Add analysis about amplified piezo

This commit is contained in:
Thomas Dehaeze 2020-05-20 15:49:43 +02:00
parent 20af78bb8a
commit 04c2ee06dc
15 changed files with 6315 additions and 0 deletions

View File

@ -0,0 +1,377 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-05-20 mer. 15:49 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Amplified Piezoelectric Stack Actuator</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<script>MathJax = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
</script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="./index.html"> UP </a>
|
<a accesskey="H" href="./index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Amplified Piezoelectric Stack Actuator</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org996fd7c">1. Simplified Model</a>
<ul>
<li><a href="#org47cc3c4">1.1. Parameters</a></li>
<li><a href="#org3b3c7ac">1.2. Identification</a></li>
<li><a href="#org97f356d">1.3. Root Locus</a></li>
</ul>
</li>
<li><a href="#orgf1a765f">2. Rotating X-Y platform</a>
<ul>
<li><a href="#org0dc544d">2.1. Parameters</a></li>
<li><a href="#org08e3567">2.2. Identification</a></li>
<li><a href="#orgbba342e">2.3. Root Locus</a></li>
<li><a href="#org069f401">2.4. Analysis</a></li>
</ul>
</li>
</ul>
</div>
</div>
<p>
The presented model is based on <a class='org-ref-reference' href="#souleille18_concep_activ_mount_space_applic">souleille18_concep_activ_mount_space_applic</a>.
</p>
<p>
The model represents the amplified piezo APA100M from Cedrat-Technologies (Figure <a href="#orgb707bbd">1</a>).
The parameters are shown in the table below.
</p>
<div id="orgb707bbd" class="figure">
<p><img src="./figs/souleille18_model_piezo.png" alt="souleille18_model_piezo.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Picture of an APA100M from Cedrat Technologies. Simplified model of a one DoF payload mounted on such isolator</p>
</div>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 1:</span> Parameters used for the model of the APA 100M</caption>
<colgroup>
<col class="org-left" />
<col class="org-left" />
<col class="org-left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">&#xa0;</th>
<th scope="col" class="org-left">Value</th>
<th scope="col" class="org-left">Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">\(m\)</td>
<td class="org-left">\(1\,[kg]\)</td>
<td class="org-left">Payload mass</td>
</tr>
<tr>
<td class="org-left">\(k_e\)</td>
<td class="org-left">\(4.8\,[N/\mu m]\)</td>
<td class="org-left">Stiffness used to adjust the pole of the isolator</td>
</tr>
<tr>
<td class="org-left">\(k_1\)</td>
<td class="org-left">\(0.96\,[N/\mu m]\)</td>
<td class="org-left">Stiffness of the metallic suspension when the stack is removed</td>
</tr>
<tr>
<td class="org-left">\(k_a\)</td>
<td class="org-left">\(65\,[N/\mu m]\)</td>
<td class="org-left">Stiffness of the actuator</td>
</tr>
<tr>
<td class="org-left">\(c_1\)</td>
<td class="org-left">\(10\,[N/(m/s)]\)</td>
<td class="org-left">Added viscous damping</td>
</tr>
</tbody>
</table>
<div id="outline-container-org996fd7c" class="outline-2">
<h2 id="org996fd7c"><span class="section-number-2">1</span> Simplified Model</h2>
<div class="outline-text-2" id="text-1">
</div>
<div id="outline-container-org47cc3c4" class="outline-3">
<h3 id="org47cc3c4"><span class="section-number-3">1.1</span> Parameters</h3>
<div class="outline-text-3" id="text-1-1">
<div class="org-src-container">
<pre class="src src-matlab">m = 1; % [kg]
ke = 4.8e6; % [N/m]
ce = 5; % [N/(m/s)]
me = 0.001; % [kg]
k1 = 0.96e6; % [N/m]
c1 = 10; % [N/(m/s)]
ka = 65e6; % [N/m]
ca = 5; % [N/(m/s)]
ma = 0.001; % [kg]
h = 0.2; % [m]
</pre>
</div>
<p>
IFF Controller:
</p>
<div class="org-src-container">
<pre class="src src-matlab">Kiff = -8000/s;
</pre>
</div>
</div>
</div>
<div id="outline-container-org3b3c7ac" class="outline-3">
<h3 id="org3b3c7ac"><span class="section-number-3">1.2</span> Identification</h3>
<div class="outline-text-3" id="text-1-2">
<p>
Identification in open-loop.
</p>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'amplified_piezo_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion
io(io_i) = linio([mdl, '/f'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % External Force
io(io_i) = linio([mdl, '/Fs'], 3, 'openoutput'); io_i = io_i + 1; % Force Sensors
io(io_i) = linio([mdl, '/x1'], 1, 'openoutput'); io_i = io_i + 1; % Mass displacement
G = linearize(mdl, io, 0);
G.InputName = {'w', 'f', 'F'};
G.OutputName = {'Fs', 'x1'};
</pre>
</div>
<p>
Identification in closed-loop.
</p>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'amplified_piezo_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/w'], 1, 'input'); io_i = io_i + 1; % Base Motion
io(io_i) = linio([mdl, '/f'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/F'], 1, 'input'); io_i = io_i + 1; % External Force
io(io_i) = linio([mdl, '/Fs'], 3, 'output'); io_i = io_i + 1; % Force Sensors
io(io_i) = linio([mdl, '/x1'], 1, 'output'); io_i = io_i + 1; % Mass displacement
Giff = linearize(mdl, io, 0);
Giff.InputName = {'w', 'f', 'F'};
Giff.OutputName = {'Fs', 'x1'};
</pre>
</div>
<div id="org55d1535" class="figure">
<p><img src="figs/amplified_piezo_tf_ol_and_cl.png" alt="amplified_piezo_tf_ol_and_cl.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Matrix of transfer functions from input to output in open loop (blue) and closed loop (red)</p>
</div>
</div>
</div>
<div id="outline-container-org97f356d" class="outline-3">
<h3 id="org97f356d"><span class="section-number-3">1.3</span> Root Locus</h3>
<div class="outline-text-3" id="text-1-3">
<div id="org85cd6e5" class="figure">
<p><img src="figs/amplified_piezo_root_locus.png" alt="amplified_piezo_root_locus.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Root Locus</p>
</div>
</div>
</div>
</div>
<div id="outline-container-orgf1a765f" class="outline-2">
<h2 id="orgf1a765f"><span class="section-number-2">2</span> Rotating X-Y platform</h2>
<div class="outline-text-2" id="text-2">
</div>
<div id="outline-container-org0dc544d" class="outline-3">
<h3 id="org0dc544d"><span class="section-number-3">2.1</span> Parameters</h3>
<div class="outline-text-3" id="text-2-1">
<div class="org-src-container">
<pre class="src src-matlab">m = 1; % [kg]
ke = 4.8e6; % [N/m]
ce = 5; % [N/(m/s)]
me = 0.001; % [kg]
k1 = 0.96e6; % [N/m]
c1 = 10; % [N/(m/s)]
ka = 65e6; % [N/m]
ca = 5; % [N/(m/s)]
ma = 0.001; % [kg]
h = 0.2; % [m]
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">Kiff = tf(0);
</pre>
</div>
</div>
</div>
<div id="outline-container-org08e3567" class="outline-3">
<h3 id="org08e3567"><span class="section-number-3">2.2</span> Identification</h3>
<div class="outline-text-3" id="text-2-2">
<p>
Rotating speed in rad/s:
</p>
<div class="org-src-container">
<pre class="src src-matlab">Ws = 2*pi*[0, 1, 10, 100];
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">Gs = {zeros(length(Ws), 1)};
</pre>
</div>
<p>
Identification in open-loop.
</p>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'amplified_piezo_xy_rotating_stage';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/fx'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/fy'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fs'], 2, 'openoutput'); io_i = io_i + 1;
for i = 1:length(Ws)
ws = Ws(i);
G = linearize(mdl, io, 0);
G.InputName = {'fx', 'fy'};
G.OutputName = {'Fsx', 'Fsy'};
Gs(i) = {G};
end
</pre>
</div>
<div id="orga4fc975" class="figure">
<p><img src="figs/amplitifed_piezo_xy_rotation_plant_iff.png" alt="amplitifed_piezo_xy_rotation_plant_iff.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Transfer function matrix from forces to force sensors for multiple rotation speed</p>
</div>
</div>
</div>
<div id="outline-container-orgbba342e" class="outline-3">
<h3 id="orgbba342e"><span class="section-number-3">2.3</span> Root Locus</h3>
<div class="outline-text-3" id="text-2-3">
<div id="orgccd3396" class="figure">
<p><img src="figs/amplified_piezo_xy_rotation_root_locus.png" alt="amplified_piezo_xy_rotation_root_locus.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Root locus for 3 rotating speed</p>
</div>
</div>
</div>
<div id="outline-container-org069f401" class="outline-3">
<h3 id="org069f401"><span class="section-number-3">2.4</span> Analysis</h3>
<div class="outline-text-3" id="text-2-4">
<p>
The negative stiffness induced by the rotation is equal to \(m \omega_0^2\).
Thus, the maximum rotation speed where IFF can be applied is:
\[ \omega_\text{max} = \sqrt{\frac{k_1}{m}} \approx 156\,[Hz] \]
</p>
<p>
Let&rsquo;s verify that.
</p>
<div class="org-src-container">
<pre class="src src-matlab">Ws = 2*pi*[140, 160];
</pre>
</div>
<p>
Identification
</p>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'amplified_piezo_xy_rotating_stage';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/fx'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/fy'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fs'], 2, 'openoutput'); io_i = io_i + 1;
for i = 1:length(Ws)
ws = Ws(i);
G = linearize(mdl, io, 0);
G.InputName = {'fx', 'fy'};
G.OutputName = {'Fsx', 'Fsy'};
Gs(i) = {G};
end
</pre>
</div>
<div id="orgca23612" class="figure">
<p><img src="figs/amplified_piezo_xy_rotating_unstable_root_locus.png" alt="amplified_piezo_xy_rotating_unstable_root_locus.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Root Locus for the two considered rotation speed. For the red curve, the system is unstable.</p>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-05-20 mer. 15:49</p>
</div>
</body>
</html>

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 170 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 170 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 191 KiB

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,433 @@
#+TITLE: Amplified Piezoelectric Stack Actuator
#+SETUPFILE: ./setup/org-setup-file.org
* Introduction :ignore:
The presented model is based on cite:souleille18_concep_activ_mount_space_applic.
The model represents the amplified piezo APA100M from Cedrat-Technologies (Figure [[fig:souleille18_model_piezo]]).
The parameters are shown in the table below.
#+name: fig:souleille18_model_piezo
#+caption: Picture of an APA100M from Cedrat Technologies. Simplified model of a one DoF payload mounted on such isolator
[[file:./figs/souleille18_model_piezo.png]]
#+caption: Parameters used for the model of the APA 100M
| | Value | Meaning |
|-------+-------------------+----------------------------------------------------------------|
| $m$ | $1\,[kg]$ | Payload mass |
| $k_e$ | $4.8\,[N/\mu m]$ | Stiffness used to adjust the pole of the isolator |
| $k_1$ | $0.96\,[N/\mu m]$ | Stiffness of the metallic suspension when the stack is removed |
| $k_a$ | $65\,[N/\mu m]$ | Stiffness of the actuator |
| $c_1$ | $10\,[N/(m/s)]$ | Added viscous damping |
* Simplified Model
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+BEGIN_SRC matlab
simulinkproject('../');
#+END_SRC
#+begin_src matlab
open 'amplified_piezo_model.slx'
#+end_src
** Parameters
#+begin_src matlab
m = 1; % [kg]
ke = 4.8e6; % [N/m]
ce = 5; % [N/(m/s)]
me = 0.001; % [kg]
k1 = 0.96e6; % [N/m]
c1 = 10; % [N/(m/s)]
ka = 65e6; % [N/m]
ca = 5; % [N/(m/s)]
ma = 0.001; % [kg]
h = 0.2; % [m]
#+end_src
IFF Controller:
#+begin_src matlab
Kiff = -8000/s;
#+end_src
** Identification
Identification in open-loop.
#+begin_src matlab
%% Name of the Simulink File
mdl = 'amplified_piezo_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion
io(io_i) = linio([mdl, '/f'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % External Force
io(io_i) = linio([mdl, '/Fs'], 3, 'openoutput'); io_i = io_i + 1; % Force Sensors
io(io_i) = linio([mdl, '/x1'], 1, 'openoutput'); io_i = io_i + 1; % Mass displacement
G = linearize(mdl, io, 0);
G.InputName = {'w', 'f', 'F'};
G.OutputName = {'Fs', 'x1'};
#+end_src
Identification in closed-loop.
#+begin_src matlab
%% Name of the Simulink File
mdl = 'amplified_piezo_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/w'], 1, 'input'); io_i = io_i + 1; % Base Motion
io(io_i) = linio([mdl, '/f'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/F'], 1, 'input'); io_i = io_i + 1; % External Force
io(io_i) = linio([mdl, '/Fs'], 3, 'output'); io_i = io_i + 1; % Force Sensors
io(io_i) = linio([mdl, '/x1'], 1, 'output'); io_i = io_i + 1; % Mass displacement
Giff = linearize(mdl, io, 0);
Giff.InputName = {'w', 'f', 'F'};
Giff.OutputName = {'Fs', 'x1'};
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 3, 1);
title('$\displaystyle \frac{x_1}{w}$')
hold on;
plot(freqs, abs(squeeze(freqresp(G('x1', 'w'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Giff('x1', 'w'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/m]');xlabel('Frequency [Hz]');
ax2 = subplot(2, 3, 2);
title('$\displaystyle \frac{x_1}{f}$')
hold on;
plot(freqs, abs(squeeze(freqresp(G('x1', 'f'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Giff('x1', 'f'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]');xlabel('Frequency [Hz]');
ax3 = subplot(2, 3, 3);
title('$\displaystyle \frac{x_1}{F}$')
hold on;
plot(freqs, abs(squeeze(freqresp(G('x1', 'F'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Giff('x1', 'F'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]');xlabel('Frequency [Hz]');
ax4 = subplot(2, 3, 4);
title('$\displaystyle \frac{F_s}{w}$')
hold on;
plot(freqs, abs(squeeze(freqresp(G('Fs', 'w'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Giff('Fs', 'w'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/m]');xlabel('Frequency [Hz]');
ax5 = subplot(2, 3, 5);
title('$\displaystyle \frac{F_s}{f}$')
hold on;
plot(freqs, abs(squeeze(freqresp(G('Fs', 'f'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Giff('Fs', 'f'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]');xlabel('Frequency [Hz]');
ax6 = subplot(2, 3, 6);
title('$\displaystyle \frac{F_s}{F}$')
hold on;
plot(freqs, abs(squeeze(freqresp(G('Fs', 'F'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Giff('Fs', 'F'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/amplified_piezo_tf_ol_and_cl.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:amplified_piezo_tf_ol_and_cl
#+caption: Matrix of transfer functions from input to output in open loop (blue) and closed loop (red)
#+RESULTS:
[[file:figs/amplified_piezo_tf_ol_and_cl.png]]
** Root Locus
#+begin_src matlab :exports none :post
figure;
gains = logspace(1, 6, 500);
hold on;
plot(real(pole(G('Fs', 'f'))), imag(pole(G('Fs', 'f'))), 'kx');
plot(real(tzero(G('Fs', 'f'))), imag(tzero(G('Fs', 'f'))), 'ko');
for k = 1:length(gains)
cl_poles = pole(feedback(G('Fs', 'f'), -gains(k)/s));
plot(real(cl_poles), imag(cl_poles), 'k.');
end
hold off;
axis square;
xlim([-2500, 100]); ylim([0, 2600]);
xlabel('Real Part'); ylabel('Imaginary Part');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/amplified_piezo_root_locus.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:amplified_piezo_root_locus
#+caption: Root Locus
#+RESULTS:
[[file:figs/amplified_piezo_root_locus.png]]
* Rotating X-Y platform
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+BEGIN_SRC matlab
simulinkproject('../');
#+END_SRC
#+begin_src matlab
open 'amplified_piezo_xy_rotating_stage.slx'
#+end_src
** Parameters
#+begin_src matlab
m = 1; % [kg]
ke = 4.8e6; % [N/m]
ce = 5; % [N/(m/s)]
me = 0.001; % [kg]
k1 = 0.96e6; % [N/m]
c1 = 10; % [N/(m/s)]
ka = 65e6; % [N/m]
ca = 5; % [N/(m/s)]
ma = 0.001; % [kg]
h = 0.2; % [m]
#+end_src
#+begin_src matlab
Kiff = tf(0);
#+end_src
** Identification
Rotating speed in rad/s:
#+begin_src matlab
Ws = 2*pi*[0, 1, 10, 100];
#+end_src
#+begin_src matlab
Gs = {zeros(length(Ws), 1)};
#+end_src
Identification in open-loop.
#+begin_src matlab
%% Name of the Simulink File
mdl = 'amplified_piezo_xy_rotating_stage';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/fx'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/fy'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fs'], 2, 'openoutput'); io_i = io_i + 1;
for i = 1:length(Ws)
ws = Ws(i);
G = linearize(mdl, io, 0);
G.InputName = {'fx', 'fy'};
G.OutputName = {'Fsx', 'Fsy'};
Gs(i) = {G};
end
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
title('$\displaystyle \frac{F_{s,x}}{f_x}$')
hold on;
for i = 1:length(Ws)
plot(freqs, abs(squeeze(freqresp(Gs{i}('Fsx', 'fx'), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/m]');xlabel('Frequency [Hz]');
ax2 = subplot(2, 2, 2);
title('$\displaystyle \frac{F_{s,y}}{f_x}$')
hold on;
for i = 1:length(Ws)
plot(freqs, abs(squeeze(freqresp(Gs{i}('Fsy', 'fx'), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]');xlabel('Frequency [Hz]');
ax3 = subplot(2, 2, 3);
title('$\displaystyle \frac{F_{s,x}}{f_y}$')
hold on;
for i = 1:length(Ws)
plot(freqs, abs(squeeze(freqresp(Gs{i}('Fsx', 'fy'), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]');xlabel('Frequency [Hz]');
ax4 = subplot(2, 2, 4);
title('$\displaystyle \frac{F_{s,y}}{f_y}$')
hold on;
for i = 1:length(Ws)
plot(freqs, abs(squeeze(freqresp(Gs{i}('Fsy', 'fy'), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/m]');xlabel('Frequency [Hz]');
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/amplitifed_piezo_xy_rotation_plant_iff.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:amplitifed_piezo_xy_rotation_plant_iff
#+caption: Transfer function matrix from forces to force sensors for multiple rotation speed
#+RESULTS:
[[file:figs/amplitifed_piezo_xy_rotation_plant_iff.png]]
** Root Locus
#+begin_src matlab :exports none :post
figure;
gains = logspace(1, 6, 500);
hold on;
for i = 1:length(Ws)
set(gca,'ColorOrderIndex',i);
plot(real(pole(Gs{i})), imag(pole(Gs{i})), 'x');
set(gca,'ColorOrderIndex',i);
plot(real(tzero(Gs{i})), imag(tzero(Gs{i})), 'o');
for k = 1:length(gains)
set(gca,'ColorOrderIndex',i);
cl_poles = pole(feedback(Gs{i}, -gains(k)/s*eye(2)));
plot(real(cl_poles), imag(cl_poles), '.');
end
end
hold off;
axis square;
xlim([-2900, 100]); ylim([0, 3000]);
xlabel('Real Part'); ylabel('Imaginary Part');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/amplified_piezo_xy_rotation_root_locus.pdf', 'width', 'tall', 'height', 'wide');
#+end_src
#+name: fig:amplified_piezo_xy_rotation_root_locus
#+caption: Root locus for 3 rotating speed
#+RESULTS:
[[file:figs/amplified_piezo_xy_rotation_root_locus.png]]
** Analysis
The negative stiffness induced by the rotation is equal to $m \omega_0^2$.
Thus, the maximum rotation speed where IFF can be applied is:
\[ \omega_\text{max} = \sqrt{\frac{k_1}{m}} \approx 156\,[Hz] \]
Let's verify that.
#+begin_src matlab
Ws = 2*pi*[140, 160];
#+end_src
#+begin_src matlab :exports none
Gs = {zeros(length(Ws), 1)};
#+end_src
Identification
#+begin_src matlab
%% Name of the Simulink File
mdl = 'amplified_piezo_xy_rotating_stage';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/fx'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/fy'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fs'], 2, 'openoutput'); io_i = io_i + 1;
for i = 1:length(Ws)
ws = Ws(i);
G = linearize(mdl, io, 0);
G.InputName = {'fx', 'fy'};
G.OutputName = {'Fsx', 'Fsy'};
Gs(i) = {G};
end
#+end_src
#+begin_src matlab :exports none
figure;
gains = logspace(1, 6, 500);
hold on;
for i = 1:length(Ws)
set(gca,'ColorOrderIndex',i);
plot(real(pole(Gs{i})), imag(pole(Gs{i})), 'x');
set(gca,'ColorOrderIndex',i);
plot(real(tzero(Gs{i})), imag(tzero(Gs{i})), 'o');
for k = 1:length(gains)
set(gca,'ColorOrderIndex',i);
cl_poles = pole(feedback(Gs{i}, -gains(k)/s*eye(2)));
plot(real(cl_poles), imag(cl_poles), '.');
end
end
hold off;
axis square;
xlim([-100, 50]); ylim([0, 150]);
xlabel('Real Part'); ylabel('Imaginary Part');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/amplified_piezo_xy_rotating_unstable_root_locus.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:amplified_piezo_xy_rotating_unstable_root_locus
#+caption: Root Locus for the two considered rotation speed. For the red curve, the system is unstable.
#+RESULTS:
[[file:figs/amplified_piezo_xy_rotating_unstable_root_locus.png]]