Correct wrong sentence about mechanical impedance
This commit is contained in:
parent
ca42338fe3
commit
48b2d36418
@ -4,7 +4,7 @@
|
|||||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||||
<head>
|
<head>
|
||||||
<!-- 2020-04-01 mer. 16:14 -->
|
<!-- 2020-04-07 mar. 16:17 -->
|
||||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||||
<title>Effect of Uncertainty on the payload’s dynamics on the isolation platform dynamics</title>
|
<title>Effect of Uncertainty on the payload’s dynamics on the isolation platform dynamics</title>
|
||||||
@ -227,7 +227,9 @@
|
|||||||
</script>
|
</script>
|
||||||
<script>
|
<script>
|
||||||
MathJax = {
|
MathJax = {
|
||||||
tex: { macros: {
|
tex: {
|
||||||
|
tags: 'ams',
|
||||||
|
macros: {
|
||||||
bm: ["\\boldsymbol{#1}",1],
|
bm: ["\\boldsymbol{#1}",1],
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -249,17 +251,17 @@
|
|||||||
<ul>
|
<ul>
|
||||||
<li><a href="#orgcc5f0ec">1. Simple Introductory Example</a>
|
<li><a href="#orgcc5f0ec">1. Simple Introductory Example</a>
|
||||||
<ul>
|
<ul>
|
||||||
<li><a href="#org6264842">1.1. Equations of motion</a></li>
|
<li><a href="#org1f20d62">1.1. Equations of motion</a></li>
|
||||||
<li><a href="#org4efccbf">1.2. Initialization of the payload dynamics</a></li>
|
<li><a href="#org4efccbf">1.2. Initialization of the payload dynamics</a></li>
|
||||||
<li><a href="#orgb400ca3">1.3. Initialization of the isolation platform</a></li>
|
<li><a href="#orgb400ca3">1.3. Initialization of the isolation platform</a></li>
|
||||||
<li><a href="#orgd0dd88b">1.4. Comparison</a></li>
|
<li><a href="#orgd0dd88b">1.4. Comparison</a></li>
|
||||||
<li><a href="#org1b051ce">1.5. Conclusion</a></li>
|
<li><a href="#org1637b13">1.5. Conclusion</a></li>
|
||||||
</ul>
|
</ul>
|
||||||
</li>
|
</li>
|
||||||
<li><a href="#org1f8e63e">2. Generalization to arbitrary dynamics</a>
|
<li><a href="#org1f8e63e">2. Generalization to arbitrary dynamics</a>
|
||||||
<ul>
|
<ul>
|
||||||
<li><a href="#orgc4fa63e">2.1. Introduction</a></li>
|
<li><a href="#orgc4fa63e">2.1. Introduction</a></li>
|
||||||
<li><a href="#org35ac80d">2.2. Equations of motion</a></li>
|
<li><a href="#orgd6da9a7">2.2. Equations of motion</a></li>
|
||||||
<li><a href="#orge217a33">2.3. Impedance \(G^\prime(s)\) of a mass-spring-damper payload</a></li>
|
<li><a href="#orge217a33">2.3. Impedance \(G^\prime(s)\) of a mass-spring-damper payload</a></li>
|
||||||
<li><a href="#org0ee44da">2.4. First Analytical analysis</a></li>
|
<li><a href="#org0ee44da">2.4. First Analytical analysis</a></li>
|
||||||
<li><a href="#orgfe81c1c">2.5. Impedance of the Payload and Dynamical Uncertainty</a></li>
|
<li><a href="#orgfe81c1c">2.5. Impedance of the Payload and Dynamical Uncertainty</a></li>
|
||||||
@ -272,7 +274,7 @@
|
|||||||
<li><a href="#org9086831">2.8.3. Effect of the platform’s mass \(m\)</a></li>
|
<li><a href="#org9086831">2.8.3. Effect of the platform’s mass \(m\)</a></li>
|
||||||
</ul>
|
</ul>
|
||||||
</li>
|
</li>
|
||||||
<li><a href="#org43f33dc">2.9. Conclusion</a></li>
|
<li><a href="#org3a1ebf1">2.9. Conclusion</a></li>
|
||||||
</ul>
|
</ul>
|
||||||
</li>
|
</li>
|
||||||
</ul>
|
</ul>
|
||||||
@ -326,8 +328,8 @@ The goal is to stabilize \(x\) using \(F\) in spite of uncertainty on the payloa
|
|||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div id="outline-container-org6264842" class="outline-3">
|
<div id="outline-container-org1f20d62" class="outline-3">
|
||||||
<h3 id="org6264842"><span class="section-number-3">1.1</span> Equations of motion</h3>
|
<h3 id="org1f20d62"><span class="section-number-3">1.1</span> Equations of motion</h3>
|
||||||
<div class="outline-text-3" id="text-1-1">
|
<div class="outline-text-3" id="text-1-1">
|
||||||
<p>
|
<p>
|
||||||
If we write the equation of motion of the system in Figure <a href="#orgaa77a57">1</a>, we obtain:
|
If we write the equation of motion of the system in Figure <a href="#orgaa77a57">1</a>, we obtain:
|
||||||
@ -434,8 +436,8 @@ The obtained dynamics from \(F\) to \(x\) for the three isolation platform are s
|
|||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div id="outline-container-org1b051ce" class="outline-3">
|
<div id="outline-container-org1637b13" class="outline-3">
|
||||||
<h3 id="org1b051ce"><span class="section-number-3">1.5</span> Conclusion</h3>
|
<h3 id="org1637b13"><span class="section-number-3">1.5</span> Conclusion</h3>
|
||||||
<div class="outline-text-3" id="text-1-5">
|
<div class="outline-text-3" id="text-1-5">
|
||||||
<div class="important">
|
<div class="important">
|
||||||
<p>
|
<p>
|
||||||
@ -458,12 +460,12 @@ The stiff platform dynamics does not seems to depend on the dynamics of the payl
|
|||||||
<h3 id="orgc4fa63e"><span class="section-number-3">2.1</span> Introduction</h3>
|
<h3 id="orgc4fa63e"><span class="section-number-3">2.1</span> Introduction</h3>
|
||||||
<div class="outline-text-3" id="text-2-1">
|
<div class="outline-text-3" id="text-2-1">
|
||||||
<p>
|
<p>
|
||||||
Let’s now consider a general payload described by its <b>impedance</b> \(G^\prime(s) = \frac{x}{F^\prime}\) as shown in Figure <a href="#orgb54b79a">4</a>.
|
Let’s now consider a general payload described by its <b>impedance</b> \(G^\prime(s) = \frac{F^\prime}{x}\) as shown in Figure <a href="#orgb54b79a">4</a>.
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
<div class="note">
|
<div class="note">
|
||||||
<p>
|
<p>
|
||||||
Note here that we use the term <i>impedance</i>, however, the mechanical impedance is usually defined as the ratio of the velocity over the force \(\dot{x}/F^\prime\). We should refer to <i>resistance</i> instead of <i>impedance</i>.
|
Note here that we use the term <i>impedance</i>, however, the mechanical impedance is usually defined as the ratio of the force over the velocity \(F^\prime/\dot{x}\). We should refer to <i>resistance</i> instead of <i>impedance</i>.
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
@ -487,8 +489,8 @@ Now let’s consider the system consisting of a mass-spring-system (the isol
|
|||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div id="outline-container-org35ac80d" class="outline-3">
|
<div id="outline-container-orgd6da9a7" class="outline-3">
|
||||||
<h3 id="org35ac80d"><span class="section-number-3">2.2</span> Equations of motion</h3>
|
<h3 id="orgd6da9a7"><span class="section-number-3">2.2</span> Equations of motion</h3>
|
||||||
<div class="outline-text-3" id="text-2-2">
|
<div class="outline-text-3" id="text-2-2">
|
||||||
<p>
|
<p>
|
||||||
We have to following equations of motion:
|
We have to following equations of motion:
|
||||||
@ -536,12 +538,11 @@ By eliminating \(x^\prime\) of the equations, we obtain:
|
|||||||
</p>
|
</p>
|
||||||
<div class="important">
|
<div class="important">
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{orgae0b162}
|
G^\prime(s) = \frac{F^\prime}{x} = \frac{m^\prime s^2 (c^\prime s + k)}{m^\prime s^2 + c^\prime s + k^\prime} \label{eq:impedance_mass_spring_damper}
|
||||||
G^\prime(s) = \frac{F^\prime}{x} = \frac{m^\prime s^2 (c^\prime s + k)}{m^\prime s^2 + c^\prime s + k^\prime}
|
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
<p>
|
<p>
|
||||||
The impedance of a 1dof mass-spring-damper system is described by Eq. \eqref{orgae0b162}.
|
The impedance of a 1dof mass-spring-damper system is described by Eq. \eqref{eq:impedance_mass_spring_damper}.
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
@ -945,8 +946,8 @@ Let’s fix \(k = 10^7\ [N/m]\), \(\xi = \frac{c}{2\sqrt{km}} = 0.1\) and se
|
|||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div id="outline-container-org43f33dc" class="outline-3">
|
<div id="outline-container-org3a1ebf1" class="outline-3">
|
||||||
<h3 id="org43f33dc"><span class="section-number-3">2.9</span> Conclusion</h3>
|
<h3 id="org3a1ebf1"><span class="section-number-3">2.9</span> Conclusion</h3>
|
||||||
<div class="outline-text-3" id="text-2-9">
|
<div class="outline-text-3" id="text-2-9">
|
||||||
<div class="important">
|
<div class="important">
|
||||||
<p>
|
<p>
|
||||||
@ -970,7 +971,7 @@ In that case, maximizing the stiffness of the payload is a good idea.
|
|||||||
</div>
|
</div>
|
||||||
<div id="postamble" class="status">
|
<div id="postamble" class="status">
|
||||||
<p class="author">Author: Dehaeze Thomas</p>
|
<p class="author">Author: Dehaeze Thomas</p>
|
||||||
<p class="date">Created: 2020-04-01 mer. 16:14</p>
|
<p class="date">Created: 2020-04-07 mar. 16:17</p>
|
||||||
</div>
|
</div>
|
||||||
</body>
|
</body>
|
||||||
</html>
|
</html>
|
||||||
|
@ -337,10 +337,10 @@ The obtained dynamics from $F$ to $x$ for the three isolation platform are shown
|
|||||||
* Generalization to arbitrary dynamics
|
* Generalization to arbitrary dynamics
|
||||||
<<sec:arbitrary_dynamics>>
|
<<sec:arbitrary_dynamics>>
|
||||||
** Introduction
|
** Introduction
|
||||||
Let's now consider a general payload described by its *impedance* $G^\prime(s) = \frac{x}{F^\prime}$ as shown in Figure [[fig:general_payload_impedance]].
|
Let's now consider a general payload described by its *impedance* $G^\prime(s) = \frac{F^\prime}{x}$ as shown in Figure [[fig:general_payload_impedance]].
|
||||||
|
|
||||||
#+begin_note
|
#+begin_note
|
||||||
Note here that we use the term /impedance/, however, the mechanical impedance is usually defined as the ratio of the velocity over the force $\dot{x}/F^\prime$. We should refer to /resistance/ instead of /impedance/.
|
Note here that we use the term /impedance/, however, the mechanical impedance is usually defined as the ratio of the force over the velocity $F^\prime/\dot{x}$. We should refer to /resistance/ instead of /impedance/.
|
||||||
#+end_note
|
#+end_note
|
||||||
|
|
||||||
#+begin_src latex :file general_payload_impedance.pdf
|
#+begin_src latex :file general_payload_impedance.pdf
|
||||||
@ -455,12 +455,11 @@ In order to verify that the formula is correct, let's take the same mass-spring-
|
|||||||
|
|
||||||
By eliminating $x^\prime$ of the equations, we obtain:
|
By eliminating $x^\prime$ of the equations, we obtain:
|
||||||
#+begin_important
|
#+begin_important
|
||||||
#+name: eq:impedance_mass_spring_damper
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
G^\prime(s) = \frac{F^\prime}{x} = \frac{m^\prime s^2 (c^\prime s + k)}{m^\prime s^2 + c^\prime s + k^\prime}
|
G^\prime(s) = \frac{F^\prime}{x} = \frac{m^\prime s^2 (c^\prime s + k)}{m^\prime s^2 + c^\prime s + k^\prime} \label{eq:impedance_mass_spring_damper}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
The impedance of a 1dof mass-spring-damper system is described by Eq. [[eq:impedance_mass_spring_damper]].
|
The impedance of a 1dof mass-spring-damper system is described by Eq. eqref:eq:impedance_mass_spring_damper.
|
||||||
#+end_important
|
#+end_important
|
||||||
|
|
||||||
And we obtain
|
And we obtain
|
||||||
|
Loading…
Reference in New Issue
Block a user