Update html output
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-07-31 ven. 17:58 -->
|
||||
<!-- 2020-09-01 mar. 13:47 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<title>Noise Budgeting</title>
|
||||
<meta name="generator" content="Org mode" />
|
||||
@@ -159,10 +159,6 @@ Required maximum induced ASD of the sample’s vibration due to the relative
|
||||
<p>
|
||||
Corresponding RMS value in [nm rms, nrad rms]
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">1e9*sqrt(trapz(freqs, (abs(squeeze(freqresp(Gamma_x, freqs, 'Hz')))').^2))
|
||||
</pre>
|
||||
</div>
|
||||
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
|
||||
|
||||
@@ -211,11 +207,11 @@ Corresponding RMS value in [nm rms, nrad rms]
|
||||
<h3 id="org446dbf5"><span class="section-number-3">1.4</span> Computation of the maximum relative motion sensor noise</h3>
|
||||
<div class="outline-text-3" id="text-1-4">
|
||||
<p>
|
||||
Let’s note \(G\) the transfer function from the 6 sensor noise \(n\) to the 6dof pose error \(x\).
|
||||
Let’s note \(G\) the transfer function from the 6 sensor noise \(n\) to the 5dof pose error \(x\).
|
||||
We have:
|
||||
\[ x_i = \sum_{j=1}^6 G_{ij}(s) n_j, \quad i = 1 \dots 5 \]
|
||||
In terms of ASD:
|
||||
\[ \Gamma_{x_i}(\omega) = \sum_{j=1}^6 |G_{ij}(j\omega)|^2 \Gamma_{n_j}(\omega), \quad i = 1 \dots 5 \]
|
||||
\[ \Gamma_{x_i}(\omega) = \sqrt{\sum_{j=1}^6 |G_{ij}(j\omega)|^2 \cdot {\Gamma_{n_j}}^2(\omega)}, \quad i = 1 \dots 5 \]
|
||||
</p>
|
||||
|
||||
<p>
|
||||
@@ -225,7 +221,7 @@ Let’s suppose that the ASD of all the sensor noise are equal:
|
||||
|
||||
<p>
|
||||
We then have an upper bound of the sensor noise for each of the considered motion errors:
|
||||
\[ \Gamma_{n_i, \text{max}}(\omega) = \frac{\Gamma_{n_i}(\omega)}{\sum_{j=1}^6 |G_{ij}(j\omega)|^2}, \quad i = 1 \dots 5 \]
|
||||
\[ \Gamma_{n_i, \text{max}}(\omega) = \frac{\Gamma_{x_i}(\omega)}{\sqrt{\sum_{j=1}^6 |G_{ij}(j\omega)|^2}}, \quad i = 1 \dots 5 \]
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
@@ -289,7 +285,7 @@ The corresponding RMS value of the sensor noise taken as an example is [nm RMS]:
|
||||
<p>
|
||||
Verify that by taking the sensor noise, we have to wanted displacement error
|
||||
From the sensor noise PSD \(\Gamma_n(\omega)\), we can estimate the obtained displacement PSD \(\Gamma_x(\omega)\):
|
||||
\[ \Gamma_{x,i}(\omega) = \sqrt{ \sum_{j=1}^{6} |G_{ij}|^2(j\omega) \Gamma_{n,j}^2(\omega) }, \quad i = 1 \dots 5 \]
|
||||
\[ \Gamma_{x,i}(\omega) = \sqrt{ \sum_{j=1}^{6} |G_{ij}|^2(j\omega) \cdot \Gamma_{n,j}^2(\omega) }, \quad i = 1 \dots 5 \]
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
@@ -356,7 +352,7 @@ end
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-07-31 ven. 17:58</p>
|
||||
<p class="date">Created: 2020-09-01 mar. 13:47</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
Reference in New Issue
Block a user