Rename control hac lac file
This commit is contained in:
parent
cf7e075e4e
commit
4b886c612d
529
org/control_hac_lac.org
Normal file
529
org/control_hac_lac.org
Normal file
@ -0,0 +1,529 @@
|
||||
#+TITLE: HAC-LAC applied on the Simscape Model
|
||||
:DRAWER:
|
||||
#+STARTUP: overview
|
||||
|
||||
#+LANGUAGE: en
|
||||
#+EMAIL: dehaeze.thomas@gmail.com
|
||||
#+AUTHOR: Dehaeze Thomas
|
||||
|
||||
#+HTML_LINK_HOME: ./index.html
|
||||
#+HTML_LINK_UP: ./index.html
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="./js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="./js/readtheorg.js"></script>
|
||||
|
||||
#+HTML_MATHJAX: align: center tagside: right font: TeX
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :results none
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
#+PROPERTY: header-args:matlab+ :tangle no
|
||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||||
|
||||
#+PROPERTY: header-args:shell :eval no-export
|
||||
|
||||
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/org/}{config.tex}")
|
||||
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
||||
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
||||
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
||||
#+PROPERTY: header-args:latex+ :results file raw replace
|
||||
#+PROPERTY: header-args:latex+ :buffer no
|
||||
#+PROPERTY: header-args:latex+ :eval no-export
|
||||
#+PROPERTY: header-args:latex+ :exports results
|
||||
#+PROPERTY: header-args:latex+ :mkdirp yes
|
||||
#+PROPERTY: header-args:latex+ :output-dir figs
|
||||
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
||||
:END:
|
||||
|
||||
* Introduction :ignore:
|
||||
The position $\bm{\mathcal{X}}$ of the Sample with respect to the granite is measured.
|
||||
|
||||
It is then compare to the wanted position of the Sample $\bm{r}_\mathcal{X}$ in order to obtain the position error $\bm{\epsilon}_\mathcal{X}$ of the Sample with respect to a frame attached to the Stewart top platform.
|
||||
|
||||
#+begin_src latex :file hac_lac_control_schematic.pdf
|
||||
\begin{tikzpicture}
|
||||
\node[block={3.0cm}{3.0cm}] (G) {Plant};
|
||||
|
||||
% Input and outputs coordinates
|
||||
\coordinate[] (outputX) at ($(G.south east)!0.25!(G.north east)$);
|
||||
\coordinate[] (outputL) at ($(G.south east)!0.75!(G.north east)$);
|
||||
|
||||
\draw[->] (outputX) -- ++(1.8, 0) node[above left]{$\bm{\mathcal{X}}$};
|
||||
\draw[->] (outputL) -- ++(1.8, 0) node[above left]{$\bm{\mathcal{L}}$};
|
||||
|
||||
% Blocs
|
||||
\node[addb, left= of G] (addF) {};
|
||||
\node[block, left=1.2 of addF] (Kx) {$\bm{K}_\mathcal{X}$};
|
||||
\node[block={2cm}{2cm}, align=center, left=1.2 of Kx] (subx) {Computes\\Position\\Error};
|
||||
|
||||
\node[block, above= of addF] (Kl) {$\bm{K}_\mathcal{L}$};
|
||||
\node[addb={+}{}{}{-}{}, above= of Kl] (subl) {};
|
||||
|
||||
\node[block, align=center, left=0.8 of subl] (invK) {Inverse\\Kinematics};
|
||||
|
||||
% Connections and labels
|
||||
\draw[<-] (subx.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-0.8, 0);
|
||||
\draw[->] ($(subx.east) + (0.2, 0)$)node[branch]{} |- (invK.west);
|
||||
\draw[->] (invK.east) -- (subl.west) node[above left]{$\bm{r}_\mathcal{L}$};
|
||||
\draw[->] (subl.south) -- (Kl.north) node[above right]{$\bm{\epsilon}_\mathcal{L}$};
|
||||
\draw[->] (Kl.south) -- (addF.north);
|
||||
|
||||
\draw[->] (subx.east) -- (Kx.west) node[above left]{$\bm{\epsilon}_\mathcal{X}$};
|
||||
\draw[->] (Kx.east) node[above right]{$\bm{\tau}_\mathcal{X}$} -- (addF.west);
|
||||
\draw[->] (addF.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
||||
|
||||
\draw[->] ($(outputL.east) + (0.4, 0)$)node[branch](L){} |- (subl.east);
|
||||
\draw[->] ($(outputX.east) + (1.2, 0)$)node[branch]{} -- ++(0, -1.6) -| (subx.south);
|
||||
|
||||
\begin{scope}[on background layer]
|
||||
\node[fit={(G.south-|Kl.west) (L|-subl.north)}, fill=black!20!white, draw, dashed, inner sep=8pt] (Ktot) {};
|
||||
\end{scope}
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+name: fig:hac_lac_control_schematic
|
||||
#+caption: HAC-LAC Control Architecture used for the Control of the NASS
|
||||
#+RESULTS:
|
||||
[[file:figs/hac_lac_control_schematic.png]]
|
||||
|
||||
* Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no
|
||||
simulinkproject('../');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
open('nass_model.slx')
|
||||
#+end_src
|
||||
|
||||
* Initialization
|
||||
We initialize all the stages with the default parameters.
|
||||
#+begin_src matlab
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
#+end_src
|
||||
|
||||
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
|
||||
#+begin_src matlab
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 1);
|
||||
#+end_src
|
||||
|
||||
We set the references that corresponds to a tomography experiment.
|
||||
#+begin_src matlab
|
||||
initializeReferences('Rz_type', 'rotating', 'Rz_period', 1);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
initializeDisturbances();
|
||||
#+end_src
|
||||
|
||||
Open Loop.
|
||||
#+begin_src matlab
|
||||
initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
And we put some gravity.
|
||||
#+begin_src matlab
|
||||
initializeSimscapeConfiguration('gravity', true);
|
||||
#+end_src
|
||||
|
||||
We log the signals.
|
||||
#+begin_src matlab
|
||||
initializeLoggingConfiguration('log', 'all');
|
||||
#+end_src
|
||||
|
||||
* Low Authority Control - Direct Velocity Feedback $\bm{K}_\mathcal{L}$
|
||||
** Introduction :ignore:
|
||||
The first loop closed corresponds to a direct velocity feedback loop.
|
||||
|
||||
The design of the associated decentralized controller is explained in [[file:control_active_damping.org][this]] file.
|
||||
|
||||
** Identification
|
||||
#+begin_src matlab
|
||||
%% Name of the Simulink File
|
||||
mdl = 'nass_model';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1; % Relative Motion Outputs
|
||||
|
||||
%% Run the linearization
|
||||
G_dvf = linearize(mdl, io, 0);
|
||||
G_dvf.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
||||
G_dvf.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'};
|
||||
#+end_src
|
||||
|
||||
** Plant
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf(i, i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
title('Diagonal elements of the Plant');
|
||||
|
||||
ax2 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$d\\mathcal{L}_%i/\\tau_%i$', i, i));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend('location', 'northwest');
|
||||
|
||||
ax3 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
title('Off-Diagonal elements of the Plant');
|
||||
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
||||
#+end_src
|
||||
|
||||
** Root Locus
|
||||
#+begin_src matlab :exports none
|
||||
gains = logspace(0, 5, 500);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(real(pole(G_dvf)), imag(pole(G_dvf)), 'x');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(real(tzero(G_dvf)), imag(tzero(G_dvf)), 'o');
|
||||
for i = 1:length(gains)
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
cl_poles = pole(feedback(G_dvf, (gains(i)*s)*eye(6)));
|
||||
plot(real(cl_poles), imag(cl_poles), '.');
|
||||
end
|
||||
ylim([0, 2*pi*500]);
|
||||
xlim([-2*pi*500,0]);
|
||||
xlabel('Real Part')
|
||||
ylabel('Imaginary Part')
|
||||
axis square
|
||||
#+end_src
|
||||
|
||||
** Controller and Loop Gain
|
||||
#+begin_src matlab
|
||||
K_dvf = s*15000/(1 + s/2/pi/10000);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(K_dvf*G_dvf(i,i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(K_dvf*G_dvf(i,i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
K_dvf = -K_dvf*eye(6);
|
||||
#+end_src
|
||||
|
||||
* High Authority Control - $\bm{K}_\mathcal{X}$
|
||||
** Identification of the damped plant
|
||||
#+begin_src matlab
|
||||
Kx = tf(zeros(6));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
initializeController('type', 'hac-dvf');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
%% Name of the Simulink File
|
||||
mdl = 'nass_model';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, 0);
|
||||
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
||||
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
|
||||
#+end_src
|
||||
|
||||
The minus sine is put here because there is already a minus sign included due to the computation of the position error.
|
||||
#+begin_src matlab
|
||||
load('mat/stages.mat', 'nano_hexapod');
|
||||
|
||||
Gx = -G*inv(nano_hexapod.J');
|
||||
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
labels = {'$D_x/\mathcal{F}_x$', '$D_y/\mathcal{F}_y$', '$D_z/\mathcal{F}_z$', '$R_x/\mathcal{M}_x$', '$R_y/\mathcal{M}_y$', '$R_z/\mathcal{M}_z$'};
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
title('Diagonal elements of the Plant');
|
||||
|
||||
ax2 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))), 'DisplayName', labels{i});
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend();
|
||||
|
||||
ax3 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
title('Off-Diagonal elements of the Plant');
|
||||
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
||||
#+end_src
|
||||
|
||||
** Controller Design
|
||||
The controller consists of:
|
||||
- A pure integrator
|
||||
- A Second integrator up to half the wanted bandwidth
|
||||
- A Lead around the cross-over frequency
|
||||
- A low pass filter with a cut-off equal to two times the wanted bandwidth
|
||||
|
||||
#+begin_src matlab
|
||||
wc = 2*pi*15; % Bandwidth Bandwidth [rad/s]
|
||||
|
||||
h = 1.5; % Lead parameter
|
||||
|
||||
Kx = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * wc/s * ((s/wc*2 + 1)/(s/wc*2)) * (1/(1 + s/wc/2));
|
||||
|
||||
% Normalization of the gain of have a loop gain of 1 at frequency wc
|
||||
Kx = Kx.*diag(1./diag(abs(freqresp(Gx*Kx, wc))));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
labels = {'$L_x$', '$L_y$', '$L_z$', '$L_{R_x}$', '$L_{R_y}$', '$L_{R_z}$'};
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gx(i, i)*Kx(i,i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
title('Diagonal elements of the Plant');
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, i)*Kx(i,i), freqs, 'Hz'))), 'DisplayName', labels{i});
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend();
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
isstable(feedback(Gx*Kx, eye(6), -1))
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
Kx = inv(nano_hexapod.J')*Kx;
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
isstable(feedback(G*Kx, eye(6), 1))
|
||||
#+end_src
|
||||
|
||||
* Simulation
|
||||
#+begin_src matlab
|
||||
load('mat/conf_simulink.mat');
|
||||
set_param(conf_simulink, 'StopTime', '2');
|
||||
#+end_src
|
||||
|
||||
And we simulate the system.
|
||||
#+begin_src matlab
|
||||
sim('nass_model');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
hac_dvf = simout;
|
||||
save('./mat/tomo_exp_hac_lac.mat', 'hac_dvf');
|
||||
#+end_src
|
||||
|
||||
* Results
|
||||
Let's load the simulation when no control is applied.
|
||||
#+begin_src matlab
|
||||
load('./mat/experiment_tomography.mat', 'tomo_align_dist');
|
||||
load('./mat/tomo_exp_hac_lac.mat', 'hac_dvf');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
ax1 = subplot(2, 3, 1);
|
||||
hold on;
|
||||
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 1))
|
||||
plot(hac_dvf.Em.En.Time, hac_dvf.Em.En.Data(:, 1))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Dx [m]');
|
||||
|
||||
ax2 = subplot(2, 3, 2);
|
||||
hold on;
|
||||
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 2))
|
||||
plot(hac_dvf.Em.En.Time, hac_dvf.Em.En.Data(:, 2))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Dy [m]');
|
||||
|
||||
ax3 = subplot(2, 3, 3);
|
||||
hold on;
|
||||
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 3))
|
||||
plot(hac_dvf.Em.En.Time, hac_dvf.Em.En.Data(:, 3))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Dz [m]');
|
||||
|
||||
ax4 = subplot(2, 3, 4);
|
||||
hold on;
|
||||
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 4))
|
||||
plot(hac_dvf.Em.En.Time, hac_dvf.Em.En.Data(:, 4))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Rx [rad]');
|
||||
|
||||
ax5 = subplot(2, 3, 5);
|
||||
hold on;
|
||||
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 5))
|
||||
plot(hac_dvf.Em.En.Time, hac_dvf.Em.En.Data(:, 5))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Ry [rad]');
|
||||
|
||||
ax6 = subplot(2, 3, 6);
|
||||
hold on;
|
||||
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 6), 'DisplayName', '$\mu$-Station')
|
||||
plot(hac_dvf.Em.En.Time, hac_dvf.Em.En.Data(:, 6), 'DisplayName', 'HAC-DVF')
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Rz [rad]');
|
||||
legend();
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
||||
xlim([0.5, inf]);
|
||||
#+end_src
|
1099
org/hac_lac.org
1099
org/hac_lac.org
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user