Finalize the initialization to compensate gravity

This commit is contained in:
Thomas Dehaeze 2020-03-31 19:32:02 +02:00
parent f816c80906
commit 2fc4f69590
8 changed files with 210 additions and 27 deletions

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

View File

@ -1261,6 +1261,8 @@ The =mirror= structure is saved.
args.ARB (3,3) double {mustBeNumeric} = eye(3) args.ARB (3,3) double {mustBeNumeric} = eye(3)
% Equilibrium position of each leg % Equilibrium position of each leg
args.dLeq (6,1) double {mustBeNumeric} = zeros(6,1) args.dLeq (6,1) double {mustBeNumeric} = zeros(6,1)
% Force that stiffness of each joint should apply at t=0
args.Foffset logical {mustBeNumericOrLogical} = false
end end
#+end_src #+end_src
@ -1287,8 +1289,15 @@ The =mirror= structure is saved.
nano_hexapod.dLi = dLi; nano_hexapod.dLi = dLi;
#+end_src #+end_src
Equilibrium position of the each joint.
#+begin_src matlab #+begin_src matlab
nano_hexapod.dLeq = args.dLeq;
if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init')
load('mat/Foffset.mat', 'Fnm');
nano_hexapod.dLeq = -Fnm'./nano_hexapod.Ki;
else
nano_hexapod.dLeq = args.dLeq;
end
#+end_src #+end_src
** Add Type ** Add Type

View File

@ -1,4 +1,4 @@
#+TITLE: Evaluating the Plant Uncertainty in various experimental conditions #+TITLE: Compensating the gravity forces to start at steady state
:DRAWER: :DRAWER:
#+STARTUP: overview #+STARTUP: overview
@ -41,13 +41,22 @@
#+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :output-dir figs
:END: :END:
* Introduction :ignore:
In this file is shown a technique used to compensate the gravity forces at t=0.
The problem is that in presence of gravity, the system does not start at steady state and experience a transient phase (section [[sec:no_compensation]]).
In order to start the simulation at steady state in presence of gravity:
- section [[sec:compute_forces]]: first the stages are initialize in such a way that they are rigid, and the forces/torques applied at the location of their joints is measured
- section [[sec:compensation]]: Then, the equilibrium position of each joint is modified in such a way that at t=0, the forces in each joints exactly compensate the forces due to gravity forces
* Matlab Init :noexport:ignore: * Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>> <<matlab-dir>>
#+end_src #+end_src
#+begin_src matlab :exports none :results silent :noweb yes #+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>> <<matlab-init>>
#+end_src #+end_src
#+begin_src matlab :tangle no #+begin_src matlab :tangle no
@ -58,7 +67,106 @@
open('nass_model.slx') open('nass_model.slx')
#+end_src #+end_src
* Initialization * Initialization of the Experimental Conditions
We don't inject any perturbations and no reference tracking.
#+begin_src matlab
initializeReferences();
initializeDisturbances('enable', false);
initializeController();
#+end_src
We include the gravity and log all the signals to display.
#+begin_src matlab
initializeSimscapeConfiguration('gravity', true);
initializeLoggingConfiguration('log', 'all');
#+end_src
* Without compensation
<<sec:no_compensation>>
Let's simulate the system without any compensation of gravity forces.
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod();
initializeSample();
#+end_src
#+begin_src matlab
load('mat/conf_simulink.mat');
set_param(conf_simulink, 'StopTime', '0.5');
#+end_src
#+begin_src matlab
sim('nass_model');
sim_no_compensation = simout;
#+end_src
Verification that nothing is moving
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 3, 1);
hold on;
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 1))
hold off;
xlabel('Time [s]');
ylabel('Dx [m]');
ax2 = subplot(2, 3, 2);
hold on;
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 2))
hold off;
xlabel('Time [s]');
ylabel('Dy [m]');
ax3 = subplot(2, 3, 3);
hold on;
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 3))
hold off;
xlabel('Time [s]');
ylabel('Dz [m]');
ax4 = subplot(2, 3, 4);
hold on;
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 4))
hold off;
xlabel('Time [s]');
ylabel('Rx [rad]');
ax5 = subplot(2, 3, 5);
hold on;
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 5))
hold off;
xlabel('Time [s]');
ylabel('Ry [rad]');
ax6 = subplot(2, 3, 6);
hold on;
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 6))
hold off;
xlabel('Time [s]');
ylabel('Rz [rad]');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/transient_phase_gravity_no_compensation.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:transient_phase_gravity_no_compensation
#+caption: Motion of the sample at the start of the simulation in presence of gravity ([[./figs/transient_phase_gravity_no_compensation.png][png]], [[./figs/transient_phase_gravity_no_compensation.pdf][pdf]])
[[file:figs/transient_phase_gravity_no_compensation.png]]
* Simulation to compute the required force in each joint
<<sec:compute_forces>>
We here wish to simulate the system in order to compute the required force in each joint to compensate the gravity forces.
#+begin_src matlab #+begin_src matlab
initializeGround(); initializeGround();
initializeGranite('type', 'init'); initializeGranite('type', 'init');
@ -72,18 +180,69 @@
initializeSample('type', 'init'); initializeSample('type', 'init');
#+end_src #+end_src
We simulate for a short time period (all the bodies are solid, so nothing should move).
#+begin_src matlab #+begin_src matlab
initializeReferences(); load('mat/conf_simulink.mat');
initializeDisturbances('enable', false); set_param(conf_simulink, 'StopTime', '0.1');
initializeController();
#+end_src #+end_src
#+begin_src matlab #+begin_src matlab
initializeSimscapeConfiguration('gravity', true); sim('nass_model');
initializeLoggingConfiguration('log', 'all');
#+end_src #+end_src
* Simulation Verification that nothing is moving by looking at the maximum displacement of the sample:
#+begin_src matlab :results value replace
max(max(simout.Em.En.Data))
#+end_src
#+RESULTS:
: 1.0681e-15
We here show the measured total force/torque applied at the location of each joint.
#+begin_src matlab :results value table replace :tangle no :post addhdr(*this*)
data2orgtable([Fgm 0 0 0; Ftym; Fym; Fsm], {'Granite', 'Translation Stage', 'Tilt Stage', 'Sample'}, {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}, ' %.1e ');
#+end_src
#+RESULTS:
| | Fx | Fy | Fz | Mx | My | Mz |
|-------------------+----------+---------+----------+----------+----------+---------|
| Granite | -7.6e-12 | 1.2e-11 | -34000.0 | 0.0 | 0.0 | 0.0 |
| Translation Stage | -7.6e-12 | 1.2e-11 | -12000.0 | 31.0 | 2.5 | 6.6e-13 |
| Tilt Stage | -7.6e-12 | 1.2e-11 | -8800.0 | 33.0 | -0.52 | 6.6e-13 |
| Sample | -5.7e-12 | 1.3e-11 | -490.0 | -2.5e-12 | -8.1e-13 | 2.7e-13 |
#+begin_src matlab :results value table replace :tangle no :post addhdr(*this*)
data2orgtable([Fhm; Fnm], {'Micro-Hexapod', 'Nano-Hexapod'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}, ' %.1e ');
#+end_src
#+RESULTS:
| | F1 | F2 | F3 | F4 | F5 | F6 |
|---------------+--------+--------+--------+--------+--------+--------|
| Micro-Hexapod | -180.0 | -180.0 | -180.0 | -180.0 | -180.0 | -180.0 |
| Nano-Hexapod | -160.0 | -160.0 | -160.0 | -160.0 | -160.0 | -160.0 |
We save these forces in =Foffset.mat=.
#+begin_src matlab
save('mat/Foffset.mat', 'Fgm', 'Ftym', 'Fym', 'Fzm', 'Fhm', 'Fnm', 'Fsm');
#+end_src
* New simulation with compensation of gravity forces
<<sec:compensation>>
We now initialize the stages with the option =Foffset=.
#+begin_src matlab
initializeGround();
initializeGranite('Foffset', true);
initializeTy('Foffset', true);
initializeRy('Foffset', true);
initializeRz('Foffset', true);
initializeMicroHexapod('Foffset', true);
initializeAxisc();
initializeMirror();
initializeNanoHexapod('Foffset', true);
initializeSample('Foffset', true);
#+end_src
And we simulate the system for 0.5 seconds.
#+begin_src matlab #+begin_src matlab
load('mat/conf_simulink.mat'); load('mat/conf_simulink.mat');
set_param(conf_simulink, 'StopTime', '0.5'); set_param(conf_simulink, 'StopTime', '0.5');
@ -91,6 +250,7 @@
#+begin_src matlab #+begin_src matlab
sim('nass_model'); sim('nass_model');
sim_compensation = simout;
#+end_src #+end_src
Verification that nothing is moving Verification that nothing is moving
@ -98,54 +258,61 @@ Verification that nothing is moving
figure; figure;
ax1 = subplot(2, 3, 1); ax1 = subplot(2, 3, 1);
hold on; hold on;
plot(simout.Em.En.Time, simout.Em.En.Data(:, 1)) plot(sim_compensation.Em.En.Time, sim_compensation.Em.En.Data(:, 1))
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 1))
hold off; hold off;
xlabel('Time [s]'); xlabel('Time [s]');
ylabel('Dx [m]'); ylabel('Dx [m]');
ax2 = subplot(2, 3, 2); ax2 = subplot(2, 3, 2);
hold on; hold on;
plot(simout.Em.En.Time, simout.Em.En.Data(:, 2)) plot(sim_compensation.Em.En.Time, sim_compensation.Em.En.Data(:, 2))
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 2))
hold off; hold off;
xlabel('Time [s]'); xlabel('Time [s]');
ylabel('Dy [m]'); ylabel('Dy [m]');
ax3 = subplot(2, 3, 3); ax3 = subplot(2, 3, 3);
hold on; hold on;
plot(simout.Em.En.Time, simout.Em.En.Data(:, 3)) plot(sim_compensation.Em.En.Time, sim_compensation.Em.En.Data(:, 3))
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 3))
hold off; hold off;
xlabel('Time [s]'); xlabel('Time [s]');
ylabel('Dz [m]'); ylabel('Dz [m]');
ax4 = subplot(2, 3, 4); ax4 = subplot(2, 3, 4);
hold on; hold on;
plot(simout.Em.En.Time, simout.Em.En.Data(:, 4)) plot(sim_compensation.Em.En.Time, sim_compensation.Em.En.Data(:, 4))
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 4))
hold off; hold off;
xlabel('Time [s]'); xlabel('Time [s]');
ylabel('Rx [rad]'); ylabel('Rx [rad]');
ax5 = subplot(2, 3, 5); ax5 = subplot(2, 3, 5);
hold on; hold on;
plot(simout.Em.En.Time, simout.Em.En.Data(:, 5)) plot(sim_compensation.Em.En.Time, sim_compensation.Em.En.Data(:, 5))
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 5))
hold off; hold off;
xlabel('Time [s]'); xlabel('Time [s]');
ylabel('Ry [rad]'); ylabel('Ry [rad]');
ax6 = subplot(2, 3, 6); ax6 = subplot(2, 3, 6);
hold on; hold on;
plot(simout.Em.En.Time, simout.Em.En.Data(:, 6)) plot(sim_compensation.Em.En.Time, sim_compensation.Em.En.Data(:, 6))
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 6))
hold off; hold off;
xlabel('Time [s]'); xlabel('Time [s]');
ylabel('Rz [rad]'); ylabel('Rz [rad]');
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
xlim([sim_compensation.Em.En.Time(1), sim_compensation.Em.En.Time(end)])
#+end_src #+end_src
Measured Force in each leg #+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab #+begin_src matlab :var filepath="figs/transient_phase_gravity_compensation.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
Fgm <<plt-matlab>>
Ftym
Fym
Fzm
Fhm
Fnm
Fsm
#+end_src #+end_src
#+name: fig:transient_phase_gravity_compensation
#+caption: Motion of the sample at the start of the simulation in presence of gravity when compensating the gravity forces ([[./figs/transient_phase_gravity_compensation.png][png]], [[./figs/transient_phase_gravity_compensation.pdf][pdf]])
[[file:figs/transient_phase_gravity_compensation.png]]

View File

@ -33,6 +33,8 @@ arguments
args.ARB (3,3) double {mustBeNumeric} = eye(3) args.ARB (3,3) double {mustBeNumeric} = eye(3)
% Equilibrium position of each leg % Equilibrium position of each leg
args.dLeq (6,1) double {mustBeNumeric} = zeros(6,1) args.dLeq (6,1) double {mustBeNumeric} = zeros(6,1)
% Force that stiffness of each joint should apply at t=0
args.Foffset logical {mustBeNumericOrLogical} = false
end end
nano_hexapod = initializeFramesPositions('H', args.H, 'MO_B', args.MO_B); nano_hexapod = initializeFramesPositions('H', args.H, 'MO_B', args.MO_B);
@ -52,7 +54,12 @@ nano_hexapod = computeJacobian(nano_hexapod);
nano_hexapod.Li = Li; nano_hexapod.Li = Li;
nano_hexapod.dLi = dLi; nano_hexapod.dLi = dLi;
nano_hexapod.dLeq = args.dLeq; if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init')
load('mat/Foffset.mat', 'Fnm');
nano_hexapod.dLeq = -Fnm'./nano_hexapod.Ki;
else
nano_hexapod.dLeq = args.dLeq;
end
switch args.type switch args.type
case 'none' case 'none'