Totally reworked the experiment file

This commit is contained in:
2020-03-17 12:32:31 +01:00
parent 763dbfd36a
commit 1c342403c2
28 changed files with 314 additions and 394 deletions

View File

@@ -111,7 +111,7 @@ No controller is used (Open Loop).
And we put some gravity.
#+begin_src matlab
initializeSimscapeConfiguration('gravity', true);
initializeSimscapeConfiguration('gravity', false);
#+end_src
We log the signals for further analysis.
@@ -152,77 +152,60 @@ And we save the obtained data.
** Analysis
#+begin_src matlab
load('./mat/experiment_tomography.mat', 'tomo_align_no_dist');
t = tomo_align_no_dist.t;
MTr = tomo_align_no_dist.MTr;
#+end_src
#+begin_src matlab
Edx = squeeze(MTr(1, 4, :));
Edy = squeeze(MTr(2, 4, :));
Edz = squeeze(MTr(3, 4, :));
% The angles obtained are u-v-w Euler angles (rotations in the moving frame)
Ery = atan2( squeeze(MTr(1, 3, :)), squeeze(sqrt(MTr(1, 1, :).^2 + MTr(1, 2, :).^2)));
Erx = atan2(-squeeze(MTr(2, 3, :))./cos(Ery), squeeze(MTr(3, 3, :))./cos(Ery));
Erz = atan2(-squeeze(MTr(1, 2, :))./cos(Ery), squeeze(MTr(1, 1, :))./cos(Ery));
#+end_src
#+begin_src matlab :exports none
figure;
ax1 = subplot(1, 3, 1);
plot(t, Edx, 'DisplayName', '$\epsilon_{x}$')
ylabel('Displacement [m]');
legend('location', 'northeast');
ax1 = subplot(2, 3, 1);
hold on;
plot(tomo_align_no_dist.Em.Eg.Time, tomo_align_no_dist.Em.Eg.Data(:, 1))
hold off;
ylabel('Displacement $\epsilon_x$ [m]');
ax2 = subplot(1, 3, 2);
plot(t, Edy, 'DisplayName', '$\epsilon_{y}$')
ax2 = subplot(2, 3, 2);
hold on;
plot(tomo_align_no_dist.Em.Eg.Time, tomo_align_no_dist.Em.Eg.Data(:, 2))
hold off;
ylabel('Displacement $\epsilon_y$ [m]');
ax3 = subplot(2, 3, 3);
hold on;
plot(tomo_align_no_dist.Em.Eg.Time, tomo_align_no_dist.Em.Eg.Data(:, 3))
hold off;
ylabel('Displacement $\epsilon_z$ [m]');
ax4 = subplot(2, 3, 4);
hold on;
plot(tomo_align_no_dist.Em.En.Time, tomo_align_no_dist.Em.En.Data(:, 4))
hold off;
ylabel('Rotation $\epsilon_{R_x}$ [rad]');
ax5 = subplot(2, 3, 5);
hold on;
plot(tomo_align_no_dist.Em.En.Time, tomo_align_no_dist.Em.En.Data(:, 5))
hold off;
xlabel('Time [s]');
legend('location', 'northeast');
ylabel('Rotation $\epsilon_{R_y}$ [rad]');
ax3 = subplot(1, 3, 3);
plot(t, Edz, 'DisplayName', '$\epsilon_{z}$')
legend('location', 'northeast');
ax6 = subplot(2, 3, 6);
hold on;
plot(tomo_align_no_dist.Em.En.Time, tomo_align_no_dist.Em.En.Data(:, 6))
hold off;
ylabel('Rotation $\epsilon_{R_z}$ [rad]');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
xlim([0.5, inf]);
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/exp_tomo_without_dist_trans.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
#+begin_src matlab :var filepath="figs/exp_tomo_without_dist.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:exp_tomo_without_dist_trans
#+CAPTION: X-Y-Z translation of the sample w.r.t. granite when performing tomography experiment with no disturbances ([[./figs/exp_tomo_without_dist_trans.png][png]], [[./figs/exp_tomo_without_dist_trans.pdf][pdf]])
[[file:figs/exp_tomo_without_dist_trans.png]]
#+begin_src matlab :exports none
figure;
ax1 = subplot(1, 3, 1);
plot(t, Erx, 'DisplayName', '$\epsilon_{\theta x}$')
ylabel('Rotation [rad]');
legend('location', 'northeast');
ax2 = subplot(1, 3, 2);
plot(t, Ery, 'DisplayName', '$\epsilon_{\theta y}$')
xlabel('Time [s]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Erz, 'DisplayName', '$\epsilon_{\theta z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/exp_tomo_without_dist_rot.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:exp_tomo_without_dist_rot
#+CAPTION: X-Y-Z rotations of the sample w.r.t. granite when performing tomography experiment with no disturbances ([[./figs/exp_tomo_without_dist_rot.png][png]], [[./figs/exp_tomo_without_dist_rot.pdf][pdf]])
[[file:figs/exp_tomo_without_dist_rot.png]]
#+NAME: fig:exp_tomo_without_dist
#+CAPTION: X-Y-Z translation of the sample w.r.t. granite when performing tomography experiment with no disturbances ([[./figs/exp_tomo_without_dist.png][png]], [[./figs/exp_tomo_without_dist.pdf][pdf]])
[[file:figs/exp_tomo_without_dist.png]]
** Conclusion
#+begin_important
@@ -256,84 +239,74 @@ We simulate the model.
And we save the obtained data.
#+begin_src matlab
tomo_align_dist = struct('t', t, 'MTr', MTr);
tomo_align_dist = simout;
save('./mat/experiment_tomography.mat', 'tomo_align_dist', '-append');
#+end_src
** Analysis
#+begin_src matlab
load('./mat/experiment_tomography.mat', 'tomo_align_dist');
t = tomo_align_dist.t;
MTr = tomo_align_dist.MTr;
#+end_src
#+begin_src matlab
Edx = squeeze(MTr(1, 4, :));
Edy = squeeze(MTr(2, 4, :));
Edz = squeeze(MTr(3, 4, :));
% The angles obtained are u-v-w Euler angles (rotations in the moving frame)
Ery = atan2( squeeze(MTr(1, 3, :)), squeeze(sqrt(MTr(1, 1, :).^2 + MTr(1, 2, :).^2)));
Erx = atan2(-squeeze(MTr(2, 3, :))./cos(Ery), squeeze(MTr(3, 3, :))./cos(Ery));
Erz = atan2(-squeeze(MTr(1, 2, :))./cos(Ery), squeeze(MTr(1, 1, :))./cos(Ery));
load('./mat/experiment_tomography.mat', 'tomo_align_dist', 'tomo_align_no_dist');
#+end_src
#+begin_src matlab :exports none
figure;
ax1 = subplot(1, 3, 1);
plot(t, Edx, 'DisplayName', '$\epsilon_{x}$')
ylabel('Displacement [m]');
legend('location', 'northeast');
ax1 = subplot(2, 3, 1);
hold on;
plot(tomo_align_dist.Em.Eg.Time, tomo_align_dist.Em.Eg.Data(:, 1))
plot(tomo_align_no_dist.Em.Eg.Time, tomo_align_no_dist.Em.Eg.Data(:, 1))
hold off;
ylabel('Displacement $\epsilon_x$ [m]');
ax2 = subplot(1, 3, 2);
plot(t, Edy, 'DisplayName', '$\epsilon_{y}$')
ax2 = subplot(2, 3, 2);
hold on;
plot(tomo_align_dist.Em.Eg.Time, tomo_align_dist.Em.Eg.Data(:, 2))
plot(tomo_align_no_dist.Em.Eg.Time, tomo_align_no_dist.Em.Eg.Data(:, 2))
hold off;
ylabel('Displacement $\epsilon_y$ [m]');
ax3 = subplot(2, 3, 3);
hold on;
plot(tomo_align_dist.Em.Eg.Time, tomo_align_dist.Em.Eg.Data(:, 3))
plot(tomo_align_no_dist.Em.Eg.Time, tomo_align_no_dist.Em.Eg.Data(:, 3))
hold off;
ylabel('Displacement $\epsilon_z$ [m]');
ax4 = subplot(2, 3, 4);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 4))
plot(tomo_align_no_dist.Em.En.Time, tomo_align_no_dist.Em.En.Data(:, 4))
hold off;
ylabel('Rotation $\epsilon_{R_x}$ [rad]');
ax5 = subplot(2, 3, 5);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 5))
plot(tomo_align_no_dist.Em.En.Time, tomo_align_no_dist.Em.En.Data(:, 5))
hold off;
xlabel('Time [s]');
ylabel('Rotation $\epsilon_{R_y}$ [rad]');
ax6 = subplot(2, 3, 6);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 6), 'DisplayName', 'Dist')
plot(tomo_align_no_dist.Em.En.Time, tomo_align_no_dist.Em.En.Data(:, 6), 'DisplayName', 'Ideal')
hold off;
ylabel('Rotation $\epsilon_{R_z}$ [rad]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Edz, 'DisplayName', '$\epsilon_{z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
xlim([0.5, inf]);
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/exp_tomo_dist_trans.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
#+begin_src matlab :var filepath="figs/exp_tomo_dist.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:exp_tomo_dist_trans
#+CAPTION: X-Y-Z translation of the sample w.r.t. the granite when performing tomography experiment with disturbances ([[./figs/exp_tomo_dist_trans.png][png]], [[./figs/exp_tomo_dist_trans.pdf][pdf]])
[[file:figs/exp_tomo_dist_trans.png]]
#+begin_src matlab :exports none
figure;
ax1 = subplot(1, 3, 1);
plot(t, Erx, 'DisplayName', '$\epsilon_{\theta x}$')
ylabel('Rotation [rad]');
legend('location', 'northeast');
ax2 = subplot(1, 3, 2);
plot(t, Ery, 'DisplayName', '$\epsilon_{\theta y}$')
xlabel('Time [s]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Erz, 'DisplayName', '$\epsilon_{\theta z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/exp_tomo_dist_rot.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:exp_tomo_dist_rot
#+CAPTION: X-Y-Z rotations of the sample w.r.t. the granite when performing tomography experiment with disturbances ([[./figs/exp_tomo_dist_rot.png][png]], [[./figs/exp_tomo_dist_rot.pdf][pdf]])
[[file:figs/exp_tomo_dist_rot.png]]
#+NAME: fig:exp_tomo_dist
#+CAPTION: X-Y-Z translations and rotations of the sample w.r.t. the granite when performing tomography experiment with disturbances ([[./figs/exp_tomo_dist.png][png]], [[./figs/exp_tomo_dist.pdf][pdf]])
[[file:figs/exp_tomo_dist.png]]
** Conclusion
@@ -384,89 +357,79 @@ We simulate the model.
And we save the obtained data.
#+begin_src matlab
tomo_not_align = struct('t', t, 'MTr', MTr);
tomo_not_align = simout;
save('./mat/experiment_tomography.mat', 'tomo_not_align', '-append');
#+end_src
** Analysis
#+begin_src matlab
load('./mat/experiment_tomography.mat', 'tomo_not_align');
t = tomo_not_align.t;
MTr = tomo_not_align.MTr;
#+end_src
#+begin_src matlab
Edx = squeeze(MTr(1, 4, :));
Edy = squeeze(MTr(2, 4, :));
Edz = squeeze(MTr(3, 4, :));
% The angles obtained are u-v-w Euler angles (rotations in the moving frame)
Ery = atan2( squeeze(MTr(1, 3, :)), squeeze(sqrt(MTr(1, 1, :).^2 + MTr(1, 2, :).^2)));
Erx = atan2(-squeeze(MTr(2, 3, :))./cos(Ery), squeeze(MTr(3, 3, :))./cos(Ery));
Erz = atan2(-squeeze(MTr(1, 2, :))./cos(Ery), squeeze(MTr(1, 1, :))./cos(Ery));
load('./mat/experiment_tomography.mat', 'tomo_not_align', 'tomo_align_no_dist');
#+end_src
#+begin_src matlab :exports none
figure;
ax1 = subplot(1, 3, 1);
plot(t, Edx, 'DisplayName', '$\epsilon_{x}$')
ylabel('Displacement [m]');
legend('location', 'northeast');
ax1 = subplot(2, 3, 1);
hold on;
plot(tomo_not_align.Em.Eg.Time, tomo_not_align.Em.Eg.Data(:, 1))
plot(tomo_align_no_dist.Em.Eg.Time, tomo_align_no_dist.Em.Eg.Data(:, 1))
hold off;
ylabel('Displacement $\epsilon_x$ [m]');
ax2 = subplot(1, 3, 2);
plot(t, Edy, 'DisplayName', '$\epsilon_{y}$')
ax2 = subplot(2, 3, 2);
hold on;
plot(tomo_not_align.Em.Eg.Time, tomo_not_align.Em.Eg.Data(:, 2))
plot(tomo_align_no_dist.Em.Eg.Time, tomo_align_no_dist.Em.Eg.Data(:, 2))
hold off;
ylabel('Displacement $\epsilon_y$ [m]');
ax3 = subplot(2, 3, 3);
hold on;
plot(tomo_not_align.Em.Eg.Time, tomo_not_align.Em.Eg.Data(:, 3))
plot(tomo_align_no_dist.Em.Eg.Time, tomo_align_no_dist.Em.Eg.Data(:, 3))
hold off;
ylabel('Displacement $\epsilon_z$ [m]');
ax4 = subplot(2, 3, 4);
hold on;
plot(tomo_not_align.Em.En.Time, tomo_not_align.Em.En.Data(:, 4))
plot(tomo_align_no_dist.Em.En.Time, tomo_align_no_dist.Em.En.Data(:, 4))
hold off;
ylabel('Rotation $\epsilon_{R_x}$ [rad]');
ax5 = subplot(2, 3, 5);
hold on;
plot(tomo_not_align.Em.En.Time, tomo_not_align.Em.En.Data(:, 5))
plot(tomo_align_no_dist.Em.En.Time, tomo_align_no_dist.Em.En.Data(:, 5))
hold off;
xlabel('Time [s]');
ylabel('Rotation $\epsilon_{R_y}$ [rad]');
ax6 = subplot(2, 3, 6);
hold on;
plot(tomo_not_align.Em.En.Time, tomo_not_align.Em.En.Data(:, 6), 'DisplayName', 'Offset')
plot(tomo_align_no_dist.Em.En.Time, tomo_align_no_dist.Em.En.Data(:, 6), 'DisplayName', 'Ideal')
hold off;
ylabel('Rotation $\epsilon_{R_z}$ [rad]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Edz, 'DisplayName', '$\epsilon_{z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
xlim([0.5, inf]);
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/exp_tomo_offset_trans.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
#+begin_src matlab :var filepath="figs/exp_tomo_offset.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:exp_tomo_offset_trans
#+CAPTION: X-Y-Z translation of the sample w.r.t. granite when performing tomography experiment with no disturbances ([[./figs/exp_tomo_offset_trans.png][png]], [[./figs/exp_tomo_offset_trans.pdf][pdf]])
[[file:figs/exp_tomo_offset_trans.png]]
#+begin_src matlab :exports none
figure;
ax1 = subplot(1, 3, 1);
plot(t, Erx, 'DisplayName', '$\epsilon_{\theta x}$')
ylabel('Rotation [rad]');
legend('location', 'northeast');
ax2 = subplot(1, 3, 2);
plot(t, Ery, 'DisplayName', '$\epsilon_{\theta y}$')
xlabel('Time [s]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Erz, 'DisplayName', '$\epsilon_{\theta z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/exp_tomo_offset_rot.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:exp_tomo_offset_rot
#+CAPTION: X-Y-Z rotations of the sample w.r.t. granite when performing tomography experiment with no disturbances ([[./figs/exp_tomo_offset_rot.png][png]], [[./figs/exp_tomo_offset_rot.pdf][pdf]])
[[file:figs/exp_tomo_offset_rot.png]]
#+NAME: fig:exp_tomo_offset
#+CAPTION: X-Y-Z translation of the sample w.r.t. granite when performing tomography experiment with no disturbances ([[./figs/exp_tomo_offset.png][png]], [[./figs/exp_tomo_offset.pdf][pdf]])
[[file:figs/exp_tomo_offset.png]]
** Conclusion
#+begin_important
The main motions are translations in the X direction of the mobile platform (corresponds to the eccentricity of the micro-hexapod) and rotations along the rotating Y axis.
The main motion error are 1Hz X-Y translations and constant Ry error.
This is mainly due to finite stiffness of the elements.
#+end_important
* Raster Scans with the translation stage
@@ -475,11 +438,6 @@ And we save the obtained data.
In this section, scans with the translation stage are performed.
** Simulation Setup
We set the reference path.
#+begin_src matlab
initializeReferences('Dy_type', 'triangular', 'Dy_amplitude', 10e-3, 'Dy_period', 1);
#+end_src
We initialize the stages.
#+begin_src matlab
initializeGround();
@@ -490,7 +448,7 @@ We initialize the stages.
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod('actuator', 'piezo');
initializeNanoHexapod('type', 'rigid');
initializeSample('mass', 1);
#+end_src
@@ -506,6 +464,11 @@ And we initialize the disturbances to zero.
);
#+end_src
We set the reference path to be a triangular signal for the Translation Stage.
#+begin_src matlab
initializeReferences('Dy_type', 'triangular', 'Dy_amplitude', 10e-3, 'Dy_period', 1);
#+end_src
We simulate the model.
#+begin_src matlab
sim('nass_model');
@@ -513,88 +476,95 @@ We simulate the model.
And we save the obtained data.
#+begin_src matlab
ty_scan = struct('t', t, 'MTr', MTr);
save('./mat/experiment_tomography.mat', 'ty_scan', '-append');
ty_scan_triangle = simout;
save('./mat/experiment_tomography.mat', 'ty_scan_triangle', '-append');
#+end_src
We now set the reference path to be a sinusoidal signal for the Translation Stage.
#+begin_src matlab
initializeReferences('Dy_type', 'sinusoidal', 'Dy_amplitude', 10e-3, 'Dy_period', 1);
#+end_src
We simulate the model.
#+begin_src matlab
sim('nass_model');
#+end_src
And we save the obtained data.
#+begin_src matlab
ty_scan_sinus = simout;
save('./mat/experiment_tomography.mat', 'ty_scan_sinus', '-append');
#+end_src
** Analysis
#+begin_src matlab
load('./mat/experiment_tomography.mat', 'ty_scan');
t = ty_scan.t;
MTr = ty_scan.MTr;
#+end_src
#+begin_src matlab
Edx = squeeze(MTr(1, 4, :));
Edy = squeeze(MTr(2, 4, :));
Edz = squeeze(MTr(3, 4, :));
% The angles obtained are u-v-w Euler angles (rotations in the moving frame)
Ery = atan2( squeeze(MTr(1, 3, :)), squeeze(sqrt(MTr(1, 1, :).^2 + MTr(1, 2, :).^2)));
Erx = atan2(-squeeze(MTr(2, 3, :))./cos(Ery), squeeze(MTr(3, 3, :))./cos(Ery));
Erz = atan2(-squeeze(MTr(1, 2, :))./cos(Ery), squeeze(MTr(1, 1, :))./cos(Ery));
load('./mat/experiment_tomography.mat', 'ty_scan_triangle', 'ty_scan_sinus');
#+end_src
#+begin_src matlab :exports none
figure;
ax1 = subplot(1, 3, 1);
plot(t, Edx, 'DisplayName', '$\epsilon_{x}$')
ylabel('Displacement [m]');
legend('location', 'northeast');
ax1 = subplot(2, 3, 1);
hold on;
plot(ty_scan_triangle.Em.Eg.Time, ty_scan_triangle.Em.Eg.Data(:, 1))
plot(ty_scan_sinus.Em.Eg.Time, ty_scan_sinus.Em.Eg.Data(:, 1))
hold off;
ylabel('Displacement $\epsilon_x$ [m]');
ax2 = subplot(1, 3, 2);
plot(t, Edy, 'DisplayName', '$\epsilon_{y}$')
ax2 = subplot(2, 3, 2);
hold on;
plot(ty_scan_triangle.Em.Eg.Time, ty_scan_triangle.Em.Eg.Data(:, 2))
plot(ty_scan_sinus.Em.Eg.Time, ty_scan_sinus.Em.Eg.Data(:, 2))
hold off;
ylabel('Displacement $\epsilon_y$ [m]');
ax3 = subplot(2, 3, 3);
hold on;
plot(ty_scan_triangle.Em.Eg.Time, ty_scan_triangle.Em.Eg.Data(:, 3))
plot(ty_scan_sinus.Em.Eg.Time, ty_scan_sinus.Em.Eg.Data(:, 3))
hold off;
ylabel('Displacement $\epsilon_z$ [m]');
ax4 = subplot(2, 3, 4);
hold on;
plot(ty_scan_triangle.Em.En.Time, ty_scan_triangle.Em.En.Data(:, 4))
plot(ty_scan_sinus.Em.En.Time, ty_scan_sinus.Em.En.Data(:, 4))
hold off;
ylabel('Rotation $\epsilon_{R_x}$ [rad]');
ax5 = subplot(2, 3, 5);
hold on;
plot(ty_scan_triangle.Em.En.Time, ty_scan_triangle.Em.En.Data(:, 5))
plot(ty_scan_sinus.Em.En.Time, ty_scan_sinus.Em.En.Data(:, 5))
hold off;
xlabel('Time [s]');
ylabel('Rotation $\epsilon_{R_y}$ [rad]');
ax6 = subplot(2, 3, 6);
hold on;
plot(ty_scan_triangle.Em.En.Time, ty_scan_triangle.Em.En.Data(:, 6), 'DisplayName', 'triangle')
plot(ty_scan_sinus.Em.En.Time, ty_scan_sinus.Em.En.Data(:, 6), 'DisplayName', 'sinus')
hold off;
ylabel('Rotation $\epsilon_{R_z}$ [rad]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Edz, 'DisplayName', '$\epsilon_{z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
xlim([0.5, inf]);
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/exp_ty_scan_trans.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
#+begin_src matlab :var filepath="figs/exp_ty_scan.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:exp_ty_scan_trans
#+CAPTION: X-Y-Z translation of the sample w.r.t. granite when performing tomography experiment with no disturbances ([[./figs/exp_ty_scan_trans.png][png]], [[./figs/exp_ty_scan_trans.pdf][pdf]])
[[file:figs/exp_ty_scan_trans.png]]
#+begin_src matlab :exports none
figure;
ax1 = subplot(1, 3, 1);
plot(t, Erx, 'DisplayName', '$\epsilon_{\theta x}$')
ylabel('Rotation [rad]');
legend('location', 'northeast');
ax2 = subplot(1, 3, 2);
plot(t, Ery, 'DisplayName', '$\epsilon_{\theta y}$')
xlabel('Time [s]');
legend('location', 'northeast');
ax3 = subplot(1, 3, 3);
plot(t, Erz, 'DisplayName', '$\epsilon_{\theta z}$')
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3],'x');
xlim([2, inf]);
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/exp_ty_scan_rot.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:exp_ty_scan_rot
#+CAPTION: X-Y-Z rotations of the sample w.r.t. granite when performing tomography experiment with no disturbances ([[./figs/exp_ty_scan_rot.png][png]], [[./figs/exp_ty_scan_rot.pdf][pdf]])
[[file:figs/exp_ty_scan_rot.png]]
#+NAME: fig:exp_ty_scan
#+CAPTION: X-Y-Z translation of the sample w.r.t. granite when performing tomography experiment with no disturbances ([[./figs/exp_ty_scan.png][png]], [[./figs/exp_ty_scan.pdf][pdf]])
[[file:figs/exp_ty_scan.png]]
** Conclusion
#+begin_important
This is logic that the main error moving is translation along the Y axis and rotation along the X axis.
In order to reduce the errors, we can make a smoother reference path for the translation stage.
Scans with the translation stage induces some errors in the Y direction and Rx translations.
Also, scanning with a sinusoidal wave induces less position errors and at lower frequencies.
Thus, this should be preferred.
#+end_important