Update few figures
This commit is contained in:
@@ -6,12 +6,12 @@ In this document is studied the effect of the mechanical behavior of the flexibl
|
||||
|
||||
Ideally, we want the x and y rotations to be free and all the translations to be blocked.
|
||||
However, this is never the case and be have to consider:
|
||||
- Finite x and y rotational stiffnesses (Section [[sec:rot_stiffness]])
|
||||
- Translation stiffness in the direction of the legs (Section [[sec:trans_stiffness]])
|
||||
- Finite bending stiffnesses (Section [[sec:rot_stiffness]])
|
||||
- Axial stiffness in the direction of the legs (Section [[sec:trans_stiffness]])
|
||||
|
||||
This may impose some limitations, also, the goal is to specify the required joints stiffnesses.
|
||||
This may impose some limitations, also, the goal is to specify the required joints stiffnesses (summarized in Section [[sec:conclusion]]).
|
||||
|
||||
* Rotational Stiffness
|
||||
* Bending and Torsional Stiffness
|
||||
<<sec:rot_stiffness>>
|
||||
|
||||
** Introduction :ignore:
|
||||
@@ -67,7 +67,7 @@ Let's consider the heaviest mass which should we the most problematic with it co
|
||||
Kdvf = tf(zeros(6));
|
||||
#+end_src
|
||||
|
||||
** Realistic Rotational Stiffness Values
|
||||
** Realistic Bending Stiffness Values
|
||||
*** Introduction :ignore:
|
||||
Let's compare the ideal case (zero stiffness in rotation and infinite stiffness in translation) with a more realistic case:
|
||||
- $K_{\theta, \phi} = 15\,[Nm/rad]$ stiffness in flexion
|
||||
@@ -231,7 +231,7 @@ The plant dynamics is not found to be changing significantly.
|
||||
end
|
||||
for j = 1:6
|
||||
set(gca,'ColorOrderIndex',2);
|
||||
plot(freqs, abs(squeeze(freqresp(Gl_p(j, j), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(Gl_p(j, j), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -241,17 +241,30 @@ The plant dynamics is not found to be changing significantly.
|
||||
hold on;
|
||||
for j = 1:6
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gl(j, j), freqs, 'Hz')))));
|
||||
if j == 1
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gl(j, j), freqs, 'Hz')))), ...
|
||||
'DisplayName', 'Flexible Joints');
|
||||
else
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gl(j, j), freqs, 'Hz')))), ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
for j = 1:6
|
||||
set(gca,'ColorOrderIndex',2);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gl_p(j, j), freqs, 'Hz')))), '--');
|
||||
if j == 1
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gl_p(j, j), freqs, 'Hz')))), ...
|
||||
'DisplayName', 'Perfect Joints');
|
||||
else
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gl_p(j, j), freqs, 'Hz')))), ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-270, 90]);
|
||||
yticks([-360:90:360]);
|
||||
legend('location', 'southwest');
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
@@ -261,13 +274,13 @@ The plant dynamics is not found to be changing significantly.
|
||||
#+end_src
|
||||
|
||||
#+name: fig:flex_joints_rot_primary_plant_L
|
||||
#+caption: Dynamics from $\bm{\tau}^\prime_i$ to $\bm{\epsilon}_{\mathcal{X}_n,i}$ with perfect joints (dashed) and with flexible joints (solid)
|
||||
#+caption: Dynamics from $\bm{\tau}^\prime_i$ to $\bm{\epsilon}_{\mathcal{X}_n,i}$ with perfect joints and with flexible joints
|
||||
#+RESULTS:
|
||||
[[file:figs/flex_joints_rot_primary_plant_L.png]]
|
||||
|
||||
*** Conclusion
|
||||
#+begin_important
|
||||
Considering realistic flexible joint rotational stiffness for the nano-hexapod does not seems to impose any limitation on the DVF control nor on the primary control.
|
||||
Considering realistic flexible joint bending stiffness for the nano-hexapod does not seems to impose any limitation on the DVF control nor on the primary control.
|
||||
|
||||
It only increases a little bit the suspension modes of the sample on top of the nano-hexapod.
|
||||
#+end_important
|
||||
@@ -277,7 +290,7 @@ It only increases a little bit the suspension modes of the sample on top of the
|
||||
We wish now to see what is the impact of the rotation stiffness of the flexible joints on the dynamics.
|
||||
This will help to determine the requirements on the joint's stiffness.
|
||||
|
||||
Let's consider the following rotational stiffness of the flexible joints:
|
||||
Let's consider the following bending stiffness of the flexible joints:
|
||||
#+begin_src matlab
|
||||
Ks = [1, 5, 10, 50, 100]; % [Nm/rad]
|
||||
#+end_src
|
||||
@@ -294,7 +307,7 @@ The dynamics from the actuators to the relative displacement sensor in each leg
|
||||
|
||||
The corresponding Root Locus plot is shown in Figure [[fig:flex_joints_rot_study_dvf_root_locus]].
|
||||
|
||||
It is shown that the rotational stiffness of the flexible joints does indeed change a little the dynamics, but critical damping is stiff achievable with Direct Velocity Feedback.
|
||||
It is shown that the bending stiffness of the flexible joints does indeed change a little the dynamics, but critical damping is stiff achievable with Direct Velocity Feedback.
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
%% Name of the Simulink File
|
||||
@@ -343,7 +356,7 @@ It is shown that the rotational stiffness of the flexible joints does indeed cha
|
||||
hold on;
|
||||
for i = 1:length(Ks)
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_dvf_s{i}(1, 1), freqs, 'Hz')))), ...
|
||||
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
||||
'DisplayName', sprintf('$k = %.0f$ [Nm/rad]', Ks(i)));
|
||||
end
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_dvf_p(1, 1), freqs, 'Hz')))), 'k--', ...
|
||||
'DisplayName', 'Ideal Joint');
|
||||
@@ -375,7 +388,7 @@ It is shown that the rotational stiffness of the flexible joints does indeed cha
|
||||
for i = 1:length(Ks)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(real(pole(G_dvf_s{i})), imag(pole(G_dvf_s{i})), 'x', ...
|
||||
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
||||
'DisplayName', sprintf('$k = %.0f$ [Nm/rad]', Ks(i)));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(real(tzero(G_dvf_s{i})), imag(tzero(G_dvf_s{i})), 'o', ...
|
||||
'HandleVisibility', 'off');
|
||||
@@ -406,7 +419,7 @@ It is shown that the rotational stiffness of the flexible joints does indeed cha
|
||||
*** Primary Control
|
||||
The dynamics from $\bm{\tau}^\prime$ to $\bm{\epsilon}_{\mathcal{X}_n}$ (for the primary controller designed in the frame of the legs) is shown in Figure [[fig:flex_joints_rot_study_primary_plant]].
|
||||
|
||||
It is shown that the rotational stiffness of the flexible joints have very little impact on the dynamics.
|
||||
It is shown that the bending stiffness of the flexible joints have very little impact on the dynamics.
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
Kdvf = 5e3*s/(1+s/2/pi/1e3)*eye(6);
|
||||
@@ -463,7 +476,7 @@ It is shown that the rotational stiffness of the flexible joints have very littl
|
||||
hold on;
|
||||
for i = 1:length(Ks)
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gl_s{i}(1, 1), freqs, 'Hz')))), ...
|
||||
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
||||
'DisplayName', sprintf('$k = %.0f$ [Nm/rad]', Ks(i)));
|
||||
end
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gl_p(1, 1), freqs, 'Hz')))), 'k--', ...
|
||||
'DisplayName', 'Ideal Joint');
|
||||
@@ -482,13 +495,13 @@ It is shown that the rotational stiffness of the flexible joints have very littl
|
||||
#+end_src
|
||||
|
||||
#+name: fig:flex_joints_rot_study_primary_plant
|
||||
#+caption: Diagonal elements of the transfer function matrix from $\bm{\tau}^\prime$ to $\bm{\epsilon}_{\mathcal{X}_n}$ for the considered rotational stiffnesses
|
||||
#+caption: Diagonal elements of the transfer function matrix from $\bm{\tau}^\prime$ to $\bm{\epsilon}_{\mathcal{X}_n}$ for the considered bending stiffnesses
|
||||
#+RESULTS:
|
||||
[[file:figs/flex_joints_rot_study_primary_plant.png]]
|
||||
|
||||
*** Conclusion
|
||||
#+begin_important
|
||||
The rotational stiffness of the flexible joint does not significantly change the dynamics.
|
||||
The bending stiffness of the flexible joint does not significantly change the dynamics.
|
||||
#+end_important
|
||||
|
||||
* Translation Stiffness
|
||||
@@ -735,6 +748,11 @@ The dynamics is compare with and without the joint flexibility in Figure [[fig:f
|
||||
#+RESULTS:
|
||||
[[file:figs/flex_joints_trans_primary_plant_L.png]]
|
||||
|
||||
*** Conclusion
|
||||
#+begin_important
|
||||
For the realistic value of the flexible joint axial stiffness, the dynamics is not much impact, and this should not be a problem for control.
|
||||
#+end_important
|
||||
|
||||
** Parametric study
|
||||
*** Introduction :ignore:
|
||||
We wish now to see what is the impact of the *axial* stiffness of the flexible joints on the dynamics.
|
||||
@@ -759,7 +777,7 @@ It is shown that the axial stiffness of the flexible joints does have a huge imp
|
||||
If the axial stiffness of the flexible joints is $K_a > 10^7\,[N/m]$ (here $100$ times higher than the actuator stiffness), then the change of dynamics stays reasonably small.
|
||||
|
||||
This is more clear by looking at the root locus (Figures [[fig:flex_joints_trans_study_dvf_root_locus]] and [[fig:flex_joints_trans_study_root_locus_unzoom]]).
|
||||
It can be seen that very little active damping can be achieve for rotational joint axial stiffnesses below $10^7\,[N/m]$.
|
||||
It can be seen that very little active damping can be achieve for axial stiffnesses below $10^7\,[N/m]$.
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
%% Name of the Simulink File
|
||||
@@ -868,7 +886,7 @@ It can be seen that very little active damping can be achieve for rotational joi
|
||||
#+RESULTS:
|
||||
[[file:figs/flex_joints_trans_study_dvf_root_locus.png]]
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
xlim([-1e3, 0]);
|
||||
ylim([0, 1e3]);
|
||||
#+end_src
|
||||
@@ -964,9 +982,19 @@ The dynamics from $\bm{\tau}^\prime$ to $\bm{\epsilon}_{\mathcal{X}_n}$ (for the
|
||||
#+begin_important
|
||||
The axial stiffness of the flexible joints should be maximized.
|
||||
|
||||
For the considered actuator stiffness $k = 10^5\,[N/m]$, the axial stiffness of the rotational joints should ideally be above $10^7\,[N/m]$.
|
||||
For the considered actuator stiffness $k = 10^5\,[N/m]$, the axial stiffness of the flexible joints should ideally be above $10^7\,[N/m]$.
|
||||
|
||||
This is a reasonable stiffness value for such joints.
|
||||
|
||||
We may interpolate the results and say that the axial joint stiffness should be 100 times higher than the actuator stiffness, but this should be confirmed with further analysis.
|
||||
#+end_important
|
||||
|
||||
* Conclusion
|
||||
<<sec:conclusion>>
|
||||
|
||||
#+begin_important
|
||||
For the identified optimal actuator stiffness $k = 10^5\,[N/m]$, the flexible joint should have the following stiffness properties:
|
||||
- Bending Stiffness: $K_b < 50\,[Nm/rad]$
|
||||
- Torsion Stiffness: $K_t < 50\,[Nm/rad]$
|
||||
- Axial Stiffness: $K_a > 10^7\,[N/m]$
|
||||
#+end_important
|
||||
|
@@ -65,6 +65,10 @@ Conclusion are drawn about what experimental conditions are critical on the vari
|
||||
|
||||
* Optimal Stiffness of the nano-hexapod to reduce plant uncertainty ([[file:uncertainty_optimal_stiffness.org][link]])
|
||||
|
||||
* Effect of flexible joints on the plant dynamics ([[file:flexible_joints_study.org][link]])
|
||||
In this document is studied how the flexible joint stiffnesses (in flexion, torsion and compression) is affecting the plant dynamics.
|
||||
Conclusion are drawn on the required stiffness properties of the flexible joints.
|
||||
|
||||
* Active Damping Techniques on the full Simscape Model ([[file:control_active_damping.org][link]])
|
||||
Active damping techniques are applied to the full Simscape model.
|
||||
|
||||
|
@@ -25,7 +25,7 @@
|
||||
|
||||
#+PROPERTY: header-args:shell :eval no-export
|
||||
|
||||
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/org/}{config.tex}")
|
||||
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
|
||||
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
||||
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
||||
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
||||
|
Reference in New Issue
Block a user