Use online CSS and JS
This commit is contained in:
@@ -1,73 +1,77 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-04-17 ven. 09:35 -->
|
||||
<!-- 2021-02-20 sam. 23:08 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<title>Control of the Nano-Active-Stabilization-System</title>
|
||||
<meta name="generator" content="Org mode" />
|
||||
<meta name="author" content="Dehaeze Thomas" />
|
||||
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
||||
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
||||
<script src="./js/jquery.min.js"></script>
|
||||
<script src="./js/bootstrap.min.js"></script>
|
||||
<script src="./js/jquery.stickytableheaders.min.js"></script>
|
||||
<script src="./js/readtheorg.js"></script>
|
||||
<script>MathJax = {
|
||||
tex: {
|
||||
tags: 'ams',
|
||||
macros: {bm: ["\\boldsymbol{#1}",1],}
|
||||
}
|
||||
};
|
||||
</script>
|
||||
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||||
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
||||
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
||||
<script>
|
||||
MathJax = {
|
||||
svg: {
|
||||
scale: 1,
|
||||
fontCache: "global"
|
||||
},
|
||||
tex: {
|
||||
tags: "ams",
|
||||
multlineWidth: "%MULTLINEWIDTH",
|
||||
tagSide: "right",
|
||||
macros: {bm: ["\\boldsymbol{#1}",1],},
|
||||
tagIndent: ".8em"
|
||||
}
|
||||
};
|
||||
</script>
|
||||
<script id="MathJax-script" async
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
<div id="org-div-home-and-up">
|
||||
<a accesskey="h" href="./index.html"> UP </a>
|
||||
|
|
||||
<a accesskey="H" href="./index.html"> HOME </a>
|
||||
<a accesskey="H" href="../../index.html"> HOME </a>
|
||||
</div><div id="content">
|
||||
<h1 class="title">Control of the Nano-Active-Stabilization-System</h1>
|
||||
<div id="table-of-contents">
|
||||
<h2>Table of Contents</h2>
|
||||
<div id="text-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#org15699e9">1. Control Configuration - Introduction</a></li>
|
||||
<li><a href="#org2be3166">2. Tracking Control in the Frame of the Nano-Hexapod - Basic Architectures</a>
|
||||
<li><a href="#org25c471e">1. Control Configuration - Introduction</a></li>
|
||||
<li><a href="#orgcd0731f">2. Tracking Control in the Frame of the Nano-Hexapod - Basic Architectures</a>
|
||||
<ul>
|
||||
<li><a href="#org970ab39">2.1. Control in the frame of the Legs</a></li>
|
||||
<li><a href="#org82193fb">2.2. Control in the Cartesian frame</a></li>
|
||||
<li><a href="#orgbc69eea">2.1. Control in the frame of the Legs</a></li>
|
||||
<li><a href="#org65bc213">2.2. Control in the Cartesian frame</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org7d7b7f4">3. Active Damping Architecture - Collocated Control (link)</a>
|
||||
<li><a href="#org9ef6b25">3. Active Damping Architecture - Collocated Control (link)</a>
|
||||
<ul>
|
||||
<li><a href="#org3546873">3.1. Integral Force Feedback</a></li>
|
||||
<li><a href="#org722b371">3.2. Direct Relative Velocity Feedback</a></li>
|
||||
<li><a href="#orge25231e">3.1. Integral Force Feedback</a></li>
|
||||
<li><a href="#org66ad123">3.2. Direct Relative Velocity Feedback</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgca70c79">4. HAC-LAC Architectures (link)</a>
|
||||
<li><a href="#orgf83465a">4. HAC-LAC Architectures (link)</a>
|
||||
<ul>
|
||||
<li><a href="#orgd9c84f0">4.1. HAC-LAC using IFF and Tracking control in the frame of the Legs</a></li>
|
||||
<li><a href="#orgeb80da1">4.2. HAC-LAC using IFF and Tracking control in the Cartesian frame</a></li>
|
||||
<li><a href="#org8b2b21e">4.3. HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite in the task space</a></li>
|
||||
<li><a href="#org1c04b26">4.4. HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite in the space of the legs</a></li>
|
||||
<li><a href="#org83b9480">4.5. HAC-LAC using DVF - the HAC controller is positioning the sample w.r.t. the granite in the task space</a></li>
|
||||
<li><a href="#orgdbdd7d4">4.6. HAC-LAC using DVF - the HAC controller is positioning the sample w.r.t. the granite in the space of the legs</a></li>
|
||||
<li><a href="#org3a2dfa2">4.1. HAC-LAC using IFF and Tracking control in the frame of the Legs</a></li>
|
||||
<li><a href="#org27fd54b">4.2. HAC-LAC using IFF and Tracking control in the Cartesian frame</a></li>
|
||||
<li><a href="#org8454531">4.3. HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite in the task space</a></li>
|
||||
<li><a href="#org89a2695">4.4. HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite in the space of the legs</a></li>
|
||||
<li><a href="#orgac21cc9">4.5. HAC-LAC using DVF - the HAC controller is positioning the sample w.r.t. the granite in the task space</a></li>
|
||||
<li><a href="#org6676bde">4.6. HAC-LAC using DVF - the HAC controller is positioning the sample w.r.t. the granite in the space of the legs</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgab73896">5. Cascade Architectures (link)</a>
|
||||
<li><a href="#orge5dd5fd">5. Cascade Architectures (link)</a>
|
||||
<ul>
|
||||
<li><a href="#org3e5154f">5.1. Cascade Control with HAC-LAC Inner Loop and Primary Controller in the task space</a></li>
|
||||
<li><a href="#org4353aca">5.2. Cascade Control with HAC-LAC Inner Loop and Primary Controller in the joint space</a></li>
|
||||
<li><a href="#org9b331a4">5.1. Cascade Control with HAC-LAC Inner Loop and Primary Controller in the task space</a></li>
|
||||
<li><a href="#org2f8d9f9">5.2. Cascade Control with HAC-LAC Inner Loop and Primary Controller in the joint space</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org4ac6d11">6. Force Control (link)</a></li>
|
||||
<li><a href="#org5840a0b">7. Other Control Architectures</a>
|
||||
<li><a href="#org3a980c5">6. Force Control (link)</a></li>
|
||||
<li><a href="#org73661f1">7. Other Control Architectures</a>
|
||||
<ul>
|
||||
<li><a href="#org5be51f2">7.1. Control to force the nano-hexapod to not do any vertical rotation</a></li>
|
||||
<li><a href="#org26f61ba">7.1. Control to force the nano-hexapod to not do any vertical rotation</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
@@ -75,7 +79,7 @@
|
||||
</div>
|
||||
|
||||
<p>
|
||||
The system consist of the following inputs and outputs (Figure <a href="#org2d9f6d0">1</a>):
|
||||
The system consist of the following inputs and outputs (Figure <a href="#org37cd4b0">1</a>):
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>\(\bm{\tau}\): Forces applied in each leg</li>
|
||||
@@ -85,7 +89,7 @@ The system consist of the following inputs and outputs (Figure <a href="#org2d9f
|
||||
</ul>
|
||||
|
||||
|
||||
<div id="org2d9f6d0" class="figure">
|
||||
<div id="org37cd4b0" class="figure">
|
||||
<p><img src="figs/control_architecture_plant.png" alt="control_architecture_plant.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 1: </span>Block diagram with the inputs and outputs of the system</p>
|
||||
@@ -94,7 +98,7 @@ The system consist of the following inputs and outputs (Figure <a href="#org2d9f
|
||||
<p>
|
||||
In order to position the Sample with respect to the granite, we must use the measurement \(\bm{\mathcal{X}}\) in the control loop.
|
||||
The wanted position of the sample with respect to the granite is represented by \(\bm{r}_\mathcal{X}\).
|
||||
From \(\bm{r}_\mathcal{X}\) and \(\bm{\mathcal{X}}\), we can compute the required small change of pose of the nano-hexapod’s top platform expressed in the frame of the nano-hexapod’s base as shown in Figure <a href="#orgc4acef7">2</a>.
|
||||
From \(\bm{r}_\mathcal{X}\) and \(\bm{\mathcal{X}}\), we can compute the required small change of pose of the nano-hexapod’s top platform expressed in the frame of the nano-hexapod’s base as shown in Figure <a href="#orgb843e60">2</a>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
@@ -106,7 +110,7 @@ This can we considered as:
|
||||
</ul>
|
||||
|
||||
|
||||
<div id="orgc4acef7" class="figure">
|
||||
<div id="orgb843e60" class="figure">
|
||||
<p><img src="figs/control_architecture_pos_error.png" alt="control_architecture_pos_error.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 2: </span>Block diagram corresponding to the computation of the position error in the frame of the nano-hexapod</p>
|
||||
@@ -116,15 +120,15 @@ This can we considered as:
|
||||
In this document, we see how the different outputs of the system can be used to control of position \(\bm{\mathcal{X}}\).
|
||||
</p>
|
||||
|
||||
<div id="outline-container-org15699e9" class="outline-2">
|
||||
<h2 id="org15699e9"><span class="section-number-2">1</span> Control Configuration - Introduction</h2>
|
||||
<div id="outline-container-org25c471e" class="outline-2">
|
||||
<h2 id="org25c471e"><span class="section-number-2">1</span> Control Configuration - Introduction</h2>
|
||||
<div class="outline-text-2" id="text-1">
|
||||
<p>
|
||||
In this section, we discuss the control configuration for the NASS.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
From <a class='org-ref-reference' href="#skogestad07_multiv_feedb_contr">skogestad07_multiv_feedb_contr</a>:
|
||||
From (<a href="#citeproc_bib_item_2">Skogestad and Postlethwaite 2007</a>):
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
@@ -149,24 +153,24 @@ Decoupling elements will be used to convert quantities from the joint space to t
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Decentralized controllers will be largely used both for Tracking control (Section <a href="#org251e3c9">2</a>) and for Active Damping techniques (Section <a href="#org1b3cc21">3</a>)
|
||||
Decentralized controllers will be largely used both for Tracking control (Section <a href="#orga1c5122">2</a>) and for Active Damping techniques (Section <a href="#orgaf5a850">3</a>)
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Combining both can be done in an HAC-LAC topology presented in Section <a href="#org31fa800">4</a>.
|
||||
Combining both can be done in an HAC-LAC topology presented in Section <a href="#org4b1b4af">4</a>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The use of decentralized controllers is proposed in Section <a href="#orga038762">5</a>.
|
||||
The use of decentralized controllers is proposed in Section <a href="#org697801a">5</a>.
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org2be3166" class="outline-2">
|
||||
<h2 id="org2be3166"><span class="section-number-2">2</span> Tracking Control in the Frame of the Nano-Hexapod - Basic Architectures</h2>
|
||||
<div id="outline-container-orgcd0731f" class="outline-2">
|
||||
<h2 id="orgcd0731f"><span class="section-number-2">2</span> Tracking Control in the Frame of the Nano-Hexapod - Basic Architectures</h2>
|
||||
<div class="outline-text-2" id="text-2">
|
||||
<p>
|
||||
<a id="org251e3c9"></a>
|
||||
<a id="orga1c5122"></a>
|
||||
</p>
|
||||
<p>
|
||||
In this section, we suppose that we want to track some reference position \(\bm{r}_{\mathcal{X}_n}\) corresponding to the pose of the nano-hexapod’s mobile platform with respect to its fixed base.
|
||||
@@ -184,11 +188,11 @@ However, thanks to the forward and inverse kinematics, the controller can either
|
||||
These to configuration are described in the next two sections.
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-org970ab39" class="outline-3">
|
||||
<h3 id="org970ab39"><span class="section-number-3">2.1</span> Control in the frame of the Legs</h3>
|
||||
<div id="outline-container-orgbc69eea" class="outline-3">
|
||||
<h3 id="orgbc69eea"><span class="section-number-3">2.1</span> Control in the frame of the Legs</h3>
|
||||
<div class="outline-text-3" id="text-2-1">
|
||||
<p>
|
||||
<a id="org8583193"></a>
|
||||
<a id="org92ab294"></a>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
@@ -198,7 +202,7 @@ Finally, a diagonal (Decentralized) controller \(\bm{K}_\mathcal{L}\) can be use
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org3211e10" class="figure">
|
||||
<div id="org6c88afe" class="figure">
|
||||
<p><img src="figs/control_architecture_leg_frame.png" alt="control_architecture_leg_frame.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 3: </span>Control in the frame of the legs</p>
|
||||
@@ -206,11 +210,11 @@ Finally, a diagonal (Decentralized) controller \(\bm{K}_\mathcal{L}\) can be use
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org82193fb" class="outline-3">
|
||||
<h3 id="org82193fb"><span class="section-number-3">2.2</span> Control in the Cartesian frame</h3>
|
||||
<div id="outline-container-org65bc213" class="outline-3">
|
||||
<h3 id="org65bc213"><span class="section-number-3">2.2</span> Control in the Cartesian frame</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<p>
|
||||
<a id="orgbd7e263"></a>
|
||||
<a id="orgd4d12e5"></a>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
@@ -221,7 +225,7 @@ These forces are then converted to forces applied in each of the nano-hexapod&rs
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org81b6823" class="figure">
|
||||
<div id="orga34a56c" class="figure">
|
||||
<p><img src="figs/control_architecture_cartesian_frame.png" alt="control_architecture_cartesian_frame.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 4: </span>Control in the cartesian Frame (rotating frame attached to the nano-hexapod’s base)</p>
|
||||
@@ -230,14 +234,14 @@ These forces are then converted to forces applied in each of the nano-hexapod&rs
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org7d7b7f4" class="outline-2">
|
||||
<h2 id="org7d7b7f4"><span class="section-number-2">3</span> Active Damping Architecture - Collocated Control (<a href="control_active_damping.html">link</a>)</h2>
|
||||
<div id="outline-container-org9ef6b25" class="outline-2">
|
||||
<h2 id="org9ef6b25"><span class="section-number-2">3</span> Active Damping Architecture - Collocated Control (<a href="control_active_damping.html">link</a>)</h2>
|
||||
<div class="outline-text-2" id="text-3">
|
||||
<p>
|
||||
<a id="org1b3cc21"></a>
|
||||
<a id="orgaf5a850"></a>
|
||||
</p>
|
||||
<p>
|
||||
From <a class='org-ref-reference' href="#preumont18_vibrat_contr_activ_struc_fourt_edition">preumont18_vibrat_contr_activ_struc_fourt_edition</a>:
|
||||
From (<a href="#citeproc_bib_item_1">Preumont 2018</a>):
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
@@ -258,11 +262,11 @@ These two active damping techniques are collocated control techniques.
|
||||
The active damping techniques are studied in <a href="control_active_damping.html">this</a> document.
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-org3546873" class="outline-3">
|
||||
<h3 id="org3546873"><span class="section-number-3">3.1</span> Integral Force Feedback</h3>
|
||||
<div id="outline-container-orge25231e" class="outline-3">
|
||||
<h3 id="orge25231e"><span class="section-number-3">3.1</span> Integral Force Feedback</h3>
|
||||
<div class="outline-text-3" id="text-3-1">
|
||||
<p>
|
||||
<a id="orgb398117"></a>
|
||||
<a id="org71c8197"></a>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
@@ -286,7 +290,7 @@ A lead-lag can also be used instead of a pure integrator.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org19b5f2d" class="figure">
|
||||
<div id="orga842725" class="figure">
|
||||
<p><img src="figs/control_architecture_iff.png" alt="control_architecture_iff.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 5: </span>Integral Force Feedback</p>
|
||||
@@ -294,11 +298,11 @@ A lead-lag can also be used instead of a pure integrator.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org722b371" class="outline-3">
|
||||
<h3 id="org722b371"><span class="section-number-3">3.2</span> Direct Relative Velocity Feedback</h3>
|
||||
<div id="outline-container-org66ad123" class="outline-3">
|
||||
<h3 id="org66ad123"><span class="section-number-3">3.2</span> Direct Relative Velocity Feedback</h3>
|
||||
<div class="outline-text-3" id="text-3-2">
|
||||
<p>
|
||||
<a id="orgfaf575b"></a>
|
||||
<a id="org4acc137"></a>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
@@ -315,7 +319,7 @@ Each diagonal element consists of:
|
||||
\end{equation}
|
||||
|
||||
|
||||
<div id="org402f972" class="figure">
|
||||
<div id="org76615cc" class="figure">
|
||||
<p><img src="figs/control_architecture_dvf.png" alt="control_architecture_dvf.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 6: </span>Direct Velocity Feedback</p>
|
||||
@@ -324,11 +328,11 @@ Each diagonal element consists of:
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgca70c79" class="outline-2">
|
||||
<h2 id="orgca70c79"><span class="section-number-2">4</span> HAC-LAC Architectures (<a href="control_hac_lac.html">link</a>)</h2>
|
||||
<div id="outline-container-orgf83465a" class="outline-2">
|
||||
<h2 id="orgf83465a"><span class="section-number-2">4</span> HAC-LAC Architectures (<a href="control_hac_lac.html">link</a>)</h2>
|
||||
<div class="outline-text-2" id="text-4">
|
||||
<p>
|
||||
<a id="org31fa800"></a>
|
||||
<a id="org4b1b4af"></a>
|
||||
</p>
|
||||
<p>
|
||||
Here we can combine Active Damping Techniques (Low authority control) with a tracking controller (high authority control).
|
||||
@@ -336,11 +340,11 @@ Usually, the low authority controller is designed first, and the high authority
|
||||
</p>
|
||||
|
||||
<p>
|
||||
From <a class='org-ref-reference' href="#preumont18_vibrat_contr_activ_struc_fourt_edition">preumont18_vibrat_contr_activ_struc_fourt_edition</a>:
|
||||
From (<a href="#citeproc_bib_item_1">Preumont 2018</a>):
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure <a href="#org1b2c5c7">7</a>.
|
||||
The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure <a href="#orgfe203dc">7</a>.
|
||||
The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure.
|
||||
This approach has the following advantages:
|
||||
</p>
|
||||
@@ -352,29 +356,29 @@ This approach has the following advantages:
|
||||
</blockquote>
|
||||
|
||||
|
||||
<div id="org1b2c5c7" class="figure">
|
||||
<div id="orgfe203dc" class="figure">
|
||||
<p><img src="figs/control_architecture_hac_lac.png" alt="control_architecture_hac_lac.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 7: </span>HAC-LAC Control Architecture</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
If there is only one input to the system, the HAC-LAC topology can be represented as depicted in Figure <a href="#org91828a2">8</a>.
|
||||
If there is only one input to the system, the HAC-LAC topology can be represented as depicted in Figure <a href="#org8e5c9da">8</a>.
|
||||
Usually, the Low Authority Controller is first design, and then the High Authority Controller is designed based on the damped plant.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org91828a2" class="figure">
|
||||
<div id="org8e5c9da" class="figure">
|
||||
<p><img src="figs/control_architecture_hac_lac_one_input.png" alt="control_architecture_hac_lac_one_input.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 8: </span>HAC-LAC Architecture with a system having only one input</p>
|
||||
</div>
|
||||
</div>
|
||||
<div id="outline-container-orgd9c84f0" class="outline-3">
|
||||
<h3 id="orgd9c84f0"><span class="section-number-3">4.1</span> HAC-LAC using IFF and Tracking control in the frame of the Legs</h3>
|
||||
<div id="outline-container-org3a2dfa2" class="outline-3">
|
||||
<h3 id="org3a2dfa2"><span class="section-number-3">4.1</span> HAC-LAC using IFF and Tracking control in the frame of the Legs</h3>
|
||||
<div class="outline-text-3" id="text-4-1">
|
||||
|
||||
<div id="orgd235561" class="figure">
|
||||
<div id="org259b2b4" class="figure">
|
||||
<p><img src="figs/control_architecture_hac_iff_L.png" alt="control_architecture_hac_iff_L.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 9: </span>IFF + Control in the frame of the legs</p>
|
||||
@@ -382,11 +386,11 @@ Usually, the Low Authority Controller is first design, and then the High Authori
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgeb80da1" class="outline-3">
|
||||
<h3 id="orgeb80da1"><span class="section-number-3">4.2</span> HAC-LAC using IFF and Tracking control in the Cartesian frame</h3>
|
||||
<div id="outline-container-org27fd54b" class="outline-3">
|
||||
<h3 id="org27fd54b"><span class="section-number-3">4.2</span> HAC-LAC using IFF and Tracking control in the Cartesian frame</h3>
|
||||
<div class="outline-text-3" id="text-4-2">
|
||||
|
||||
<div id="orgb89bca0" class="figure">
|
||||
<div id="org0bde593" class="figure">
|
||||
<p><img src="figs/control_architecture_hac_iff_X.png" alt="control_architecture_hac_iff_X.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 10: </span>IFF + Control in the cartesian frame</p>
|
||||
@@ -394,44 +398,44 @@ Usually, the Low Authority Controller is first design, and then the High Authori
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org8b2b21e" class="outline-3">
|
||||
<h3 id="org8b2b21e"><span class="section-number-3">4.3</span> HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite in the task space</h3>
|
||||
<div id="outline-container-org8454531" class="outline-3">
|
||||
<h3 id="org8454531"><span class="section-number-3">4.3</span> HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite in the task space</h3>
|
||||
<div class="outline-text-3" id="text-4-3">
|
||||
|
||||
<div class="figure">
|
||||
<div id="orgd88bdcb" class="figure">
|
||||
<p><img src="figs/control_architecture_hac_iff_pos_X.png" alt="control_architecture_hac_iff_pos_X.png" />
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org1c04b26" class="outline-3">
|
||||
<h3 id="org1c04b26"><span class="section-number-3">4.4</span> HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite in the space of the legs</h3>
|
||||
<div id="outline-container-org89a2695" class="outline-3">
|
||||
<h3 id="org89a2695"><span class="section-number-3">4.4</span> HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite in the space of the legs</h3>
|
||||
<div class="outline-text-3" id="text-4-4">
|
||||
|
||||
<div class="figure">
|
||||
<div id="orgc4e63e2" class="figure">
|
||||
<p><img src="figs/control_architecture_hac_iff_pos_L.png" alt="control_architecture_hac_iff_pos_L.png" />
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org83b9480" class="outline-3">
|
||||
<h3 id="org83b9480"><span class="section-number-3">4.5</span> HAC-LAC using DVF - the HAC controller is positioning the sample w.r.t. the granite in the task space</h3>
|
||||
<div id="outline-container-orgac21cc9" class="outline-3">
|
||||
<h3 id="orgac21cc9"><span class="section-number-3">4.5</span> HAC-LAC using DVF - the HAC controller is positioning the sample w.r.t. the granite in the task space</h3>
|
||||
<div class="outline-text-3" id="text-4-5">
|
||||
|
||||
<div class="figure">
|
||||
<div id="org4e63dc4" class="figure">
|
||||
<p><img src="figs/control_architecture_hac_dvf_pos_X.png" alt="control_architecture_hac_dvf_pos_X.png" />
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgdbdd7d4" class="outline-3">
|
||||
<h3 id="orgdbdd7d4"><span class="section-number-3">4.6</span> HAC-LAC using DVF - the HAC controller is positioning the sample w.r.t. the granite in the space of the legs</h3>
|
||||
<div id="outline-container-org6676bde" class="outline-3">
|
||||
<h3 id="org6676bde"><span class="section-number-3">4.6</span> HAC-LAC using DVF - the HAC controller is positioning the sample w.r.t. the granite in the space of the legs</h3>
|
||||
<div class="outline-text-3" id="text-4-6">
|
||||
|
||||
<div class="figure">
|
||||
<div id="org2cc76e1" class="figure">
|
||||
<p><img src="figs/control_architecture_hac_dvf_pos_L.png" alt="control_architecture_hac_dvf_pos_L.png" />
|
||||
</p>
|
||||
</div>
|
||||
@@ -439,26 +443,26 @@ Usually, the Low Authority Controller is first design, and then the High Authori
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgab73896" class="outline-2">
|
||||
<h2 id="orgab73896"><span class="section-number-2">5</span> Cascade Architectures (<a href="control_cascade.html">link</a>)</h2>
|
||||
<div id="outline-container-orge5dd5fd" class="outline-2">
|
||||
<h2 id="orge5dd5fd"><span class="section-number-2">5</span> Cascade Architectures (<a href="control_cascade.html">link</a>)</h2>
|
||||
<div class="outline-text-2" id="text-5">
|
||||
<p>
|
||||
<a id="orga038762"></a>
|
||||
<a id="org697801a"></a>
|
||||
</p>
|
||||
<p>
|
||||
The principle of Cascade control is shown in Figure <a href="#org03ef231">15</a> and explained as follow:
|
||||
The principle of Cascade control is shown in Figure <a href="#org8e45511">15</a> and explained as follow:
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
To follow <b>two objectives</b> with different properties in one control system, usually a <b>hierarchy</b> of two feedback loops is used in practice.
|
||||
This kind of control topology is called <b>cascade control</b>, which is used when there are <b>several measurements and one prime control variable</b>.
|
||||
Cascade control is implemented by <b>nesting</b> the control loops, as shown in Figure <a href="#org03ef231">15</a>.
|
||||
The output control loop is called the <b>primary loop</b>, while the inner loop is called the secondary loop and is used to fulfill a secondary objective in the closed-loop system. – <a class='org-ref-reference' href="#taghirad13_paral">taghirad13_paral</a>
|
||||
Cascade control is implemented by <b>nesting</b> the control loops, as shown in Figure <a href="#org8e45511">15</a>.
|
||||
The output control loop is called the <b>primary loop</b>, while the inner loop is called the secondary loop and is used to fulfill a secondary objective in the closed-loop system. – (<a href="#citeproc_bib_item_3">Taghirad 2013</a>)
|
||||
</p>
|
||||
</blockquote>
|
||||
|
||||
|
||||
<div id="org03ef231" class="figure">
|
||||
<div id="org8e45511" class="figure">
|
||||
<p><img src="figs/control_architecture_cascade_control.png" alt="control_architecture_cascade_control.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 15: </span>Cascade Control Architecture</p>
|
||||
@@ -479,11 +483,11 @@ In the NASS’s case:
|
||||
The inner loop can be composed of the system controlled with the HAC-LAC topology.
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-org3e5154f" class="outline-3">
|
||||
<h3 id="org3e5154f"><span class="section-number-3">5.1</span> Cascade Control with HAC-LAC Inner Loop and Primary Controller in the task space</h3>
|
||||
<div id="outline-container-org9b331a4" class="outline-3">
|
||||
<h3 id="org9b331a4"><span class="section-number-3">5.1</span> Cascade Control with HAC-LAC Inner Loop and Primary Controller in the task space</h3>
|
||||
<div class="outline-text-3" id="text-5-1">
|
||||
|
||||
<div id="orgff7dfc6" class="figure">
|
||||
<div id="orge54ab8a" class="figure">
|
||||
<p><img src="figs/control_architecture_cascade_L.png" alt="control_architecture_cascade_L.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 16: </span>Cascaded Control consisting of (from inner to outer loop): IFF, Linearization Loop, Tracking Control in the frame of the Legs</p>
|
||||
@@ -491,11 +495,11 @@ The inner loop can be composed of the system controlled with the HAC-LAC topolog
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org4353aca" class="outline-3">
|
||||
<h3 id="org4353aca"><span class="section-number-3">5.2</span> Cascade Control with HAC-LAC Inner Loop and Primary Controller in the joint space</h3>
|
||||
<div id="outline-container-org2f8d9f9" class="outline-3">
|
||||
<h3 id="org2f8d9f9"><span class="section-number-3">5.2</span> Cascade Control with HAC-LAC Inner Loop and Primary Controller in the joint space</h3>
|
||||
<div class="outline-text-3" id="text-5-2">
|
||||
|
||||
<div id="org4bc4c4c" class="figure">
|
||||
<div id="orgdb3211a" class="figure">
|
||||
<p><img src="figs/control_architecture_cascade_X.png" alt="control_architecture_cascade_X.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 17: </span>Cascaded Control consisting of (from inner to outer loop): IFF, Linearization Loop, Tracking Control in the Cartesian Frame</p>
|
||||
@@ -504,8 +508,8 @@ The inner loop can be composed of the system controlled with the HAC-LAC topolog
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org4ac6d11" class="outline-2">
|
||||
<h2 id="org4ac6d11"><span class="section-number-2">6</span> Force Control (<a href="control_force.html">link</a>)</h2>
|
||||
<div id="outline-container-org3a980c5" class="outline-2">
|
||||
<h2 id="org3a980c5"><span class="section-number-2">6</span> Force Control (<a href="control_force.html">link</a>)</h2>
|
||||
<div class="outline-text-2" id="text-6">
|
||||
<p>
|
||||
Signals:
|
||||
@@ -517,41 +521,41 @@ Signals:
|
||||
</ul>
|
||||
|
||||
|
||||
<div class="figure">
|
||||
<div id="org17f57fd" class="figure">
|
||||
<p><img src="figs/control_architecture_force.png" alt="control_architecture_force.png" />
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org5840a0b" class="outline-2">
|
||||
<h2 id="org5840a0b"><span class="section-number-2">7</span> Other Control Architectures</h2>
|
||||
<div id="outline-container-org73661f1" class="outline-2">
|
||||
<h2 id="org73661f1"><span class="section-number-2">7</span> Other Control Architectures</h2>
|
||||
<div class="outline-text-2" id="text-7">
|
||||
</div>
|
||||
<div id="outline-container-org5be51f2" class="outline-3">
|
||||
<h3 id="org5be51f2"><span class="section-number-3">7.1</span> Control to force the nano-hexapod to not do any vertical rotation</h3>
|
||||
<div id="outline-container-org26f61ba" class="outline-3">
|
||||
<h3 id="org26f61ba"><span class="section-number-3">7.1</span> Control to force the nano-hexapod to not do any vertical rotation</h3>
|
||||
<div class="outline-text-3" id="text-7-1">
|
||||
<p>
|
||||
As the sample rotation around the vertical axis is not measure, the best we can do with the nano-hexapod is to not rotate around this same axis.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
One way to do it is shown in Figure <a href="#orga8781eb">19</a>.
|
||||
One way to do it is shown in Figure <a href="#org6559cc5">19</a>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The controller \(\bm{K}_{R_z}\) is decomposed as shown in Figure <a href="#org2f0522c">20</a>.
|
||||
The controller \(\bm{K}_{R_z}\) is decomposed as shown in Figure <a href="#org1d551e2">20</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orga8781eb" class="figure">
|
||||
<div id="org6559cc5" class="figure">
|
||||
<p><img src="figs/control_architecture_fixed_rz.png" alt="control_architecture_fixed_rz.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 19: </span>Figure caption</p>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org2f0522c" class="figure">
|
||||
<div id="org1d551e2" class="figure">
|
||||
<p><img src="figs/control_architecture_fixed_Krz.png" alt="control_architecture_fixed_Krz.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 20: </span>Figure caption</p>
|
||||
@@ -563,16 +567,18 @@ The controller \(\bm{K}_{R_z}\) is decomposed as shown in Figure <a href="#org2f
|
||||
|
||||
<p>
|
||||
|
||||
<h1 class='org-ref-bib-h1'>Bibliography</h1>
|
||||
<ul class='org-ref-bib'><li><a id="skogestad07_multiv_feedb_contr">[skogestad07_multiv_feedb_contr]</a> <a name="skogestad07_multiv_feedb_contr"></a>Skogestad & Postlethwaite, Multivariable Feedback Control: Analysis and Design, John Wiley (2007).</li>
|
||||
<li><a id="preumont18_vibrat_contr_activ_struc_fourt_edition">[preumont18_vibrat_contr_activ_struc_fourt_edition]</a> <a name="preumont18_vibrat_contr_activ_struc_fourt_edition"></a>Andre Preumont, Vibration Control of Active Structures - Fourth Edition, Springer International Publishing (2018).</li>
|
||||
<li><a id="taghirad13_paral">[taghirad13_paral]</a> <a name="taghirad13_paral"></a>Taghirad, Parallel robots : mechanics and control, CRC Press (2013).</li>
|
||||
</ul>
|
||||
</p>
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2>
|
||||
<div class="csl-bib-body">
|
||||
<div class="csl-entry"><a name="citeproc_bib_item_1"></a>Preumont, Andre. 2018. <i>Vibration Control of Active Structures - Fourth Edition</i>. Solid Mechanics and Its Applications. Springer International Publishing. <a href="https://doi.org/10.1007/978-3-319-72296-2">https://doi.org/10.1007/978-3-319-72296-2</a>.</div>
|
||||
<div class="csl-entry"><a name="citeproc_bib_item_2"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. <i>Multivariable Feedback Control: Analysis and Design</i>. John Wiley.</div>
|
||||
<div class="csl-entry"><a name="citeproc_bib_item_3"></a>Taghirad, Hamid. 2013. <i>Parallel Robots : Mechanics and Control</i>. Boca Raton, FL: CRC Press.</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-04-17 ven. 09:35</p>
|
||||
<p class="date">Created: 2021-02-20 sam. 23:08</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
Reference in New Issue
Block a user