|
|
|
@@ -449,3 +449,423 @@ Identification
|
|
|
|
|
#+begin_src matlab
|
|
|
|
|
open('nass_model.slx')
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
** Initialization
|
|
|
|
|
#+begin_src matlab
|
|
|
|
|
initializeGround();
|
|
|
|
|
initializeGranite();
|
|
|
|
|
initializeTy();
|
|
|
|
|
initializeRy();
|
|
|
|
|
initializeRz();
|
|
|
|
|
initializeMicroHexapod();
|
|
|
|
|
initializeAxisc();
|
|
|
|
|
initializeMirror();
|
|
|
|
|
|
|
|
|
|
initializeSimscapeConfiguration();
|
|
|
|
|
initializeDisturbances('enable', false);
|
|
|
|
|
initializeLoggingConfiguration('log', 'none');
|
|
|
|
|
|
|
|
|
|
initializeController('type', 'hac-iff');
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
We set the stiffness of the payload fixation:
|
|
|
|
|
#+begin_src matlab
|
|
|
|
|
Kp = 1e8; % [N/m]
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
** Identification
|
|
|
|
|
#+begin_src matlab
|
|
|
|
|
K = tf(zeros(6));
|
|
|
|
|
Kiff = tf(zeros(6));
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
We identify the system for the following payload masses:
|
|
|
|
|
#+begin_src matlab
|
|
|
|
|
Ms = [1, 10, 50];
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
Gm_iff = {zeros(length(Ms), 1)};
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
The nano-hexapod has the following leg's stiffness and damping.
|
|
|
|
|
#+begin_src matlab
|
|
|
|
|
initializeNanoHexapod('actuator', 'amplified');
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
%% Name of the Simulink File
|
|
|
|
|
mdl = 'nass_model';
|
|
|
|
|
|
|
|
|
|
%% Input/Output definition
|
|
|
|
|
clear io; io_i = 1;
|
|
|
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
|
|
|
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1; % Force Sensors
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
|
|
|
|
|
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
|
|
|
|
|
|
|
|
|
|
%% Run the linearization
|
|
|
|
|
G_iff = linearize(mdl, io);
|
|
|
|
|
G_iff.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
|
|
|
|
G_iff.OutputName = {'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'};
|
|
|
|
|
Gm_iff(i) = {G_iff};
|
|
|
|
|
end
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
** Controller Design
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
freqs = logspace(-1, 3, 1000);
|
|
|
|
|
|
|
|
|
|
figure;
|
|
|
|
|
|
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
|
|
|
hold on;
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gm_iff{i}(1, 1), freqs, 'Hz'))));
|
|
|
|
|
end
|
|
|
|
|
hold off;
|
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
|
|
|
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
|
|
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
|
|
|
hold on;
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_iff{i}(1, 1), freqs, 'Hz')))), ...
|
|
|
|
|
'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(i)));
|
|
|
|
|
end
|
|
|
|
|
hold off;
|
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
|
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
|
|
|
ylim([-270, 90]);
|
|
|
|
|
yticks([-360:90:360]);
|
|
|
|
|
legend('location', 'northeast');
|
|
|
|
|
|
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
|
|
|
exportFig('figs/amplified_piezo_iff_loop_gain.pdf', 'width', 'full', 'height', 'full');
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+name: fig:amplified_piezo_iff_loop_gain
|
|
|
|
|
#+caption: Dynamics for the Integral Force Feedback for three payload masses
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
[[file:figs/amplified_piezo_iff_loop_gain.png]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
figure;
|
|
|
|
|
|
|
|
|
|
gains = logspace(2, 5, 300);
|
|
|
|
|
|
|
|
|
|
hold on;
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(real(pole(Gm_iff{i})), imag(pole(Gm_iff{i})), 'x', ...
|
|
|
|
|
'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(i)));
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(real(tzero(Gm_iff{i})), imag(tzero(Gm_iff{i})), 'o', ...
|
|
|
|
|
'HandleVisibility', 'off');
|
|
|
|
|
for k = 1:length(gains)
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
cl_poles = pole(feedback(Gm_iff{i}, -(gains(k)/s)*eye(6)));
|
|
|
|
|
plot(real(cl_poles), imag(cl_poles), '.', ...
|
|
|
|
|
'HandleVisibility', 'off');
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
hold off;
|
|
|
|
|
axis square;
|
|
|
|
|
xlim([-400, 10]); ylim([0, 500]);
|
|
|
|
|
|
|
|
|
|
xlabel('Real Part'); ylabel('Imaginary Part');
|
|
|
|
|
legend('location', 'northwest');
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
|
|
|
exportFig('figs/amplified_piezo_iff_root_locus.pdf', 'width', 'wide', 'height', 'tall');
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+name: fig:amplified_piezo_iff_root_locus
|
|
|
|
|
#+caption: Root Locus for the IFF control for three payload masses
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
[[file:figs/amplified_piezo_iff_root_locus.png]]
|
|
|
|
|
|
|
|
|
|
Damping as function of the gain
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
c1 = [ 0 0.4470 0.7410]; % Blue
|
|
|
|
|
c2 = [0.8500 0.3250 0.0980]; % Orange
|
|
|
|
|
c3 = [0.9290 0.6940 0.1250]; % Yellow
|
|
|
|
|
c4 = [0.4940 0.1840 0.5560]; % Purple
|
|
|
|
|
c5 = [0.4660 0.6740 0.1880]; % Green
|
|
|
|
|
c6 = [0.3010 0.7450 0.9330]; % Light Blue
|
|
|
|
|
c7 = [0.6350 0.0780 0.1840]; % Red
|
|
|
|
|
colors = [c1; c2; c3; c4; c5; c6; c7];
|
|
|
|
|
|
|
|
|
|
figure;
|
|
|
|
|
|
|
|
|
|
gains = logspace(2, 5, 100);
|
|
|
|
|
|
|
|
|
|
hold on;
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
for k = 1:length(gains)
|
|
|
|
|
cl_poles = pole(feedback(Gm_iff{i}, -(gains(k)/s)*eye(6)));
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(gains(k), sin(-pi/2 + angle(cl_poles)), '.', 'color', colors(i, :));
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
hold off;
|
|
|
|
|
xlabel('IFF Gain'); ylabel('Modal Damping');
|
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
|
|
|
ylim([0, 1]);
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
|
|
|
exportFig('figs/amplified_piezo_iff_damping_gain.pdf', 'width', 'full', 'height', 'full');
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+name: fig:amplified_piezo_iff_damping_gain
|
|
|
|
|
#+caption: Damping ratio of the poles as a function of the IFF gain
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
[[file:figs/amplified_piezo_iff_damping_gain.png]]
|
|
|
|
|
|
|
|
|
|
Finally, we use the following controller for the Decentralized Direct Velocity Feedback:
|
|
|
|
|
#+begin_src matlab
|
|
|
|
|
Kiff = -1e4/s*eye(6);
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
** Effect of the Low Authority Control on the Primary Plant
|
|
|
|
|
*** Introduction :ignore:
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
%% Name of the Simulink File
|
|
|
|
|
mdl = 'nass_model';
|
|
|
|
|
|
|
|
|
|
%% Input/Output definition
|
|
|
|
|
clear io; io_i = 1;
|
|
|
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs
|
|
|
|
|
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
load('mat/stages.mat', 'nano_hexapod');
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
*** Identification of the undamped plant :ignore:
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
Kdvf_backup = Kdvf;
|
|
|
|
|
Kdvf = tf(zeros(6));
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
G_x = {zeros(length(Ms), 1)};
|
|
|
|
|
G_l = {zeros(length(Ms), 1)};
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
|
|
|
|
|
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
|
|
|
|
|
|
|
|
|
|
%% Run the linearization
|
|
|
|
|
G = linearize(mdl, io);
|
|
|
|
|
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
|
|
|
|
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
|
|
|
|
|
|
|
|
|
|
Gx = -G*inv(nano_hexapod.kinematics.J');
|
|
|
|
|
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
|
|
|
G_x(i) = {Gx};
|
|
|
|
|
|
|
|
|
|
Gl = -nano_hexapod.kinematics.J*G;
|
|
|
|
|
Gl.OutputName = {'E1', 'E2', 'E3', 'E4', 'E5', 'E6'};
|
|
|
|
|
G_l(i) = {Gl};
|
|
|
|
|
end
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
Kdvf = Kdvf_backup;
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
*** Identification of the damped plant :ignore:
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
Gm_x = {zeros(length(Ms), 1)};
|
|
|
|
|
Gm_l = {zeros(length(Ms), 1)};
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
|
|
|
|
|
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
|
|
|
|
|
|
|
|
|
|
%% Run the linearization
|
|
|
|
|
G = linearize(mdl, io);
|
|
|
|
|
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
|
|
|
|
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
|
|
|
|
|
|
|
|
|
|
Gx = -G*inv(nano_hexapod.kinematics.J');
|
|
|
|
|
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
|
|
|
Gm_x(i) = {Gx};
|
|
|
|
|
|
|
|
|
|
Gl = -nano_hexapod.kinematics.J*G;
|
|
|
|
|
Gl.OutputName = {'E1', 'E2', 'E3', 'E4', 'E5', 'E6'};
|
|
|
|
|
Gm_l(i) = {Gl};
|
|
|
|
|
end
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
*** Effect of the Damping on the plant diagonal dynamics :ignore:
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
freqs = logspace(0, 3, 5000);
|
|
|
|
|
|
|
|
|
|
figure;
|
|
|
|
|
|
|
|
|
|
ax1 = subplot(2, 2, 1);
|
|
|
|
|
hold on;
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz'))));
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz'))));
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(1, 1), freqs, 'Hz'))), '--');
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(2, 2), freqs, 'Hz'))), '--');
|
|
|
|
|
end
|
|
|
|
|
hold off;
|
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
|
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
|
title('$\mathcal{X}_x/\mathcal{F}_x$, $\mathcal{X}_y/\mathcal{F}_y$')
|
|
|
|
|
|
|
|
|
|
ax2 = subplot(2, 2, 2);
|
|
|
|
|
hold on;
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz'))));
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(3, 3), freqs, 'Hz'))), '--');
|
|
|
|
|
end
|
|
|
|
|
hold off;
|
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
|
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
|
title('$\mathcal{X}_z/\mathcal{F}_z$')
|
|
|
|
|
|
|
|
|
|
ax3 = subplot(2, 2, 3);
|
|
|
|
|
hold on;
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz')))));
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz')))));
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(1, 1), freqs, 'Hz')))), '--');
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(2, 2), freqs, 'Hz')))), '--');
|
|
|
|
|
end
|
|
|
|
|
hold off;
|
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
|
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
|
|
|
ylim([-270, 90]);
|
|
|
|
|
yticks([-360:90:360]);
|
|
|
|
|
|
|
|
|
|
ax4 = subplot(2, 2, 4);
|
|
|
|
|
hold on;
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz')))), ...
|
|
|
|
|
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(3, 3), freqs, 'Hz')))), '--', ...
|
|
|
|
|
'HandleVisibility', 'off');
|
|
|
|
|
end
|
|
|
|
|
hold off;
|
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
|
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
|
|
|
ylim([-270, 90]);
|
|
|
|
|
yticks([-360:90:360]);
|
|
|
|
|
legend('location', 'southwest');
|
|
|
|
|
|
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'x');
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
freqs = logspace(0, 3, 5000);
|
|
|
|
|
|
|
|
|
|
figure;
|
|
|
|
|
|
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
|
|
|
hold on;
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz'))));
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gm_l{i}(1, 1), freqs, 'Hz'))), '--');
|
|
|
|
|
end
|
|
|
|
|
hold off;
|
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
|
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
|
|
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
|
|
|
hold on;
|
|
|
|
|
for i = 1:length(Ms)
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz')))), ...
|
|
|
|
|
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
|
|
|
|
|
set(gca,'ColorOrderIndex',i);
|
|
|
|
|
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_l{i}(1, 1), freqs, 'Hz')))), '--', ...
|
|
|
|
|
'HandleVisibility', 'off');
|
|
|
|
|
end
|
|
|
|
|
hold off;
|
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
|
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
|
|
|
ylim([-270, 90]);
|
|
|
|
|
yticks([-360:90:360]);
|
|
|
|
|
legend('location', 'southwest');
|
|
|
|
|
|
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
*** Effect of the Damping on the coupling dynamics :ignore:
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
|
|
|
|
|
|
figure;
|
|
|
|
|
hold on;
|
|
|
|
|
for i = 1:5
|
|
|
|
|
for j = i+1:6
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_x{1}(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gm_x{1}(i, j), freqs, 'Hz'))), '--', 'color', [0, 0, 0, 0.2]);
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
set(gca,'ColorOrderIndex',1);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_x{1}(1, 1), freqs, 'Hz'))));
|
|
|
|
|
set(gca,'ColorOrderIndex',1);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gm_x{1}(1, 1), freqs, 'Hz'))), '--');
|
|
|
|
|
hold off;
|
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
|
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
|
ylim([1e-12, inf]);
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
|
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
|
|
|
|
|
|
figure;
|
|
|
|
|
hold on;
|
|
|
|
|
for i = 1:5
|
|
|
|
|
for j = i+1:6
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_l{1}(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gm_l{1}(i, j), freqs, 'Hz'))), '--', 'color', [0, 0, 0, 0.2]);
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
set(gca,'ColorOrderIndex',1);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_l{1}(1, 1), freqs, 'Hz'))));
|
|
|
|
|
set(gca,'ColorOrderIndex',1);
|
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gm_l{1}(1, 1), freqs, 'Hz'))), '--');
|
|
|
|
|
hold off;
|
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
|
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
|
ylim([1e-9, inf]);
|
|
|
|
|
#+end_src
|
|
|
|
|