Work on HAC-DVF control architecture

This commit is contained in:
2020-04-14 17:22:53 +02:00
parent 94eb5e16a7
commit 163b80d8a2
13 changed files with 645 additions and 254 deletions

View File

@@ -81,18 +81,12 @@ The nano-hexapod is considered to be a rigid body.
initializeSample('mass', 1);
#+end_src
We initialize the reference path for all the stages.
All stage is set to its zero position except the Spindle which is rotating at 60rpm.
#+begin_src matlab
initializeReferences('Rz_type', 'rotating', 'Rz_period', 1);
#+end_src
No controller is used (Open Loop).
#+begin_src matlab
initializeController('type', 'open-loop');
#+end_src
And we put some gravity.
We don't gravity.
#+begin_src matlab
initializeSimscapeConfiguration('gravity', false);
#+end_src
@@ -121,6 +115,12 @@ And we initialize the disturbances to be equal to zero.
);
#+end_src
We initialize the reference path for all the stages.
All stage is set to its zero position except the Spindle which is rotating at 60rpm.
#+begin_src matlab
initializeReferences('Rz_type', 'rotating', 'Rz_period', 1);
#+end_src
We simulate the model.
#+begin_src matlab
sim('nass_model');
@@ -202,19 +202,25 @@ And we save the obtained data.
In this section, we also perform a tomography experiment with the sample's center of mass aligned with the rotation axis.
However this time, we include perturbations such as ground motion and stage vibrations.
** Simulation Setup
** TODO Simulation Setup
We now activate the disturbances.
#+begin_src matlab
initializeDisturbances(...
'Dwx', true, ... % Ground Motion - X direction
'Dwy', true, ... % Ground Motion - Y direction
'Dwz', true, ... % Ground Motion - Z direction
'Fty_x', true, ... % Translation Stage - X direction
'Fty_z', true, ... % Translation Stage - Z direction
'Fty_x', false, ... % Translation Stage - X direction
'Fty_z', false, ... % Translation Stage - Z direction
'Frz_z', true ... % Spindle - Z direction
);
#+end_src
We initialize the reference path for all the stages.
All stage is set to its zero position except the Spindle which is rotating at 60rpm.
#+begin_src matlab
initializeReferences('Rz_type', 'rotating', 'Rz_period', 1);
#+end_src
We simulate the model.
#+begin_src matlab
sim('nass_model');
@@ -292,11 +298,106 @@ And we save the obtained data.
[[file:figs/exp_tomo_dist.png]]
** Conclusion
#+begin_important
Error motion is what expected from the disturbance measurements.
#+end_important
* Tomography Experiment with Ty raster scans
<<sec:tomo_dist_ty_scans>>
** Introduction :ignore:
In this section, we also perform a tomography experiment with scans of the Translation stage.
All the perturbations are included.
** Simulation Setup
We now activate the disturbances.
#+begin_src matlab
initializeDisturbances(...
'Dwx', true, ... % Ground Motion - X direction
'Dwy', true, ... % Ground Motion - Y direction
'Dwz', true, ... % Ground Motion - Z direction
'Fty_x', true, ... % Translation Stage - X direction
'Fty_z', true, ... % Translation Stage - Z direction
'Frz_z', true ... % Spindle - Z direction
);
#+end_src
We initialize the reference path for all the stages.
The Spindle which is rotating at 60rpm and the translation stage is following a triangular path.
#+begin_src matlab
initializeReferences('Rz_type', 'rotating', 'Rz_period', 1, ...
'Dy_type', 'triangular', 'Dy_amplitude', 5e-3, 'Dy_period', 10);
#+end_src
We simulate the model.
#+begin_src matlab
sim('nass_model');
#+end_src
And we save the obtained data.
#+begin_src matlab
scans_rz_align_dist = simout;
save('./mat/experiment_tomography.mat', 'scans_rz_align_dist', '-append');
#+end_src
** Analysis
#+begin_src matlab
load('./mat/experiment_tomography.mat', 'scans_rz_align_dist');
#+end_src
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 3, 1);
hold on;
plot(scans_rz_align_dist.Em.Eg.Time, scans_rz_align_dist.Em.Eg.Data(:, 1))
hold off;
ylabel('Displacement $\epsilon_x$ [m]');
ax2 = subplot(2, 3, 2);
hold on;
plot(scans_rz_align_dist.Em.Eg.Time, scans_rz_align_dist.Em.Eg.Data(:, 2))
hold off;
ylabel('Displacement $\epsilon_y$ [m]');
ax3 = subplot(2, 3, 3);
hold on;
plot(scans_rz_align_dist.Em.Eg.Time, scans_rz_align_dist.Em.Eg.Data(:, 3))
hold off;
ylabel('Displacement $\epsilon_z$ [m]');
ax4 = subplot(2, 3, 4);
hold on;
plot(scans_rz_align_dist.Em.En.Time, scans_rz_align_dist.Em.En.Data(:, 4))
hold off;
ylabel('Rotation $\epsilon_{R_x}$ [rad]');
ax5 = subplot(2, 3, 5);
hold on;
plot(scans_rz_align_dist.Em.En.Time, scans_rz_align_dist.Em.En.Data(:, 5))
hold off;
xlabel('Time [s]');
ylabel('Rotation $\epsilon_{R_y}$ [rad]');
ax6 = subplot(2, 3, 6);
hold on;
plot(scans_rz_align_dist.Em.En.Time, scans_rz_align_dist.Em.En.Data(:, 6))
hold off;
ylabel('Rotation $\epsilon_{R_z}$ [rad]');
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
xlim([0.5, inf]);
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/exp_scans_rz_dist.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:exp_scans_rz_dist
#+CAPTION: X-Y-Z translations and rotations of the sample w.r.t. the granite when performing tomography experiment and scans with the translation stage at the same time ([[./figs/exp_scans_rz_dist.png][png]], [[./figs/exp_scans_rz_dist.pdf][pdf]])
[[file:figs/exp_scans_rz_dist.png]]
** Conclusion
* Tomography when the micro-hexapod is not centered
<<sec:tomo_hexa_trans>>
** Introduction :ignore:

View File

@@ -28,7 +28,7 @@
* Introduction :ignore:
* Low Authority Control - Decentralized Integral Force Feedback
* Low Authority Control - Decentralized Direct Velocity Feedback
** Introduction :ignore:
** Matlab Init :noexport:ignore:
@@ -62,30 +62,37 @@ We initialize all the stages with the default parameters.
initializeMirror();
#+end_src
We set the references that corresponds to a tomography experiment.
#+begin_src matlab
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', 1);
initializeSimscapeConfiguration();
initializeDisturbances('enable', false);
initializeLoggingConfiguration('log', 'none');
#+end_src
#+begin_src matlab
initializeController('type', 'hac-iff');
initializeController('type', 'hac-dvf');
#+end_src
We set the stiffness of the payload fixation:
#+begin_src matlab
Kp = 1e8; % [N/m]
#+end_src
** Identification
#+begin_src matlab
Kx = tf(zeros(6));
Kiff = tf(zeros(6));
K = tf(zeros(6));
Kdvf = tf(zeros(6));
#+end_src
We identify the system for the following payload masses:
#+begin_src matlab
Ms = [1, 10, 50];
Gm_iff = {zeros(length(Ms), 1)};
#+end_src
#+begin_src matlab :exports none
Gm_dvf = {zeros(length(Ms), 1)};
#+end_src
The nano-hexapod has the following leg's stiffness and damping.
#+begin_src matlab
initializeNanoHexapod('k', 1e5, 'c', 2e2);
#+end_src
@@ -97,25 +104,22 @@ We set the references that corresponds to a tomography experiment.
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1; % Force Sensors
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1; % Force Sensors
#+end_src
#+begin_src matlab :exports none
for i = 1:length(Ms)
initializeSample('mass', Ms(i), 'freq', 200*ones(6,1));
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
%% Run the linearization
G_iff = linearize(mdl, io);
G_iff.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G_iff.OutputName = {'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'};
Gm_iff(i) = {G_iff};
G_dvf = linearize(mdl, io);
G_dvf.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G_dvf.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'};
Gm_dvf(i) = {G_dvf};
end
#+end_src
#+begin_src matlab :exports none
save('./mat/optimal_stiffness_control.mat', 'Gm_iff');
#+end_src
** Controller Design
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
@@ -125,17 +129,16 @@ We set the references that corresponds to a tomography experiment.
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ms)
plot(freqs, abs(squeeze(freqresp(Gm_iff{i}(1, 1), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gm_dvf{i}(1, 1), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
title('Diagonal elements of the Plant');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ms)
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_iff{i}(1, 1), freqs, 'Hz')))), ...
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_dvf{i}(1, 1), freqs, 'Hz')))), ...
'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(i)));
end
hold off;
@@ -152,19 +155,19 @@ Root Locus
#+begin_src matlab :exports none :post
figure;
gains = logspace(0, 3, 300);
gains = logspace(1, 4, 300);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(real(pole(Gm_iff{i})), imag(pole(Gm_iff{i})), 'x', ...
plot(real(pole(Gm_dvf{i})), imag(pole(Gm_dvf{i})), 'x', ...
'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(i)));
set(gca,'ColorOrderIndex',i);
plot(real(tzero(Gm_iff{i})), imag(tzero(Gm_iff{i})), 'o', ...
plot(real(tzero(Gm_dvf{i})), imag(tzero(Gm_dvf{i})), 'o', ...
'HandleVisibility', 'off');
for k = 1:length(gains)
set(gca,'ColorOrderIndex',i);
cl_poles = pole(feedback(Gm_iff{i}, -(gains(k)/s)*eye(6)));
cl_poles = pole(feedback(Gm_dvf{i}, (gains(k)*s)*eye(6)));
plot(real(cl_poles), imag(cl_poles), '.', ...
'HandleVisibility', 'off');
end
@@ -178,13 +181,13 @@ Root Locus
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/opt_stiff_iff_root_locus.pdf', 'width', 'wide', 'height', 'tall');
exportFig('figs/opt_stdvf_dvf_root_locus.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:opt_stiff_iff_root_locus
#+name: fig:opt_stdvf_dvf_root_locus
#+caption: Root Locus for the
#+RESULTS:
[[file:figs/opt_stiff_iff_root_locus.png]]
[[file:figs/opt_stdvf_dvf_root_locus.png]]
Damping as function of the gain
#+begin_src matlab :exports none
@@ -199,48 +202,38 @@ Damping as function of the gain
figure;
gains = logspace(0, 3, 100);
gains = logspace(1, 4, 100);
hold on;
for i = 1:length(Ms)
for k = 1:length(gains)
cl_poles = pole(feedback(Gm_iff{i}, -(gains(k)/s)*eye(6)));
cl_poles = pole(feedback(Gm_dvf{i}, (gains(k)*s)*eye(6)));
set(gca,'ColorOrderIndex',i);
plot(gains(k), sin(-pi/2 + angle(cl_poles)), '.', 'color', colors(i, :));
end
end
hold off;
xlabel('IFF Gain'); ylabel('Modal Damping');
xlabel('DVF Gain'); ylabel('Modal Damping');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylim([0, 1]);
#+end_src
#+begin_src matlab
Kiff = -200/s*eye(6);
Kdvf = 5e3*s/(1+s/2/pi/1e3)*eye(6);
#+end_src
* Primary Control
* Identification of the dynamics for the Primary controller
** Introduction :ignore:
Let's identify the dynamics from actuator forces $\bm{\tau}$ to displacement as measured by the metrology $\bm{\mathcal{X}}$:
\[ \bm{G}(s) = \frac{\bm{\mathcal{X}}}{\bm{\tau}} \]
Then, we compute both the transfer function from forces applied by the actuators $\bm{\mathcal{F}}$ to the measured position error in the frame of the nano-hexapod $\bm{\epsilon}_{\mathcal{X}_n}$:
\[ \bm{G}_\mathcal{X}(s) = \frac{\bm{\epsilon}_{\mathcal{X}_n}}{\bm{\mathcal{F}}} = \bm{G}(s) \bm{J}^{-T} \]
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
and from actuator forces $\bm{\tau}$ to position error of each leg $\bm{\epsilon}_\mathcal{L}$:
\[ \bm{G}_\mathcal{L} = \frac{\bm{\epsilon}_\mathcal{L}}{\bm{\tau}} = \bm{J} \bm{G}(s) \]
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** Identification
#+begin_src matlab
Gm_x = {zeros(length(Ms), 1)};
Gm_l = {zeros(length(Ms), 1)};
#+end_src
#+begin_src matlab
load('mat/stages.mat', 'nano_hexapod');
#+end_src
We identify these dynamics with and without using the DVF controller.
#+begin_src matlab :exports none
%% Name of the Simulink File
@@ -252,9 +245,55 @@ Damping as function of the gain
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror
#+end_src
#+begin_src matlab :exports none
load('mat/stages.mat', 'nano_hexapod');
#+end_src
** Identification of the undamped plant :ignore:
#+begin_src matlab :exports none
Kdvf_backup = Kdvf;
Kdvf = tf(zeros(6));
#+end_src
#+begin_src matlab :exports none
G_x = {zeros(length(Ms), 1)};
G_l = {zeros(length(Ms), 1)};
#+end_src
#+begin_src matlab :exports none
for i = 1:length(Ms)
initializeSample('mass', Ms(i), 'freq', 200*ones(6,1));
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
%% Run the linearization
G = linearize(mdl, io);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gx = -G*inv(nano_hexapod.J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
G_x(i) = {Gx};
Gl = -nano_hexapod.J*G;
Gl.OutputName = {'E1', 'E2', 'E3', 'E4', 'E5', 'E6'};
G_l(i) = {Gl};
end
#+end_src
#+begin_src matlab :exports none
Kdvf = Kdvf_backup;
#+end_src
** Identification of the damped plant :ignore:
#+begin_src matlab :exports none
Gm_x = {zeros(length(Ms), 1)};
Gm_l = {zeros(length(Ms), 1)};
#+end_src
#+begin_src matlab :exports none
for i = 1:length(Ms)
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
%% Run the linearization
G = linearize(mdl, io);
@@ -271,71 +310,107 @@ Damping as function of the gain
end
#+end_src
** Controller in the task space
** Obtained dynamics for the Undamped plant :ignore:
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
labels = {'$D_x/\mathcal{F}_x$', '$D_y/\mathcal{F}_y$', '$D_z/\mathcal{F}_z$', '$R_x/\mathcal{M}_x$', '$R_y/\mathcal{M}_y$', '$R_z/\mathcal{M}_z$'};
freqs = logspace(0, 3, 5000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))));
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('Diagonal elements of the Plant');
title('$\mathcal{X}_x/\mathcal{F}_x$, $\mathcal{X}_y/\mathcal{F}_y$')
ax2 = subplot(2, 2, 3);
ax2 = subplot(2, 2, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))), 'DisplayName', labels{i});
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('$\mathcal{X}_z/\mathcal{F}_z$')
ax3 = subplot(2, 2, 3);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz')))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend();
ax3 = subplot(2, 2, 2);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('Off-Diagonal elements of the Plant');
ylim([-270, 90]);
yticks([-360:90:360]);
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz')))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
end
set(gca,'ColorOrderIndex',1);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'southwest');
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
*** Translation
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
freqs = logspace(0, 3, 5000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz')))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'southwest');
linkaxes([ax1,ax2],'x');
#+end_src
* Primary Control in the task space
** Introduction :ignore:
** Plant in the task space
Let's look $\bm{G}_\mathcal{X}(s)$.
#+begin_src matlab :exports none
freqs = logspace(0, 3, 5000);
figure;
@@ -394,85 +469,6 @@ Damping as function of the gain
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
#+begin_src matlab
Kx = tf(zeros(6));
h = 1.5;
Kx(1,1) = 2e6 * ...
1/h*(s/(2*pi*100/h) + 1)/(s/(2*pi*100*h) + 1) * ...
(s/2/pi/1 + 1)/(s/2/pi/1) * ...
(s/2/pi/10 + 1)/(s/2/pi/10);
Kx(2,2) = Kx(1,1);
h = 1.5;
Kx(3,3) = 1e7 * ...
1/h*(s/(2*pi*100/h) + 1)/(s/(2*pi*100*h) + 1) * ...
(s/2/pi/1 + 1)/(s/2/pi/1) * ...
(s/2/pi/10 + 1)/(s/2/pi/10);
#+end_src
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(1, 1)*Kx(1,1), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(2, 2)*Kx(2,2), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('$\mathcal{X}_x/\mathcal{F}_x$, $\mathcal{X}_y/\mathcal{F}_y$')
ax2 = subplot(2, 2, 2);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(3, 3)*Kx(3,3), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('$\mathcal{X}_z/\mathcal{F}_z$')
ax3 = subplot(2, 2, 3);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(1, 1)*Kx(1,1), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(2, 2)*Kx(2,2), freqs, 'Hz')))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(3, 3)*Kx(3,3), freqs, 'Hz')))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'southwest');
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
*** Rotations
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
@@ -533,20 +529,95 @@ Damping as function of the gain
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
** Control in the task space
#+begin_src matlab
Kx = tf(zeros(6));
h = 2.5;
Kx(1,1) = 3e7 * ...
1/h*(s/(2*pi*100/h) + 1)/(s/(2*pi*100*h) + 1) * ...
(s/2/pi/1 + 1)/(s/2/pi/1);
Kx(2,2) = Kx(1,1);
h = 2.5;
Kx(3,3) = 3e7 * ...
1/h*(s/(2*pi*100/h) + 1)/(s/(2*pi*100*h) + 1) * ...
(s/2/pi/1 + 1)/(s/2/pi/1);
#+end_src
#+begin_src matlab
h = 1.5;
Kx(4,4) = 1e5 * ...
Kx(4,4) = 5e5 * ...
1/h*(s/(2*pi*100/h) + 1)/(s/(2*pi*100*h) + 1) * ...
(s/2/pi/1 + 1)/(s/2/pi/1) * ...
(s/2/pi/10 + 1)/(s/2/pi/10);
(s/2/pi/1 + 1)/(s/2/pi/1);
Kx(5,5) = Kx(4,4);
h = 1.5;
Kx(6,6) = 2e5 * ...
1/h*(s/(2*pi*100/h) + 1)/(s/(2*pi*100*h) + 1) * ...
(s/2/pi/1 + 1)/(s/2/pi/1) * ...
(s/2/pi/10 + 1)/(s/2/pi/10);
Kx(6,6) = 5e4 * ...
1/h*(s/(2*pi*30/h) + 1)/(s/(2*pi*30*h) + 1) * ...
(s/2/pi/1 + 1)/(s/2/pi/1);
#+end_src
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(1, 1)*Kx(1,1), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(2, 2)*Kx(2,2), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
title('Loop Gain $x$ and $y$')
ax2 = subplot(2, 2, 2);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(3, 3)*Kx(3,3), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
title('Loop Gain $z$')
ax3 = subplot(2, 2, 3);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(1, 1)*Kx(1,1), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(2, 2)*Kx(2,2), freqs, 'Hz')))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(3, 3)*Kx(3,3), freqs, 'Hz')))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'southwest');
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
#+begin_src matlab :exports none
@@ -618,67 +689,8 @@ Damping as function of the gain
** Simulation
** Control in the leg space
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(Gl(i, i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('Diagonal elements of the Plant');
ax2 = subplot(2, 2, 3);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(i, i), freqs, 'Hz'))), ...
'DisplayName', sprintf('$d\\mathcal{L}_%i / \\tau_%i$', i, i));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend();
ax3 = subplot(2, 2, 2);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(Gl(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gl(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('Off-Diagonal elements of the Plant');
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
* Primary Control in the leg space
** Plant in the task space
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
@@ -702,24 +714,26 @@ Damping as function of the gain
for i = 1:length(Ms)
for j = 1:6
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_l{i}(j, j), freqs, 'Hz'))));
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_l{i}(j, j), freqs, 'Hz')))));
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
ylim([-270, 90]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
#+end_src
** Control in the leg space
#+begin_src matlab
h = 1.5;
Kl = 5e6 * eye(6) * ...
Kl = 2e7 * eye(6) * ...
1/h*(s/(2*pi*200/h) + 1)/(s/(2*pi*200*h) + 1) * ...
1/h*(s/(2*pi*100/h) + 1)/(s/(2*pi*100*h) + 1) * ...
(s/2/pi/1 + 1)/(s/2/pi/1) * ...
(s/2/pi/10 + 1)/(s/2/pi/10);
(s/2/pi/10 + 1)/(s/2/pi/10) * ...
1/(1 + s/2/pi/500);
#+end_src
#+begin_src matlab
@@ -762,5 +776,281 @@ Damping as function of the gain
linkaxes([ax1,ax2],'x');
#+end_src
** Simulations
#+begin_src matlab
load('mat/stages.mat', 'nano_hexapod');
K = Kl*nano_hexapod.J;
#+end_src
* Simulations
#+begin_src matlab
initializeDisturbances('Fty_x', false, 'Fty_z', false);
initializeSimscapeConfiguration('gravity', false);
initializeLoggingConfiguration('log', 'all');
#+end_src
#+begin_src matlab
load('mat/conf_simulink.mat');
set_param(conf_simulink, 'StopTime', '2');
#+end_src
#+begin_src matlab
hac_dvf_L = {zeros(length(Ms)), 1};
for i = 1:length(Ms)
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating', 'Rz_period', Ms(i));
sim('nass_model');
hac_dvf_L(i) = {simout};
end
#+end_src
#+begin_src matlab
save('./mat/tomo_exp_hac_dvf.mat', 'hac_dvf_L');
#+end_src
** Results
#+begin_src matlab
load('./mat/experiment_tomography.mat', 'tomo_align_dist');
#+end_src
#+begin_src matlab
n_av = 4;
han_win = hanning(ceil(length(simout.Em.En.Data(:,1))/n_av));
#+end_src
#+begin_src matlab
t = simout.Em.En.Time;
Ts = t(2)-t(1);
[pxx_ol, f] = pwelch(tomo_align_dist.Em.En.Data, han_win, [], [], 1/Ts);
pxx_dvf_L = zeros(length(f), 6, length(Ms));
for i = 1:length(Ms)
[pxx, ~] = pwelch(hac_dvf_L{i}.Em.En.Data(ceil(0.2/Ts):end,:), han_win, [], [], 1/Ts);
pxx_dvf_L(:, :, i) = pxx;
end
#+end_src
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 3, 1);
hold on;
plot(f, sqrt(pxx_ol(:, 1)))
for i = 1:length(Ms)
plot(f, sqrt(pxx_dvf_L(:, 1, i)))
end
hold off;
xlabel('Frequency [Hz]');
ylabel('$\Gamma_{D_x}$ [$m/\sqrt{Hz}$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ax2 = subplot(2, 3, 2);
hold on;
plot(f, sqrt(pxx_ol(:, 2)))
for i = 1:length(Ms)
plot(f, sqrt(pxx_dvf_L(:, 2, i)))
end
hold off;
xlabel('Frequency [Hz]');
ylabel('$\Gamma_{D_y}$ [$m/\sqrt{Hz}$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ax3 = subplot(2, 3, 3);
hold on;
plot(f, sqrt(pxx_ol(:, 3)))
for i = 1:length(Ms)
plot(f, sqrt(pxx_dvf_L(:, 3, i)))
end
hold off;
xlabel('Frequency [Hz]');
ylabel('$\Gamma_{D_z}$ [$m/\sqrt{Hz}$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ax4 = subplot(2, 3, 4);
hold on;
plot(f, sqrt(pxx_ol(:, 4)))
for i = 1:length(Ms)
plot(f, sqrt(pxx_dvf_L(:, 4, i)))
end
hold off;
xlabel('Frequency [Hz]');
ylabel('$\Gamma_{R_x}$ [$rad/\sqrt{Hz}$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ax5 = subplot(2, 3, 5);
hold on;
plot(f, sqrt(pxx_ol(:, 5)))
for i = 1:length(Ms)
plot(f, sqrt(pxx_dvf_L(:, 5, i)))
end
hold off;
xlabel('Frequency [Hz]');
ylabel('$\Gamma_{R_y}$ [$rad/\sqrt{Hz}$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ax6 = subplot(2, 3, 6);
hold on;
plot(f, sqrt(pxx_ol(:, 6)), 'DisplayName', '$\mu$-Station')
for i = 1:length(Ms)
plot(f, sqrt(pxx_dvf_L(:, 6, i)), ...
'DisplayName', sprintf('HAC-DVF $m = %.0f kg$', Ms(i)))
end
hold off;
xlabel('Frequency [Hz]');
ylabel('$\Gamma_{R_z}$ [$rad/\sqrt{Hz}$]');
legend('location', 'southwest');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
xlim([f(2), f(end)])
#+end_src
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 3, 1);
hold on;
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_ol(:, 1))))))
for i = 1:length(Ms)
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_dvf_L(:, 1, i))))));
end
hold off;
xlabel('Frequency [Hz]');
ylabel('CAS $D_x$ [$m$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-11, 1e-5]);
ax2 = subplot(2, 3, 2);
hold on;
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_ol(:, 2))))))
for i = 1:length(Ms)
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_dvf_L(:, 2, i))))));
end
hold off;
xlabel('Frequency [Hz]');
ylabel('CAS $D_y$ [$m$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-11, 1e-5]);
ax3 = subplot(2, 3, 3);
hold on;
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_ol(:, 3))))))
for i = 1:length(Ms)
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_dvf_L(:, 3, i))))));
end
hold off;
xlabel('Frequency [Hz]');
ylabel('CAS $D_z$ [$m$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-11, 1e-5]);
ax4 = subplot(2, 3, 4);
hold on;
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_ol(:, 4))))))
for i = 1:length(Ms)
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_dvf_L(:, 4, i))))));
end
hold off;
xlabel('Frequency [Hz]');
ylabel('CAS $R_x$ [$rad$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-11, 1e-5]);
ax5 = subplot(2, 3, 5);
hold on;
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_ol(:, 5))))))
for i = 1:length(Ms)
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_dvf_L(:, 5, i))))));
end
hold off;
xlabel('Frequency [Hz]');
ylabel('CAS $R_y$ [$rad$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-11, 1e-5]);
ax6 = subplot(2, 3, 6);
hold on;
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_ol(:, 6))))), 'DisplayName', '$\mu$-Station')
for i = 1:length(Ms)
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_dvf_L(:, 6, i))))), ...
'DisplayName', sprintf('HAC-DVF $m = %.0f kg$', Ms(i)));
end
hold off;
xlabel('Frequency [Hz]');
ylabel('CAS $R_z$ [$rad$]');
legend('location', 'southwest');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-11, 1e-5]);
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
xlim([f(2), f(end)])
#+end_src
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 3, 1);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 1))
for i = 1:length(Ms)
plot(hac_dvf_L{i}.Em.En.Time, hac_dvf_L{i}.Em.En.Data(:, 1));
end
hold off;
xlabel('Time [s]');
ylabel('Dx [m]');
ax2 = subplot(2, 3, 2);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 2))
for i = 1:length(Ms)
plot(hac_dvf_L{i}.Em.En.Time, hac_dvf_L{i}.Em.En.Data(:, 2));
end
hold off;
xlabel('Time [s]');
ylabel('Dy [m]');
ax3 = subplot(2, 3, 3);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 3))
for i = 1:length(Ms)
plot(hac_dvf_L{i}.Em.En.Time, hac_dvf_L{i}.Em.En.Data(:, 3));
end
hold off;
xlabel('Time [s]');
ylabel('Dz [m]');
ax4 = subplot(2, 3, 4);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 4))
for i = 1:length(Ms)
plot(hac_dvf_L{i}.Em.En.Time, hac_dvf_L{i}.Em.En.Data(:, 4));
end
hold off;
xlabel('Time [s]');
ylabel('Rx [rad]');
ax5 = subplot(2, 3, 5);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 5))
for i = 1:length(Ms)
plot(hac_dvf_L{i}.Em.En.Time, hac_dvf_L{i}.Em.En.Data(:, 5));
end
hold off;
xlabel('Time [s]');
ylabel('Ry [rad]');
ax6 = subplot(2, 3, 6);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 6), ...
'DisplayName', '$\mu$-Station')
for i = 1:length(Ms)
plot(hac_dvf_L{i}.Em.En.Time, hac_dvf_L{i}.Em.En.Data(:, 6), ...
'DisplayName', sprintf('HAC-DVF $m = %.0f kg$', Ms(i)));
end
hold off;
xlabel('Time [s]');
ylabel('Rz [rad]');
legend();
linkaxes([ax1,ax2,ax3,ax4],'x');
xlim([0.5, inf]);
#+end_src