Remove preprocessIdTf. Improve identification scripts

This commit is contained in:
Thomas Dehaeze 2018-10-03 13:55:09 +02:00
parent 223aeae32d
commit 496dd15586
26 changed files with 353 additions and 513 deletions

View File

@ -138,10 +138,10 @@ han_windows = hanning(ceil(length(gm_cl.Dsample.Time)/10));
figure; figure;
hold on; hold on;
plot(freqs_z_ol, sqrt(psd_z_ol), '-', 'Color', [0 0.4470 0.7410], 'DisplayName', '$Dg \rightarrow D_x$ - OL (sim)'); plot(freqs_z_ol, sqrt(psd_z_ol), '-', 'Color', [0 0.4470 0.7410], 'DisplayName', '$Dg \to D_x$ - OL (sim)');
plot(freqs, dz_ol, '--', 'Color', [0 0.4470 0.7410], 'DisplayName', '$Dg \rightarrow D_x$ - OL (th)'); plot(freqs, dz_ol, '--', 'Color', [0 0.4470 0.7410], 'DisplayName', '$Dg \to D_x$ - OL (th)');
plot(freqs_z, sqrt(psd_z), '-', 'Color', [0.8500 0.3250 0.0980], 'DisplayName', '$Dg \rightarrow D_x$ - CL (sim)'); plot(freqs_z, sqrt(psd_z), '-', 'Color', [0.8500 0.3250 0.0980], 'DisplayName', '$Dg \to D_x$ - CL (sim)');
plot(freqs, dz_cl, '--', 'Color', [0.8500 0.3250 0.0980], 'DisplayName', '$Dg \rightarrow D_x$ - CL (th)'); plot(freqs, dz_cl, '--', 'Color', [0.8500 0.3250 0.0980], 'DisplayName', '$Dg \to D_x$ - CL (th)');
set(gca,'xscale','log'); set(gca,'yscale','log'); set(gca,'xscale','log'); set(gca,'yscale','log');
xlabel('Frequency [Hz]'); ylabel('PSD [$m/\sqrt{Hz}$]'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/\sqrt{Hz}$]');
legend('location', 'southwest'); legend('location', 'southwest');

View File

@ -1,191 +0,0 @@
%% Script Description
% Compare identification from the Simscape model
% with the identification on the real system.
%%
clear;
close all;
clc
%% Get Measurement Object
% load('~/ownCloud/Measurements/2017-11-17 - Marc/data/2017_11_17.mat', 'm_object')
load([char(java.lang.System.getProperty('user.home')), '\ownCloud\Measurements\2018-01-12 - Marc\data\2018_01_12_pc.mat'], 'm_object')
%% Get Measurements
% Define Options for measurements
meas_opts = struct( ...
'coh_min', 50, ...
'freq_min', 20 ...
);
measure_dirs = {{'tx', 'tx'}, {'ty', 'ty'}, {'tz', 'tz'}};
% Get measures
measures = getAllMeasure(m_object, 'marble', 'hexa', measure_dirs, meas_opts);
%%
load('./mat/id_G_h_h.mat', 'G_h_h');
load('./mat/id_G_g_g.mat', 'G_g_g');
load('./mat/id_G_h_g.mat', 'G_h_g');
%%
freqs = logspace(1, 3, 2000);
%% Granite to Granite
figure;
hold on;
plot(measures.Fmx.Dmx.freq_filt, abs(measures.Fmx.Dmx.resp_filt))
plot(freqs, abs(squeeze(freqresp(G_g_g(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [$Hz$]'); ylabel('Amplitude [$m/N$]');
legend({'meas.', 'id.'}, 'location', 'northwest');
title('Transfer function: $F(Granite)_x \rightarrow D(granite)_x$');
exportFig('comp_model_meas_Fmx_Dmx', struct('path', 'Identification'));
%
figure;
hold on;
plot(measures.Fmy.Dmy.freq_filt, abs(measures.Fmy.Dmy.resp_filt))
plot(freqs, abs(squeeze(freqresp(G_g_g(2, 2), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [$Hz$]'); ylabel('Amplitude [$m/N$]');
legend({'meas.', 'id.'}, 'location', 'northwest');
title('Transfer function: $F(Granite)_y \rightarrow D(granite)_y$');
exportFig('comp_model_meas_Fmy_Dmy', struct('path', 'Identification'));
%
figure;
hold on;
plot(measures.Fmz.Dmz.freq_filt, abs(measures.Fmz.Dmz.resp_filt))
plot(freqs, abs(squeeze(freqresp(G_g_g(3, 3), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [$Hz$]'); ylabel('Amplitude [$m/N$]');
legend({'meas.', 'id.'}, 'location', 'northwest');
title('Transfer function: $F(Granite)_z \rightarrow D(granite)_z$');
exportFig('comp_model_meas_Fmz_Dmz', struct('path', 'Identification'));
% All together
figure;
hold on;
plot(measures.Fmx.Dmx.freq_filt, abs(measures.Fmx.Dmx.resp_filt), '-', 'Color', [0 0.4470 0.7410], 'DisplayName', '$F_{m_x} \rightarrow D_{m_x}$ - meas.')
plot(freqs, abs(squeeze(freqresp(G_g_g(1, 1), freqs, 'Hz'))), '--', 'Color', [0 0.4470 0.7410], 'DisplayName', '$F_{m_x} \rightarrow D_{m_x}$ - model');
plot(measures.Fmy.Dmy.freq_filt, abs(measures.Fmy.Dmy.resp_filt), '-', 'Color', [0.8500 0.3250 0.0980], 'DisplayName', '$F_{m_y} \rightarrow D_{m_y}$ - meas.')
plot(freqs, abs(squeeze(freqresp(G_g_g(2, 2), freqs, 'Hz'))), '--', 'Color', [0.8500 0.3250 0.0980], 'DisplayName', '$F_{m_y} \rightarrow D_{m_y}$ - model');
plot(measures.Fmz.Dmz.freq_filt, abs(measures.Fmz.Dmz.resp_filt), '-', 'Color', [0.9290 0.6940 0.1250], 'DisplayName', '$F_{m_z} \rightarrow D_{m_z}$ - meas.')
plot(freqs, abs(squeeze(freqresp(G_g_g(3, 3), freqs, 'Hz'))), '--', 'Color', [0.9290 0.6940 0.1250], 'DisplayName', '$F_{m_z} \rightarrow D_{m_z}$ - model');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
legend('location', 'northeast');
exportFig('comp_model_meas_Fm_Dm', 'wide-tall', struct('path', 'Identification'));
%% Hexapod to Hexapod
figure;
hold on;
plot(measures.Fhx.Dhx.freq_filt, abs(measures.Fhx.Dhx.resp_filt))
plot(freqs, abs(squeeze(freqresp(G_h_h(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [$Hz$]'); ylabel('Amplitude [$m/N$]');
legend({'meas.', 'id.'}, 'location', 'northwest');
title('Transfer function: $F(\mu Hexapod)_x \rightarrow D(\mu Hexapod)_x$');
exportFig('comp_model_meas_Fhx_Dhx', struct('path', 'Identification'));
%
figure;
hold on;
plot(measures.Fhy.Dhy.freq_filt, abs(measures.Fhy.Dhy.resp_filt))
plot(freqs, abs(squeeze(freqresp(G_h_h(2, 2), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [$Hz$]'); ylabel('Amplitude [$m/N$]');
legend({'meas.', 'id.'}, 'location', 'northwest');
title('Transfer function: $F(\mu Hexapod)_y \rightarrow D(\mu Hexapod)_y$');
exportFig('comp_model_meas_Fhy_Dhy', struct('path', 'Identification'));
%
figure;
hold on;
plot(measures.Fhz.Dhz.freq_filt, abs(measures.Fhz.Dhz.resp_filt))
plot(freqs, abs(squeeze(freqresp(G_h_h(3, 3), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [$Hz$]'); ylabel('Amplitude [$m/N$]');
legend({'meas.', 'id.'}, 'location', 'northwest');
title('Transfer function: $F(\mu Hexapod)_z \rightarrow D(\mu Hexapod)_z$');
exportFig('comp_model_meas_Fhz_Dhz', struct('path', 'Identification'));
% All together
figure;
hold on;
plot(measures.Fhx.Dhx.freq_filt, abs(measures.Fhx.Dhx.resp_filt), '-', 'Color', [0 0.4470 0.7410], 'DisplayName', '$F_{h_x} \rightarrow D_{h_x}$ - meas.')
plot(freqs, abs(squeeze(freqresp(G_h_h(1, 1), freqs, 'Hz'))), '--', 'Color', [0 0.4470 0.7410], 'DisplayName', '$F_{h_x} \rightarrow D_{h_x}$ - model');
plot(measures.Fhy.Dhy.freq_filt, abs(measures.Fhy.Dhy.resp_filt), '-', 'Color', [0.8500 0.3250 0.0980], 'DisplayName', '$F_{h_y} \rightarrow D_{h_y}$ - meas.')
plot(freqs, abs(squeeze(freqresp(G_h_h(2, 2), freqs, 'Hz'))), '--', 'Color', [0.8500 0.3250 0.0980], 'DisplayName', '$F_{h_y} \rightarrow D_{h_y}$ - model');
plot(measures.Fhz.Dhz.freq_filt, abs(measures.Fhz.Dhz.resp_filt), '-', 'Color', [0.9290 0.6940 0.1250], 'DisplayName', '$F_{h_z} \rightarrow D_{h_z}$ - meas.')
plot(freqs, abs(squeeze(freqresp(G_h_h(3, 3), freqs, 'Hz'))), '--', 'Color', [0.9290 0.6940 0.1250], 'DisplayName', '$F_{h_z} \rightarrow D_{h_z}$ - model');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
legend('location', 'southwest');
exportFig('comp_model_meas_Fh_Dh', 'wide-tall', struct('path', 'Identification'));
%% Hexapod to Granite
figure;
hold on;
plot(measures.Fhx.Dmx.freq_filt, abs(measures.Fhx.Dmx.resp_filt))
plot(freqs, abs(squeeze(freqresp(G_h_g(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [$Hz$]'); ylabel('Amplitude [$m/N$]');
legend({'meas.', 'id.'}, 'location', 'northwest');
title('Transfer function: $F(\mu Hexapod)_x \rightarrow D(Granite)_x$');
exportFig('comp_model_meas_Fhx_Dmx', struct('path', 'Identification'));
%
figure;
hold on;
plot(measures.Fhy.Dmy.freq_filt, abs(measures.Fhy.Dmy.resp_filt))
plot(freqs, abs(squeeze(freqresp(G_h_g(2, 2), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [$Hz$]'); ylabel('Amplitude [$m/N$]');
legend({'meas.', 'id.'}, 'location', 'northwest');
title('Transfer function: $F(\mu Hexapod)_y \rightarrow D(Granite)_y$');
exportFig('comp_model_meas_Fhy_Dmy', struct('path', 'Identification'));
%
figure;
hold on;
plot(measures.Fhz.Dmz.freq_filt, abs(measures.Fhz.Dmz.resp_filt))
plot(freqs, abs(squeeze(freqresp(G_h_g(3, 3), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [$Hz$]'); ylabel('Amplitude [$m/N$]');
legend({'meas.', 'id.'}, 'location', 'northwest');
title('Transfer function: $F(\mu Hexapod)_z \rightarrow D(Granite)_z$');
exportFig('comp_model_meas_Fhz_Dmz', struct('path', 'Identification'));
% All together
figure;
hold on;
plot(measures.Fhx.Dmx.freq_filt, abs(measures.Fhx.Dmx.resp_filt), '-', 'Color', [0 0.4470 0.7410], 'DisplayName', '$F_{h_x} \rightarrow D_{m_x}$ - meas.')
plot(freqs, abs(squeeze(freqresp(G_h_g(1, 1), freqs, 'Hz'))), '--', 'Color', [0 0.4470 0.7410], 'DisplayName', '$F_{h_x} \rightarrow D_{m_x}$ - model');
plot(measures.Fhy.Dmy.freq_filt, abs(measures.Fhy.Dmy.resp_filt), '-', 'Color', [0.8500 0.3250 0.0980], 'DisplayName', '$F_{h_y} \rightarrow D_{m_y}$ - meas.')
plot(freqs, abs(squeeze(freqresp(G_h_g(2, 2), freqs, 'Hz'))), '--', 'Color', [0.8500 0.3250 0.0980], 'DisplayName', '$F_{h_y} \rightarrow D_{m_y}$ - model');
plot(measures.Fhz.Dmz.freq_filt, abs(measures.Fhz.Dmz.resp_filt), '-', 'Color', [0.9290 0.6940 0.1250], 'DisplayName', '$F_{h_z} \rightarrow D_{m_z}$ - meas.')
plot(freqs, abs(squeeze(freqresp(G_h_g(3, 3), freqs, 'Hz'))), '--', 'Color', [0.9290 0.6940 0.1250], 'DisplayName', '$F_{h_z} \rightarrow D_{m_z}$ - model');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
legend('location', 'southwest');
exportFig('comp_model_meas_Fh_Dm', 'wide-tall', struct('path', 'Identification'));

View File

@ -1,41 +0,0 @@
%% Script Description
% Compare the plan when on top of a rigid support
% and on top of the micro-station (flexible support)
%%
clear; close all; clc;
%% Load Transfer Functions
load('./mat/G_nass.mat', 'G_nass_1', 'G_nass_20', 'G_nass_50');
load('./stewart-simscape/mat/G_cart.mat', 'G_cart_1', 'G_cart_20', 'G_cart_50')
load('./mat/G_f_to_d.mat', 'G_1', 'G_20', 'G_50')
%% Compare NASS alone and NASS on top of the Station
freqs = logspace(1, 4, 1000);
bodeFig({G_nass_50(1, 1), G_cart_50(1, 1)}, freqs, struct('phase', true))
legend({'$F_{n_x} \rightarrow D_{n_x}$ - $\mu$-station', '$F_{n_x} \rightarrow D_{n_x}$ - Rigid support'})
legend('location', 'southwest')
bodeFig({G_nass_50(2, 2), G_cart_50(2, 2)}, freqs, struct('phase', true))
legend({'$F_{n_y} \rightarrow D_{n_y}$ - $\mu$-station', '$F_{n_y} \rightarrow D_{n_y}$ - rigid support'})
legend('location', 'southwest')
bodeFig({G_nass_50(3, 3), G_cart_50(3, 3)}, freqs, struct('phase', true))
legend({'$F_{n_z} \rightarrow D_{n_z}$ - $\mu$-station', '$F_{n_z} \rightarrow D_{n_z}$ - rigid support'})
legend('location', 'southwest')
%% Compare Displacement of the NASS with Displacement of the Sample
freqs = logspace(1, 3, 1000);
bodeFig({G_nass_50(1, 1), G_50(1, 1)}, freqs, struct('phase', true))
legend({'$F_{n_x} \rightarrow D_{n_x}$', '$F_{n_x} \rightarrow D_{s_x}$'})
legend('location', 'southwest')
bodeFig({G_nass_50(2, 2), G_50(2, 2)}, freqs, struct('phase', true))
legend({'$F_{n_y} \rightarrow D_{n_y}$', '$F_{n_y} \rightarrow D_{s_y}$'})
legend('location', 'southwest')
bodeFig({G_nass_50(3, 3), G_50(3, 3)}, freqs, struct('phase', true))
legend({'$F_{n_z} \rightarrow D_{n_z}$', '$F_{n_z} \rightarrow D_{s_z}$'})
legend('location', 'southwest')

View File

@ -5,3 +5,8 @@
% addpath('./initialize/'); % addpath('./initialize/');
% addpath('./src/'); % addpath('./src/');
% addpath('./stewart-simscape/'); % addpath('./stewart-simscape/');
%%
freqs = logspace(-1, 3, 1000);
save_fig = false;
save('./mat/config.mat', 'freqs', 'save_fig');

View File

@ -7,19 +7,22 @@
clear; close all; clc; clear; close all; clc;
%% %%
initializeNanoHexapod(struct('actuator', 'lorentz'));
initializeSample(struct('mass', 1)); initializeSample(struct('mass', 1));
[G_1, G_1_raw] = identifyG(); G_1_vc = identifyG();
%% initializeNanoHexapod(struct('actuator', 'piezo'));
initializeSample(struct('mass', 20)); G_1_pz = identifyG();
[G_20, G_20_raw] = identifyG();
%% %%
initializeNanoHexapod(struct('actuator', 'lorentz'));
initializeSample(struct('mass', 50)); initializeSample(struct('mass', 50));
[G_50, G_50_raw] = identifyG(); G_50_vc = identifyG();
initializeNanoHexapod(struct('actuator', 'piezo'));
G_50_pz = identifyG();
%% Save the obtained transfer functions %% Save the obtained transfer functions
save('./mat/G_f_to_d.mat', 'G_1', 'G_20', 'G_50'); save('./mat/G_f_to_d.mat', 'G_1_vc', 'G_1_pz', 'G_50_vc', 'G_50_pz');

View File

@ -2,62 +2,114 @@
clear; close all; clc; clear; close all; clc;
%% Load the transfer functions %% Load the transfer functions
load('./mat/G_f_to_d.mat', 'G_1', 'G_20', 'G_50'); load('./mat/G_f_to_d.mat', 'G_1_vc', 'G_1_pz', 'G_50_vc', 'G_50_pz');
%% Load Configuration file
load('./mat/config.mat', 'save_fig', 'freqs');
%% %%
freqs = logspace(0, 3, 1000); figure;
% Amplitude
bodeFig({G_1(1, 1), G_1(2, 2), G_1(3, 3)}, freqs, struct('phase', true)) ax1 = subaxis(2,1,1);
legend({'$F_{n_x} \rightarrow D_{x}$ - $M = 1Kg$', ... hold on;
'$F_{n_y} \rightarrow D_{y}$ - $M = 1Kg$', ... plot(freqs, abs(squeeze(freqresp(G_1_vc('Dx', 'Fnx'), freqs, 'Hz'))));
'$F_{n_z} \rightarrow D_{z}$ - $M = 1Kg$'}) plot(freqs, abs(squeeze(freqresp(G_1_pz('Dx', 'Fnx'), freqs, 'Hz'))));
legend('location', 'southwest') set(gca,'ColorOrderIndex',1);
exportFig('G_xyz_1', 'normal-normal', struct('path', 'identification')) plot(freqs, abs(squeeze(freqresp(G_50_vc('Dx', 'Fnx'), freqs, 'Hz'))), '--');
plot(freqs, abs(squeeze(freqresp(G_50_pz('Dx', 'Fnx'), freqs, 'Hz'))), '--');
bodeFig({G_20(1, 1), G_20(2, 2), G_20(3, 3)}, struct('phase', true)) set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
legend({'$F_{n_x} \rightarrow D_{x}$ - $M = 20Kg$', ... set(gca, 'XTickLabel',[]);
'$F_{n_y} \rightarrow D_{y}$ - $M = 20Kg$', ...
'$F_{n_z} \rightarrow D_{z}$ - $M = 20Kg$'})
legend('location', 'southwest')
exportFig('G_xyz_20', 'normal-normal', struct('path', 'identification'))
bodeFig({G_1(1, 1), G_20(1, 1), G_50(1, 1)}, struct('phase', true))
legend({'$F_{n_x} \rightarrow D_{x}$ - $M = 1Kg$', ...
'$F_{n_x} \rightarrow D_{x}$ - $M = 20Kg$', ...
'$F_{n_x} \rightarrow D_{x}$ - $M = 50Kg$'})
legend('location', 'southwest')
exportFig('G_x_mass', 'normal-normal', struct('path', 'identification'))
bodeFig({G_1(2, 2), G_20(2, 2), G_50(2, 2)}, struct('phase', true))
legend({'$F_{n_y} \rightarrow D_{y}$ - $M = 1Kg$', ...
'$F_{n_y} \rightarrow D_{y}$ - $M = 20Kg$', ...
'$F_{n_y} \rightarrow D_{y}$ - $M = 50Kg$'})
legend('location', 'southwest')
exportFig('G_y_mass', 'half-normal')
bodeFig({G_1(3, 3), G_20(3, 3), G_50(3, 3)}, struct('phase', true))
legend({'$F_{n_z} \rightarrow D_{z}$ - $M = 1Kg$', ...
'$F_{n_z} \rightarrow D_{z}$ - $M = 20Kg$', ...
'$F_{n_z} \rightarrow D_{z}$ - $M = 50Kg$'})
legend('location', 'southwest')
exportFig('G_z_mass', 'normal-normal', struct('path', 'identification'))
%%
bodeFig({G_1(2, 2), G_20(2, 2), G_50(2, 2)}, freqs, struct('phase', true))
legend({'$M = 1Kg$', ...
'$M = 20Kg$', ...
'$M = 50Kg$'})
exportFig('G_y_mass_article', 'half-normal', struct('path', 'identification'))
%%
freqs = logspace(-1, 3, 1000);
bodeFig({G_1(1, 1), G_20(1, 1), G_50(1, 1)}, freqs, struct('phase', true))
ylabel('Amplitude [m/N]'); ylabel('Amplitude [m/N]');
legend({'$1Kg$', ... hold off;
'$20Kg$', ...
'$50Kg$'}) % Phase
legend('location', 'southwest') ax2 = subaxis(2,1,2);
set(gca,'YTick',[1e-8, 1e-6, 1e-4]) hold on;
ylim([1e-9, 1e-3]) plot(freqs, 180/pi*angle(squeeze(freqresp(G_1_vc('Dx', 'Fnx'), freqs, 'Hz'))), 'DisplayName', 'VC - Light');
exportFig('G_x_mass', 'half-short', struct('path', 'identification')) plot(freqs, 180/pi*angle(squeeze(freqresp(G_1_pz('Dx', 'Fnx'), freqs, 'Hz'))), 'DisplayName', 'PZ - Light');
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*angle(squeeze(freqresp(G_50_vc('Dx', 'Fnx'), freqs, 'Hz'))), '--', 'DisplayName', 'VC - Heavy');
plot(freqs, 180/pi*angle(squeeze(freqresp(G_50_pz('Dx', 'Fnx'), freqs, 'Hz'))), '--', 'DisplayName', 'PZ - Heavy');
set(gca,'xscale','log');
yticks(-1800:90:1800);
ylim([-180 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
legend('Location', 'southwest');
hold off;
linkaxes([ax1,ax2],'x');
if save_fig; exportFig('comp_models_plant_x_x', 'normal-normal', struct('path', 'identification')); end
%%
figure;
% Amplitude
ax1 = subaxis(2,1,1);
hold on;
plot(freqs, abs(squeeze(freqresp(G_1_vc('Dz', 'Fnz'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_1_pz('Dz', 'Fnz'), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G_50_vc('Dz', 'Fnz'), freqs, 'Hz'))), '--');
plot(freqs, abs(squeeze(freqresp(G_50_pz('Dz', 'Fnz'), freqs, 'Hz'))), '--');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Amplitude [m/N]');
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_1_vc('Dz', 'Fnz'), freqs, 'Hz'))), 'DisplayName', 'VC - Light');
plot(freqs, 180/pi*angle(squeeze(freqresp(G_1_pz('Dz', 'Fnz'), freqs, 'Hz'))), 'DisplayName', 'PZ - Light');
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*angle(squeeze(freqresp(G_50_vc('Dz', 'Fnz'), freqs, 'Hz'))), '--', 'DisplayName', 'VC - Heavy');
plot(freqs, 180/pi*angle(squeeze(freqresp(G_50_pz('Dz', 'Fnz'), freqs, 'Hz'))), '--', 'DisplayName', 'PZ - Heavy');
set(gca,'xscale','log');
yticks(-1800:90:1800);
ylim([-180 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
legend('Location', 'southwest');
hold off;
linkaxes([ax1,ax2],'x');
if save_fig; exportFig('comp_models_plant_z_z', 'normal-normal', struct('path', 'identification')); end
%% Plot all the coupling
figure;
for i_input = 1:3
for i_output = 1:3
subaxis(3,3,3*(i_input-1)+i_output);
hold on;
plot(freqs, abs(squeeze(freqresp(G_1_vc(i_output, i_input), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_1_pz(i_output, i_input), freqs, 'Hz'))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlim([freqs(1) freqs(end)]); ylim([1e-12, 1e-2]);
yticks([1e-12, 1e-8, 1e-4]); xticks([0.1 1 10 100 1000]);
if i_output > 1; set(gca,'yticklabel',[]); end
if i_input < 3; set(gca,'xticklabel',[]); end
hold off;
end
end
if save_fig; exportFig('comp_models_plant_coupling_all', 'full-tall', struct('path', 'identification')); end
%% Plot some coupling
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(G_1_vc('Dx', 'Fnx'), freqs, 'Hz'))), 'DisplayName', 'VC - Light - $Fx \to Dx$');
plot(freqs, abs(squeeze(freqresp(G_1_pz('Dx', 'Fnx'), freqs, 'Hz'))), 'DisplayName', 'PZ - Light - $Fx \to Dx$');
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G_1_vc('Dy', 'Fnx'), freqs, 'Hz'))), '--', 'DisplayName', 'VC - Heavy - $Fx \to Dy$');
plot(freqs, abs(squeeze(freqresp(G_1_pz('Dy', 'Fnx'), freqs, 'Hz'))), '--', 'DisplayName', 'PZ - Heavy - $Fx \to Dy$');
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G_1_vc('Dz', 'Fnx'), freqs, 'Hz'))), '-.', 'DisplayName', 'VC - Heavy - $Fx \to Dz$');
plot(freqs, abs(squeeze(freqresp(G_1_pz('Dz', 'Fnx'), freqs, 'Hz'))), '-.', 'DisplayName', 'PZ - Heavy - $Fx \to Dz$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/m]');
legend('Location', 'southwest');
xticks('manual'); xlim([freqs(1) freqs(end)]);
hold off;
if save_fig; exportFig('comp_models_plant_coupling', 'normal-normal', struct('path', 'identification')); end

View File

@ -1,19 +1,28 @@
%% Script Description %% Script Description
% Identification of the transfer function % Identification of the transfer function
% from Ground Motion to sample displacement. % from Ground Motion to measured displacement
%% %%
clear; close all; clc; clear; close all; clc;
%% %% Open Loop - Light Sample
initializeSample(struct('mass', 20)); initializeSample(struct('mass', 1));
initializeSimConf(struct('cl_time', 0));
%% Open Loop initializeNanoHexapod(struct('actuator', 'lorentz'));
[Gd_ol_20, Gd_ol_20_raw] = identifyGd(struct('cl', false)); Gd_ol_1_vc = identifyGd(struct('cl', false));
%% Close Loop initializeNanoHexapod(struct('actuator', 'piezo'));
[Gd_cl_20, Gd_cl_20_raw] = identifyGd(struct('cl', true)); Gd_ol_1_pz = identifyGd(struct('cl', false));
%% Open Loop - Heavy Sample
initializeSample(struct('mass', 50));
initializeNanoHexapod(struct('actuator', 'lorentz'));
Gd_ol_50_vc = identifyGd(struct('cl', false));
initializeNanoHexapod(struct('actuator', 'piezo'));
Gd_ol_50_pz = identifyGd(struct('cl', false));
%% Save the identified transfer functions %% Save the identified transfer functions
save('./mat/Gd_ol_cl.mat', 'Gd_ol_20', 'Gd_cl_20'); save('./mat/G_xw_to_d.mat', ...
'Gd_ol_1_vc', 'Gd_ol_1_pz', 'Gd_ol_50_vc', 'Gd_ol_50_pz');

View File

@ -2,11 +2,38 @@
clear; close all; clc; clear; close all; clc;
%% Load the identified transfer functions %% Load the identified transfer functions
load('./mat/Gd_ol_cl.mat', 'Gd_ol_20', 'Gd_cl_20'); load('./mat/G_xw_to_d.mat', ...
'Gd_ol_1_vc', 'Gd_ol_1_pz', 'Gd_ol_50_vc', 'Gd_ol_50_pz');
%% %% Load Configuration file
freqs = logspace(0, 3, 1000); load('./mat/config.mat', 'save_fig', 'freqs');
bodeFig({Gd_ol_20(1, 1), Gd_cl_20(1, 1)}, freqs, struct('ylabel', 'Amplitude [m/m]'))
legend({'OL', 'CL'});
exportFig('transmissibility_ol_cl', 'half-normal', struct('path', 'identification')); %% Transfer function from ground displacement to measured displacement
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(Gd_ol_1_vc('Dz', 'Dgz'), freqs, 'Hz'))), 'DisplayName', 'VC - Light');
plot(freqs, abs(squeeze(freqresp(Gd_ol_1_pz('Dz', 'Dgz'), freqs, 'Hz'))), 'DisplayName', 'PZ - Light');
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gd_ol_50_vc('Dz', 'Dgz'), freqs, 'Hz'))), '--', 'DisplayName', 'VC - Heavy');
plot(freqs, abs(squeeze(freqresp(Gd_ol_50_pz('Dz', 'Dgz'), freqs, 'Hz'))), '--', 'DisplayName', 'PZ - Heavy');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/m]');
hold off;
legend('Location', 'southwest');
if save_fig; exportFig('comp_models_xw_to_d', 'normal-normal', struct('path', 'identification')); end
%% Transfer function from direct force to measured displacement
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(Gd_ol_1_vc('Dz', 'Fsz'), freqs, 'Hz'))), 'DisplayName', 'VC - Light');
plot(freqs, abs(squeeze(freqresp(Gd_ol_1_pz('Dz', 'Fsz'), freqs, 'Hz'))), 'DisplayName', 'PZ - Light');
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gd_ol_50_vc('Dz', 'Fsz'), freqs, 'Hz'))), '--', 'DisplayName', 'VC - Heavy');
plot(freqs, abs(squeeze(freqresp(Gd_ol_50_pz('Dz', 'Fsz'), freqs, 'Hz'))), '--', 'DisplayName', 'PZ - Heavy');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]');
hold off;
legend('Location', 'southwest');
if save_fig; exportFig('comp_models_fi_to_d', 'normal-normal', struct('path', 'identification')); end

View File

@ -8,7 +8,7 @@ run id_G.m
% Plot de obtained transfer functions % Plot de obtained transfer functions
run id_G_plots.m run id_G_plots.m
%% Identification of transfer function from ground motion to displacement %% Identification of transfer function from disturbances to displacement
% Compute the transfer function of Gd % Compute the transfer function of Gd
run id_Gd.m run id_Gd.m
@ -22,16 +22,12 @@ run id_micro_station.m
% Plot de obtained transfer functions % Plot de obtained transfer functions
run id_micro_station_plots.m run id_micro_station_plots.m
% Compare the measurements of Marc with the model
run id_micro_station_comp_meas.m
%% Identification of all the stages %% Identification of all the stages
% Compute the transfer functions of each stage from act. to sens. % Compute the transfer functions of each stage from act. to sens.
run id_stages.m run id_stages.m
% Plot de obtained transfer functions % Plot de obtained transfer functions
run id_stages_plots.m run id_stages_plots.m
%% Identification of the nass
% Compute the transfer functions
run id_nass.m
% Plot de obtained transfer functions
run id_nass.m

View File

@ -11,48 +11,21 @@ options = linearizeOptions;
options.SampleTime = 0; options.SampleTime = 0;
%% Name of the Simulink File %% Name of the Simulink File
mdl = 'Micro_Station_Identification'; mdl = 'sim_micro_station';
%% Micro-Hexapod %% Micro-Hexapod
% Input/Output definition % Input/Output definition
io(1) = linio([mdl, '/Micro-Station/Fm'],1,'input'); io(1) = linio([mdl, '/Micro-Station/Fm_ext'],1,'openinput');
io(2) = linio([mdl, '/Micro-Station/Micro_Hexapod_Inertial_Sensor'],1,'output'); io(2) = linio([mdl, '/Micro-Station/Fg_ext'],1,'openinput');
io(3) = linio([mdl, '/Micro-Station/Dm_inertial'],1,'output');
io(4) = linio([mdl, '/Micro-Station/Dg_inertial'],1,'output');
% Run the linearization % Run the linearization
G_h_h_raw = linearize(mdl,io, 0); G_ms = linearize(mdl, io, 0);
G_h_h_raw = G_h_h_raw(1:3, 1:3);
G_h_h = preprocessIdTf(G_h_h_raw, 10, 10000);
% Input/Output names % Input/Output names
G_h_h.InputName = {'Fux', 'Fuy', 'Fuz'}; G_ms.InputName = {'Fmx', 'Fmy', 'Fmz', 'Fgx', 'Fgy', 'Fgz'};
G_h_h.OutputName = {'Dux', 'Duy', 'Duz'}; G_ms.OutputName = {'Dmx', 'Dmy', 'Dmz', 'Dgx', 'Dgy', 'Dgz'};
%% Granite
% Input/Output definition
io(1) = linio([mdl, '/Micro-Station/F_granite'],1,'input');
io(2) = linio([mdl, '/Micro-Station/Granite_Inertial_Sensor'],1,'output');
% Run the linearization
G_g_g_raw = linearize(mdl,io, 0);
G_g_g = preprocessIdTf(G_g_g_raw, 10, 10000);
% Input/Output names
G_g_g.InputName = {'Fgx', 'Fgy', 'Fgz'};
G_g_g.OutputName = {'Dgx', 'Dgy', 'Dgz'};
%% Micro Hexapod to Granite
% Input/Output definition
io(1) = linio([mdl, '/Micro-Station/Fm'],1,'input');
io(2) = linio([mdl, '/Micro-Station/Granite_Inertial_Sensor'],1,'output');
% Run the linearization
G_h_g_raw = linearize(mdl,io, 0);
G_h_g_raw = G_h_g_raw(1:3, 1:3);
G_h_g = preprocessIdTf(G_h_g_raw, 10, 10000);
% Input/Output names
G_h_g.InputName = {'Fhx', 'Fhy', 'Fhz'};
G_h_g.OutputName = {'Dgx', 'Dgy', 'Dgz'};
%% Save the obtained transfer functions %% Save the obtained transfer functions
save('./mat/id_micro_station.mat', 'G_h_h', 'G_g_g', 'G_h_g'); save('./mat/id_micro_station.mat', 'G_ms');

View File

@ -0,0 +1,100 @@
%% Script Description
% Compare identification from the Simscape model
% with the identification on the real system.
%%
clear; close all; clc;
%% Load the obtained transfer functions
load('./mat/id_micro_station.mat', 'G_ms');
%% Load Configuration file
load('./mat/config.mat', 'save_fig', 'freqs');
%% Get Measurement Object
load('2018_01_12.mat', 'm_object');
%% Get Measurements Data
opts = struct('freq_min', 10, 'est_backend', 'idfrd');
meas_sys = getDynamicTFs(m_object, 'marble', 'hexa', {'tx', 'tx'}, opts);
%% Granite to Granite
figure;
% Amplitude
ax1 = subaxis(2,1,1);
hold on;
plot(freqs, abs(squeeze(freqresp(G_ms('Dgz', 'Fgz'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(meas_sys('Dmx', 'Fmx'), freqs, 'Hz'))), '.');
set(gca,'xscale','log'); set(gca,'yscale','log');
ylabel('Amplitude [m/N]');
set(gca, 'XTickLabel',[]);
legend({'Model', 'Meas.'});
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms('Dgz', 'Fgz'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(meas_sys('Dmx', 'Fmx'), freqs, 'Hz'))), '.');
set(gca,'xscale','log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
if save_fig; exportFig('comp_meas_g_g', 'normal-normal', struct('path', 'identification')); end
%% Hexapod to Hexapod
figure;
% Amplitude
ax1 = subaxis(2,1,1);
hold on;
plot(freqs, abs(squeeze(freqresp(G_ms('Dmz', 'Fmz'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(meas_sys('Dhx', 'Fhx'), freqs, 'Hz'))), '.');
set(gca,'xscale','log'); set(gca,'yscale','log');
ylabel('Amplitude [m/N]');
set(gca, 'XTickLabel',[]);
legend({'Model', 'Meas.'});
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms('Dmz', 'Fmz'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(meas_sys('Dhx', 'Fhx'), freqs, 'Hz'))), '.');
set(gca,'xscale','log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
if save_fig; exportFig('comp_meas_m_m', 'normal-normal', struct('path', 'identification')); end
%% Hexapod to Granite
figure;
% Amplitude
ax1 = subaxis(2,1,1);
hold on;
plot(freqs, abs(squeeze(freqresp(G_ms('Dmz', 'Fgz'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(meas_sys('Dhx', 'Fmx'), freqs, 'Hz'))), '.');
set(gca,'xscale','log'); set(gca,'yscale','log');
ylabel('Amplitude [m/N]');
set(gca, 'XTickLabel',[]);
legend({'Model', 'Meas.'});
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms('Dmz', 'Fgz'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(meas_sys('Dhx', 'Fmx'), freqs, 'Hz'))), '.');
set(gca,'xscale','log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
if save_fig; exportFig('comp_meas_m_g', 'normal-normal', struct('path', 'identification')); end

View File

@ -2,28 +2,28 @@
clear; close all; clc; clear; close all; clc;
%% Load the obtained transfer functions %% Load the obtained transfer functions
load('./mat/id_micro_station.mat', 'G_h_h', 'G_g_g', 'G_h_g'); load('./mat/id_micro_station.mat', 'G_ms');
%% Load Configuration file
load('./mat/config.mat', 'save_fig', 'freqs');
%% Micro-Hexapod %% Micro-Hexapod
bodeFig({G_ms('Dmx', 'Fmx'), G_ms('Dmy', 'Fmy'), G_ms('Dmz', 'Fmz')}, freqs)
bodeFig({G_h_h(1, 1), G_h_h(2, 2), G_h_h(3, 3)}) legend({'$F_{hx} \to D_{hx}$', '$F_{hy} \to D_{hy}$', '$F_{hz} \to D_{hz}$'})
legend({'$F_{h_x} \rightarrow D_{h_x}$', '$F_{h_y} \rightarrow D_{h_y}$', '$F_{h_z} \rightarrow D_{h_z}$'})
legend('location', 'southwest') legend('location', 'southwest')
exportFig('id_marc_h_to_h', 'normal-normal', struct('path', 'identification'))
if save_fig; exportFig('id_marc_m_m', 'normal-normal', struct('path', 'identification')); end
%% Granite %% Granite
bodeFig({G_ms('Dgx', 'Fgx'), G_ms('Dgy', 'Fgy'), G_ms('Dgz', 'Fgz')}, freqs)
% Bode Plot of the linearized function legend({'$F_{gx} \to D_{gx}$', '$F_{gy} \to D_{gy}$', '$F_{gz} \to D_{gz}$'})
bodeFig({G_g_g(1, 1), G_g_g(2, 2), G_g_g(3, 3)})
legend({'$F_{g_x} \rightarrow D_{g_x}$', '$F_{g_y} \rightarrow D_{g_y}$', '$F_{g_z} \rightarrow D_{g_z}$'})
legend('location', 'southwest') legend('location', 'southwest')
exportFig('id_marc_g_to_g', 'normal-normal', struct('path', 'identification'))
if save_fig; exportFig('id_marc_g_g', 'normal-normal', struct('path', 'identification')); end
%% Micro Hexapod to Granite %% Micro Hexapod to Granite
bodeFig({G_ms('Dmx', 'Fgx'), G_ms('Dmy', 'Fgy'), G_ms('Dmz', 'Fgz')}, freqs)
% Bode Plot of the linearized function legend({'$F_{hx} \to D_{gx}$', '$F_{hy} \to D_{gy}$', '$F_{hz} \to D_{gz}$'})
bodeFig({G_h_g(1, 1), G_h_g(2, 2), G_h_g(3, 3)})
legend({'$F_{h_x} \rightarrow D_{g_x}$', '$F_{h_y} \rightarrow D_{g_y}$', '$F_{h_z} \rightarrow D_{g_z}$'})
legend('location', 'southwest') legend('location', 'southwest')
exportFig('id_marc_h_to_g', 'normal-normal', struct('path', 'identification'))
if save_fig; exportFig('id_marc_m_g', 'normal-normal', struct('path', 'identification')); end

View File

@ -1,24 +0,0 @@
%% Script Description
% Identification of the NASS from cartesian actuation
% to cartesian displacement.
%%
clear; close all; clc;
%%
initializeSample(struct('mass', 1));
G_nass_1 = identifyNass();
%%
initializeSample(struct('mass', 20));
G_nass_20 = identifyNass();
%%
initializeSample(struct('mass', 50));
G_nass_50 = identifyNass();
%% Save Transfer Functions
save('./mat/G_nass.mat', 'G_nass_1', 'G_nass_20', 'G_nass_50');

View File

@ -1,36 +0,0 @@
%%
clear; close all; clc;
%% Load Transfer Functions
load('./mat/G_nass.mat', 'G_nass_1', 'G_nass_20', 'G_nass_50');
%%
freqs = logspace(1, 4, 1000);
bodeFig({G_nass_1(1, 1), G_nass_1(2, 2), G_nass_1(3, 3)}, struct('phase', true))
legend({'$F_{n_x} \rightarrow D_{n_x}$ - $M = 1Kg$', ...
'$F_{n_y} \rightarrow D_{n_y}$ - $M = 1Kg$', ...
'$F_{n_z} \rightarrow D_{n_z}$ - $M = 1Kg$'})
legend('location', 'southwest')
exportFig('nass_cart_xyz', 'normal-normal', struct('path', 'identification'))
bodeFig({G_nass_1(1, 1), G_nass_20(1, 1), G_nass_50(1, 1)}, struct('phase', true))
legend({'$F_{n_x} \rightarrow D_{n_x}$ - $M = 1Kg$', ...
'$F_{n_x} \rightarrow D_{n_x}$ - $M = 20Kg$', ...
'$F_{n_x} \rightarrow D_{n_x}$ - $M = 50Kg$'})
legend('location', 'southwest')
exportFig('nass_cart_x_mass', 'normal-normal', struct('path', 'identification'))
bodeFig({G_nass_1(2, 2), G_nass_20(2, 2), G_nass_50(2, 2)}, struct('phase', true))
legend({'$F_{n_x} \rightarrow D_{n_x}$ - $M = 1Kg$', ...
'$F_{n_x} \rightarrow D_{n_x}$ - $M = 20Kg$', ...
'$F_{n_x} \rightarrow D_{n_x}$ - $M = 50Kg$'})
legend('location', 'southwest')
exportFig('nass_cart_y_mass', 'normal-normal', struct('path', 'identification'))
bodeFig({G_nass_1(3, 3), G_nass_20(3, 3), G_nass_50(3, 3)}, struct('phase', true))
legend({'$F_{n_z} \rightarrow D_{n_z}$ - $M = 1Kg$', ...
'$F_{n_z} \rightarrow D_{n_z}$ - $M = 20Kg$', ...
'$F_{n_z} \rightarrow D_{n_z}$ - $M = 50Kg$'})
legend('location', 'southwest')
exportFig('nass_cart_z_mass', 'normal-normal', struct('path', 'identification'))

View File

@ -8,27 +8,20 @@ clear; close all; clc;
%% %%
initializeSample(struct('mass', 20)); initializeSample(struct('mass', 20));
%% Options for preprocessing the identified transfer functions
f_low = 10; % [Hz]
f_high = 10000; % [Hz]
%% Options for Linearized %% Options for Linearized
options = linearizeOptions; options = linearizeOptions;
options.SampleTime = 0; options.SampleTime = 0;
%% Name of the Simulink File %% Name of the Simulink File
mdl = 'Micro_Station_Identification'; mdl = 'sim_nano_station';
%% Y-Translation Stage %% Y-Translation Stage
% Input/Output definition % Input/Output definition
io(1) = linio([mdl, '/Micro-Station/Fy'], 1,'input'); io(1) = linio([mdl, '/Micro-Station/Fy'], 1,'openinput');
io(2) = linio([mdl, '/Micro-Station/Translation y'],1,'output'); io(2) = linio([mdl, '/Micro-Station/Translation y'],1,'output');
% Run the linearization % Run the linearization
G_ty_raw = linearize(mdl,io, 0); G_ty = linearize(mdl,io, 0);
% Post-process the linearized function
G_ty = preprocessIdTf(G_ty_raw, f_low, f_high);
% Input/Output names % Input/Output names
G_ty.InputName = {'Fy'}; G_ty.InputName = {'Fy'};
@ -36,14 +29,11 @@ G_ty.OutputName = {'Dy'};
%% Tilt Stage %% Tilt Stage
% Input/Output definition % Input/Output definition
io(1) = linio([mdl, '/Micro-Station/Ry'], 1,'input'); io(1) = linio([mdl, '/Micro-Station/Ry'], 1,'openinput');
io(2) = linio([mdl, '/Micro-Station/Tilt'],1,'output'); io(2) = linio([mdl, '/Micro-Station/Tilt'],1,'output');
% Run the linearization % Run the linearization
G_ry_raw = linearize(mdl,io, 0); G_ry = linearize(mdl,io, 0);
% Post-process the linearized function
G_ry = preprocessIdTf(G_ry_raw, f_low, f_high);
% Input/Output names % Input/Output names
G_ry.InputName = {'My'}; G_ry.InputName = {'My'};
@ -51,14 +41,11 @@ G_ry.OutputName = {'Ry'};
%% Spindle %% Spindle
% Input/Output definition % Input/Output definition
io(1) = linio([mdl, '/Micro-Station/Rz'], 1,'input'); io(1) = linio([mdl, '/Micro-Station/Rz'], 1,'openinput');
io(2) = linio([mdl, '/Micro-Station/Spindle'],1,'output'); io(2) = linio([mdl, '/Micro-Station/Spindle'],1,'output');
% Run the linearization % Run the linearization
G_rz_raw = linearize(mdl,io, 0); G_rz = linearize(mdl,io, 0);
% Post-process the linearized function
G_rz = preprocessIdTf(G_rz_raw, f_low, f_high);
% Input/Output names % Input/Output names
G_rz.InputName = {'Mz'}; G_rz.InputName = {'Mz'};
@ -66,14 +53,11 @@ G_rz.OutputName = {'Rz'};
%% Hexapod Symetrie %% Hexapod Symetrie
% Input/Output definition % Input/Output definition
io(1) = linio([mdl, '/Micro-Station/Fm'], 1,'input'); io(1) = linio([mdl, '/Micro-Station/Fm'], 1,'openinput');
io(2) = linio([mdl, '/Micro-Station/Micro_Hexapod'],1,'output'); io(2) = linio([mdl, '/Micro-Station/Micro_Hexapod'],1,'output');
% Run the linearization % Run the linearization
G_hexa_raw = linearize(mdl,io, 0); G_hexa = linearize(mdl,io, 0);
% Post-process the linearized function
G_hexa = preprocessIdTf(G_hexa_raw, f_low, f_high);
% Input/Output names % Input/Output names
G_hexa.InputName = {'Fhexa_x', 'Fhexa_y', 'Fhexa_z', 'Mhexa_x', 'Mhexa_y', 'Mhexa_z'}; G_hexa.InputName = {'Fhexa_x', 'Fhexa_y', 'Fhexa_z', 'Mhexa_x', 'Mhexa_y', 'Mhexa_z'};
@ -81,14 +65,11 @@ G_hexa.OutputName = {'Dhexa_x', 'Dhexa_y', 'Dhexa_z', 'Rhexa_x', 'Rhexa_y', 'Rhe
%% NASS %% NASS
% Input/Output definition % Input/Output definition
io(1) = linio([mdl, '/Micro-Station/Fn'], 1,'input'); io(1) = linio([mdl, '/Micro-Station/Fn'], 1,'openinput');
io(2) = linio([mdl, '/Micro-Station/Nano_Hexapod'],1,'output'); io(2) = linio([mdl, '/Micro-Station/Nano_Hexapod'],1,'output');
% Run the linearization % Run the linearization
G_nass_raw = linearize(mdl,io, 0); G_nass = linearize(mdl,io, 0);
% Post-process the linearized function
G_nass = preprocessIdTf(G_nass_raw, f_low, f_high);
% Input/Output names % Input/Output names
G_nass.InputName = {'Fnass_x', 'Fnass_y', 'Fnass_z', 'Mnass_x', 'Mnass_y', 'Mnass_z'}; G_nass.InputName = {'Fnass_x', 'Fnass_y', 'Fnass_z', 'Mnass_x', 'Mnass_y', 'Mnass_z'};

View File

@ -10,41 +10,41 @@ load('./mat/identified_tf.mat', 'G_ty', 'G_ry', 'G_rz', 'G_hexa', 'G_nass');
%% Y-Translation Stage %% Y-Translation Stage
bodeFig({G_ty}, struct('phase', true)) bodeFig({G_ty}, struct('phase', true))
legend({'$F_{y} \rightarrow D_{y}$'}) legend({'$F_{y} \to D_{y}$'})
exportFig('id_ty', 'normal-normal', struct('path', 'identification')) exportFig('id_ty', 'normal-normal', struct('path', 'identification'))
%% Tilt Stage %% Tilt Stage
bodeFig({G_ry}, struct('phase', true)) bodeFig({G_ry}, struct('phase', true))
legend({'$M_{y} \rightarrow R_{y}$'}) legend({'$M_{y} \to R_{y}$'})
exportFig('id_ry', 'normal-normal', struct('path', 'identification')) exportFig('id_ry', 'normal-normal', struct('path', 'identification'))
%% Spindle %% Spindle
bodeFig({G_rz}, struct('phase', true)) bodeFig({G_rz}, struct('phase', true))
legend({'$M_{z} \rightarrow R_{z}$'}) legend({'$M_{z} \to R_{z}$'})
exportFig('id_ry', 'normal-normal', struct('path', 'identification')) exportFig('id_ry', 'normal-normal', struct('path', 'identification'))
%% Hexapod Symetrie %% Hexapod Symetrie
bodeFig({G_hexa(1, 1), G_hexa(2, 2), G_hexa(3, 3)}, struct('phase', true)) bodeFig({G_hexa(1, 1), G_hexa(2, 2), G_hexa(3, 3)}, struct('phase', true))
legend({'$F_{h_x} \rightarrow D_{h_x}$', '$F_{h_y} \rightarrow D_{h_y}$', '$F_{h_z} \rightarrow D_{h_z}$'}) legend({'$F_{h_x} \to D_{h_x}$', '$F_{h_y} \to D_{h_y}$', '$F_{h_z} \to D_{h_z}$'})
exportFig('id_hexapod_trans', 'normal-normal', struct('path', 'identification')) exportFig('id_hexapod_trans', 'normal-normal', struct('path', 'identification'))
bodeFig({G_hexa(4, 4), G_hexa(5, 5), G_hexa(6, 6)}, struct('phase', true)) bodeFig({G_hexa(4, 4), G_hexa(5, 5), G_hexa(6, 6)}, struct('phase', true))
legend({'$M_{h_x} \rightarrow R_{h_x}$', '$M_{h_y} \rightarrow R_{h_y}$', '$M_{h_z} \rightarrow R_{h_z}$'}) legend({'$M_{h_x} \to R_{h_x}$', '$M_{h_y} \to R_{h_y}$', '$M_{h_z} \to R_{h_z}$'})
exportFig('id_hexapod_rot', 'normal-normal', struct('path', 'identification')) exportFig('id_hexapod_rot', 'normal-normal', struct('path', 'identification'))
bodeFig({G_hexa(1, 1), G_hexa(2, 1), G_hexa(3, 1)}, struct('phase', true)) bodeFig({G_hexa(1, 1), G_hexa(2, 1), G_hexa(3, 1)}, struct('phase', true))
legend({'$F_{h_x} \rightarrow D_{h_x}$', '$F_{h_x} \rightarrow D_{h_y}$', '$F_{h_x} \rightarrow D_{h_z}$'}) legend({'$F_{h_x} \to D_{h_x}$', '$F_{h_x} \to D_{h_y}$', '$F_{h_x} \to D_{h_z}$'})
exportFig('id_hexapod_coupling', 'normal-normal', struct('path', 'identification')) exportFig('id_hexapod_coupling', 'normal-normal', struct('path', 'identification'))
%% NASS %% NASS
bodeFig({G_nass(1, 1), G_nass(2, 2), G_nass(3, 3)}, struct('phase', true)) bodeFig({G_nass(1, 1), G_nass(2, 2), G_nass(3, 3)}, struct('phase', true))
legend({'$F_{n_x} \rightarrow D_{n_x}$', '$F_{n_y} \rightarrow D_{n_y}$', '$F_{n_z} \rightarrow D_{n_z}$'}) legend({'$F_{n_x} \to D_{n_x}$', '$F_{n_y} \to D_{n_y}$', '$F_{n_z} \to D_{n_z}$'})
exportFig('id_nass_trans', 'normal-normal', struct('path', 'identification')) exportFig('id_nass_trans', 'normal-normal', struct('path', 'identification'))
bodeFig({G_nass(4, 4), G_nass(5, 5), G_nass(6, 6)}, struct('phase', true)) bodeFig({G_nass(4, 4), G_nass(5, 5), G_nass(6, 6)}, struct('phase', true))
legend({'$M_{n_x} \rightarrow R_{n_x}$', '$M_{n_y} \rightarrow R_{n_y}$', '$M_{n_z} \rightarrow R_{n_z}$'}) legend({'$M_{n_x} \to R_{n_x}$', '$M_{n_y} \to R_{n_y}$', '$M_{n_z} \to R_{n_z}$'})
exportFig('id_nass_rot', 'normal-normal', struct('path', 'identification')) exportFig('id_nass_rot', 'normal-normal', struct('path', 'identification'))
bodeFig({G_nass(1, 1), G_nass(2, 1), G_nass(3, 1)}, struct('phase', true)) bodeFig({G_nass(1, 1), G_nass(2, 1), G_nass(3, 1)}, struct('phase', true))
legend({'$F_{n_x} \rightarrow D_{n_x}$', '$F_{n_x} \rightarrow D_{n_y}$', '$F_{n_x} \rightarrow D_{n_z}$'}) legend({'$F_{n_x} \to D_{n_x}$', '$F_{n_x} \to D_{n_y}$', '$F_{n_x} \to D_{n_z}$'})
exportFig('id_nass_coupling', 'normal-normal', struct('path', 'identification')) exportFig('id_nass_coupling', 'normal-normal', struct('path', 'identification'))

Binary file not shown.

Binary file not shown.

View File

@ -43,9 +43,11 @@ function [nano_hexapod] = initializeNanoHexapod(opts_param)
Leg.stroke = 80e-6; % Maximum Stroke of each leg [m] Leg.stroke = 80e-6; % Maximum Stroke of each leg [m]
if strcmp(opts.actuator, 'piezo') if strcmp(opts.actuator, 'piezo')
Leg.k.ax = 5e7; % Stiffness of each leg [N/m] Leg.k.ax = 1e7; % Stiffness of each leg [N/m]
elseif strcmp(opts.actuator, 'lorentz')
Leg.k.ax = 1e4; % Stiffness of each leg [N/m]
else else
Leg.k.ax = 1e5; % Stiffness of each leg [N/m] error('opts.actuator should be piezo or lorentz');
end end
Leg.ksi.ax = 10; % Maximum amplification at resonance [] Leg.ksi.ax = 10; % Maximum amplification at resonance []
Leg.rad.bottom = 12; % Radius of the cylinder of the bottom part [mm] Leg.rad.bottom = 12; % Radius of the cylinder of the bottom part [mm]

3
main.m
View File

@ -4,6 +4,9 @@ clear; close all; clc;
%% Open the project %% Open the project
simulinkproject('./'); simulinkproject('./');
%% General Configuration
run config.m
%% Initialization %% Initialization
% Initialize the perturbations % Initialize the perturbations
run init_perturbations.m run init_perturbations.m

View File

@ -1,8 +1,6 @@
function [G, G_raw] = identifyG(opts_param) function [G, G_raw] = identifyG(opts_param)
%% Default values for opts %% Default values for opts
opts = struct('f_low', 0.1, ... opts = struct();
'f_high', 10000 ...
);
%% Populate opts with input parameters %% Populate opts with input parameters
if exist('opts_param','var') if exist('opts_param','var')
@ -16,19 +14,15 @@ function [G, G_raw] = identifyG(opts_param)
options.SampleTime = 0; options.SampleTime = 0;
%% Name of the Simulink File %% Name of the Simulink File
mdl = 'Micro_Station_Identification'; mdl = 'sim_nano_station';
%% Centralized control (Cartesian coordinates) %% Centralized control (Cartesian coordinates)
% Input/Output definition % Input/Output definition
io(1) = linio([mdl, '/Micro-Station/Fn'], 1,'input'); io(1) = linio([mdl, '/Micro-Station/Fn'], 1,'openinput');
io(2) = linio([mdl, '/Micro-Station/Sample'],1,'output'); io(2) = linio([mdl, '/Micro-Station/Sample'],1,'output');
% Run the linearization % Run the linearization
G_raw = linearize(mdl,io, 0); G = linearize(mdl,io, 0);
G_raw.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
G_raw.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
G = preprocessIdTf(G_raw, opts.f_low, opts.f_high);
G.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'}; G.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
G.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; G.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
end end

View File

@ -1,9 +1,6 @@
function [Gd, Gd_raw] = identifyGd(opts_param) function [Gd, Gd_raw] = identifyGd(opts_param)
%% Default values for opts %% Default values for opts
opts = struct('cl', true, ... % CL or OL opts = struct('cl', true);
'f_low', 0.1, ...
'f_high', 10000 ...
);
%% Populate opts with input parameters %% Populate opts with input parameters
if exist('opts_param','var') if exist('opts_param','var')
@ -18,22 +15,21 @@ function [Gd, Gd_raw] = identifyGd(opts_param)
%% Name of the Simulink File %% Name of the Simulink File
if opts.cl if opts.cl
% Make sure that the loop is closed
initializeSimConf(struct('cl_time', 0));
mdl = 'Assemblage'; mdl = 'Assemblage';
else else
mdl = 'Micro_Station_Identification'; mdl = 'sim_nano_station';
end end
%% Centralized control (Cartesian coordinates) %% Centralized control (Cartesian coordinates)
% Input/Output definition % Input/Output definition
io(1) = linio([mdl, '/Micro-Station/Gm'], 1,'input'); io(1) = linio([mdl, '/Micro-Station/Gm'], 1,'openinput');
io(2) = linio([mdl, '/Micro-Station/Sample'],1,'output'); io(2) = linio([mdl, '/Micro-Station/Fs_ext'], 1,'openinput');
io(3) = linio([mdl, '/Micro-Station/Sample'], 1,'output');
% Run the linearization % Run the linearization
Gd_raw = linearize(mdl,io, 0); Gd = linearize(mdl,io, 0);
Gd_raw.InputName = {'Dgx', 'Dgy', 'Dgz'}; Gd.InputName = {'Dgx', 'Dgy', 'Dgz', 'Fsx', 'Fsy', 'Fsz'};
Gd_raw.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
Gd = preprocessIdTf(Gd_raw, opts.f_low, opts.f_high);
Gd.InputName = {'Dgx', 'Dgy', 'Dgz'};
Gd.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; Gd.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
end end

View File

@ -1,8 +1,6 @@
function [G_cart, G_cart_raw] = identifyNass(opts_param) function [G_cart, G_cart_raw] = identifyNass(opts_param)
%% Default values for opts %% Default values for opts
opts = struct('f_low', 1,... opts = struct();
'f_high', 10000 ...
);
%% Populate opts with input parameters %% Populate opts with input parameters
if exist('opts_param','var') if exist('opts_param','var')
@ -16,17 +14,15 @@ function [G_cart, G_cart_raw] = identifyNass(opts_param)
options.SampleTime = 0; options.SampleTime = 0;
%% Name of the Simulink File %% Name of the Simulink File
mdl = 'Micro_Station_Identification'; mdl = 'sim_nano_station';
%% Centralized control (Cartesian coordinates) %% Centralized control (Cartesian coordinates)
% Input/Output definition % Input/Output definition
io(1) = linio([mdl, '/Micro-Station/Fn'], 1,'input'); io(1) = linio([mdl, '/Micro-Station/Fn'], 1, 'openinput');
io(2) = linio([mdl, '/Micro-Station/Nano_Hexapod'], 1, 'output'); io(2) = linio([mdl, '/Micro-Station/Nano_Hexapod'], 1, 'output');
% Run the linearization % Run the linearization
G_cart_raw = linearize(mdl,io, 0); G_cart = linearize(mdl,io, 0);
G_cart = preprocessIdTf(G_cart_raw, opts.f_low, opts.f_high);
% Input/Output names % Input/Output names
G_cart.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'}; G_cart.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};

View File

@ -1,5 +0,0 @@
function [G] = preprocessIdTf(G0, f_low, f_high)
[~,G1] = freqsep(G0, 2*pi*f_low);
[G2,~] = freqsep(G1, 2*pi*f_high);
G = minreal(G2);
end