<span class="org-type">*</span>sqrt(m<span class="org-type">*</span>k_soft);
|
||||
|
||||
G_soft = 1<span class="org-type">/</span>(m<span class="org-type">*</span>s<span class="org-type">^</span>2 <span class="org-type">+</span> c_soft<span class="org-type">*</span>s <span class="org-type">+</span> k_soft <span class="org-type">+</span> m<span class="org-type">*</span>s<span class="org-type">^</span>2<span class="org-type">*</span>(c_soft<span class="org-type">*</span>s <span class="org-type">+</span> k_soft)<span class="org-type">*</span>Gp);
|
||||
G0_soft = 1<span class="org-type">/</span>(m<span class="org-type">*</span>s<span class="org-type">^</span>2 <span class="org-type">+</span> c_soft<span class="org-type">*</span>s <span class="org-type">+</span> k_soft <span class="org-type">+</span> m<span class="org-type">*</span>s<span class="org-type">^</span>2<span class="org-type">*</span>(c_soft<span class="org-type">*</span>s <span class="org-type">+</span> k_soft)<span class="org-type">*</span>Gp0);
|
||||
wiI_soft = Gp0<span class="org-type">*</span>m<span class="org-type">*</span>s<span class="org-type">^</span>2<span class="org-type">*</span>(c_soft<span class="org-type">*</span>s <span class="org-type">+</span> k_soft)<span class="org-type">*</span>G0_soft<span class="org-type">*</span>wI;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -656,6 +674,8 @@ Mid Isolation Platform
|
||||
c_mid = 0.1<span class="org-type">*</span>sqrt(m<span class="org-type">*</span>k_mid);
|
||||
|
||||
G_mid = 1<span class="org-type">/</span>(m<span class="org-type">*</span>s<span class="org-type">^</span>2 <span class="org-type">+</span> c_mid<span class="org-type">*</span>s <span class="org-type">+</span> k_mid <span class="org-type">+</span> m<span class="org-type">*</span>s<span class="org-type">^</span>2<span class="org-type">*</span>(c_mid<span class="org-type">*</span>s <span class="org-type">+</span> k_mid)<span class="org-type">*</span>Gp);
|
||||
G0_mid = 1<span class="org-type">/</span>(m<span class="org-type">*</span>s<span class="org-type">^</span>2 <span class="org-type">+</span> c_mid<span class="org-type">*</span>s <span class="org-type">+</span> k_mid <span class="org-type">+</span> m<span class="org-type">*</span>s<span class="org-type">^</span>2<span class="org-type">*</span>(c_mid<span class="org-type">*</span>s <span class="org-type">+</span> k_mid)<span class="org-type">*</span>Gp0);
|
||||
wiI_mid = Gp0<span class="org-type">*</span>m<span class="org-type">*</span>s<span class="org-type">^</span>2<span class="org-type">*</span>(c_mid<span class="org-type">*</span>s <span class="org-type">+</span> k_mid)<span class="org-type">*</span>G0_mid<span class="org-type">*</span>wI;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -667,18 +687,20 @@ Stiff Isolation Platform
|
||||
c_stiff = 0.1<span class="org-type">*</span>sqrt(m<span class="org-type">*</span>k_stiff);
|
||||
|
||||
G_stiff = 1<span class="org-type">/</span>(m<span class="org-type">*</span>s<span class="org-type">^</span>2 <span class="org-type">+</span> c_stiff<span class="org-type">*</span>s <span class="org-type">+</span> k_stiff <span class="org-type">+</span> m<span class="org-type">*</span>s<span class="org-type">^</span>2<span class="org-type">*</span>(c_stiff<span class="org-type">*</span>s <span class="org-type">+</span> k_stiff)<span class="org-type">*</span>Gp);
|
||||
G0_stiff = 1<span class="org-type">/</span>(m<span class="org-type">*</span>s<span class="org-type">^</span>2 <span class="org-type">+</span> c_stiff<span class="org-type">*</span>s <span class="org-type">+</span> k_stiff <span class="org-type">+</span> m<span class="org-type">*</span>s<span class="org-type">^</span>2<span class="org-type">*</span>(c_stiff<span class="org-type">*</span>s <span class="org-type">+</span> k_stiff)<span class="org-type">*</span>Gp0);
|
||||
wiI_stiff = Gp0<span class="org-type">*</span>m<span class="org-type">*</span>s<span class="org-type">^</span>2<span class="org-type">*</span>(c_stiff<span class="org-type">*</span>s <span class="org-type">+</span> k_stiff)<span class="org-type">*</span>G0_stiff<span class="org-type">*</span>wI;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
The obtained transfer functions \(x/F\) for each of the three platforms are shown in Figure <a href="#org89aa89f">8</a>.
|
||||
The obtained transfer functions \(x/F\) for each of the three platforms are shown in Figure <a href="#org89aa89f">9</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org89aa89f" class="figure">
|
||||
<p><img src="figs/plant_uncertainty_stiffness_isolator.png" alt="plant_uncertainty_stiffness_isolator.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 8: </span>Obtained plant for the three isolators (<a href="./figs/plant_uncertainty_stiffness_isolator.png">png</a>, <a href="./figs/plant_uncertainty_stiffness_isolator.pdf">pdf</a>)</p>
|
||||
<p><span class="figure-number">Figure 9: </span>Obtained plant for the three isolators (<a href="./figs/plant_uncertainty_stiffness_isolator.png">png</a>, <a href="./figs/plant_uncertainty_stiffness_isolator.pdf">pdf</a>)</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
@@ -688,44 +710,6 @@ This is due to the fact that with the current model, at high frequency, the supp
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org67810a4" class="outline-3">
|
||||
<h3 id="org67810a4"><span class="section-number-3">2.5</span> Equivalent Inverse Multiplicative Uncertainty</h3>
|
||||
<div class="outline-text-3" id="text-2-5">
|
||||
<p>
|
||||
Let’s express the uncertainty of the plant \(x/F\) as a function of the parameters as well as of the uncertainty on the platform’s compliance:
|
||||
</p>
|
||||
\begin{align*}
|
||||
\frac{x}{F} &= \frac{1}{ms^2 + cs + k + ms^2(cs + k)G_0^\prime(s)(1 + w_I(s)\Delta(s))}\\
|
||||
&= \frac{1}{ms^2 + cs + k + ms^2(cs + k)G_0^\prime(s) + ms^2(cs + k)G_0^\prime(s) w_I(s)\Delta(s)}\\
|
||||
&= \frac{1}{ms^2 + cs + k + ms^2(cs + k)G_0^\prime(s)} \cdot \frac{1}{1 + \frac{ms^2(cs + k)G_0^\prime(s) w_I(s)}{ms^2 + cs + k + ms^2(cs + k)G_0^\prime(s)} \Delta(s)}\\
|
||||
\end{align*}
|
||||
|
||||
<div class="important">
|
||||
<p>
|
||||
We can the plant dynamics that as an inverse multiplicative uncertainty (Figure <a href="#orge738173">9</a>):
|
||||
</p>
|
||||
\begin{equation}
|
||||
\frac{x}{F} = G_0(s) (1 + w_{iI}(s) \Delta(s))^{-1}
|
||||
\end{equation}
|
||||
<p>
|
||||
with:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>\(G_0(s) = \frac{1}{ms^2 + cs + k + ms^2(cs + k)G_0^\prime(s)}\)</li>
|
||||
<li>\(w_{iI}(s) = \frac{ms^2(cs + k)G_0^\prime(s) w_I(s)}{ms^2 + cs + k + ms^2(cs + k)G_0^\prime(s)} = G_0(s) ms^2(cs + k)G_0^\prime(s) w_I(s)\)</li>
|
||||
</ul>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<div id="orge738173" class="figure">
|
||||
<p><img src="figs/inverse_uncertainty_set.png" alt="inverse_uncertainty_set.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 9: </span>Inverse Multiplicative Uncertainty</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org6967854" class="outline-3">
|
||||
<h3 id="org6967854"><span class="section-number-3">2.6</span> Reduce the Uncertainty on the plant</h3>
|
||||
<div class="outline-text-3" id="text-2-6">
|
||||
@@ -828,8 +812,8 @@ Let’s fix \(k = 10^7\ [N/m]\), \(\xi = \frac{c}{2\sqrt{km}} = 0.1\) and se
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd28ebd8" class="outline-3">
|
||||
<h3 id="orgd28ebd8"><span class="section-number-3">2.7</span> Conclusion</h3>
|
||||
<div id="outline-container-org718f0f1" class="outline-3">
|
||||
<h3 id="org718f0f1"><span class="section-number-3">2.7</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-2-7">
|
||||
<div class="important">
|
||||
<p>
|
||||
@@ -857,7 +841,7 @@ Thus, if a stiff isolation platform is used, the recommendation is to have the l
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-03-26 jeu. 17:24</p>
|
||||
<p class="date">Created: 2020-04-01 mer. 16:14</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
Reference in New Issue
Block a user