2020-05-05 11:38:27 +02:00
<?xml version="1.0" encoding="utf-8"?>
< !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
< html xmlns = "http://www.w3.org/1999/xhtml" lang = "en" xml:lang = "en" >
< head >
2021-02-20 23:09:27 +01:00
<!-- 2021 - 02 - 20 sam. 23:09 -->
2020-05-05 11:38:27 +02:00
< meta http-equiv = "Content-Type" content = "text/html;charset=utf-8" / >
< title > Centrifugal Forces< / title >
< meta name = "generator" content = "Org mode" / >
< meta name = "author" content = "Dehaeze Thomas" / >
2021-02-20 23:09:27 +01:00
< link rel = "stylesheet" type = "text/css" href = "https://research.tdehaeze.xyz/css/style.css" / >
< script type = "text/javascript" src = "https://research.tdehaeze.xyz/js/script.js" > < / script >
< script >
MathJax = {
svg: {
scale: 1,
fontCache: "global"
},
tex: {
tags: "ams",
multlineWidth: "%MULTLINEWIDTH",
tagSide: "right",
macros: {bm: ["\\boldsymbol{#1}",1],},
tagIndent: ".8em"
}
};
< / script >
< script id = "MathJax-script" async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js">< / script >
2020-05-05 11:38:27 +02:00
< / head >
< body >
< div id = "org-div-home-and-up" >
< a accesskey = "h" href = "./index.html" > UP < / a >
|
2021-02-20 23:09:27 +01:00
< a accesskey = "H" href = "../../index.html" > HOME < / a >
2020-05-05 11:38:27 +02:00
< / div > < div id = "content" >
< h1 class = "title" > Centrifugal Forces< / h1 >
< div id = "table-of-contents" >
< h2 > Table of Contents< / h2 >
< div id = "text-table-of-contents" >
< ul >
2021-02-20 23:09:27 +01:00
< li > < a href = "#org5199302" > 1. Parameters< / a > < / li >
< li > < a href = "#orga2ea10d" > 2. Centrifugal forces for light and heavy sample< / a > < / li >
< li > < a href = "#orgf375b50" > 3. Centrifugal forces as a function of the rotation speed< / a > < / li >
< li > < a href = "#orge7fb13d" > 4. Maximum rotation speed as a function of the mass< / a > < / li >
2020-05-05 11:38:27 +02:00
< / ul >
< / div >
< / div >
< p >
In this document, we wish to estimate the centrifugal forces due to the spindle’ s rotation when the sample’ s center of mass is off-centered with respect to the rotation axis.
< / p >
< p >
This is the case then the sample is moved by the micro-hexapod.
< / p >
< p >
2021-02-20 23:09:27 +01:00
The centrifugal forces are defined as represented Figure < a href = "#org91ed599" > 1< / a > where:
2020-05-05 11:38:27 +02:00
< / p >
< ul class = "org-ul" >
< li > \(M\) is the total mass of the rotating elements in \([kg]\)< / li >
< li > \(\omega\) is the rotation speed in \([rad/s]\)< / li >
< li > \(r\) is the distance to the rotation axis in \([m]\)< / li >
< / ul >
2021-02-20 23:09:27 +01:00
< div id = "org91ed599" class = "figure" >
2020-05-05 11:38:27 +02:00
< p > < img src = "./figs/centrifugal.png" alt = "centrifugal.png" / >
< / p >
< p > < span class = "figure-number" > Figure 1: < / span > Centrifugal forces< / p >
< / div >
2021-02-20 23:09:27 +01:00
< div id = "outline-container-org5199302" class = "outline-2" >
< h2 id = "org5199302" > < span class = "section-number-2" > 1< / span > Parameters< / h2 >
2020-05-05 11:38:27 +02:00
< div class = "outline-text-2" id = "text-1" >
< p >
We define some parameters for the computation.
< / p >
< p >
The mass of the sample can vary from \(1\,kg\) to \(50\,kg\) to which is added to mass of the metrology reflector and the nano-hexapod’ s top platform (here set to \(15\,kg\)).
< / p >
< div class = "org-src-container" >
2021-02-20 23:09:27 +01:00
< pre class = "src src-matlab" > M_light = 16; < span class = "org-comment" > % mass of excentred parts mooving [kg]< / span >
M_heavy = 65; < span class = "org-comment" > % [kg]< / span >
2020-05-05 11:38:27 +02:00
< / pre >
< / div >
< p >
For the light mass, the rotation speed is 60rpm whereas for the heavy mass, it is equal to 1rpm.
< / p >
< div class = "org-src-container" >
2021-02-20 23:09:27 +01:00
< pre class = "src src-matlab" > w_light = 2< span class = "org-type" > *< / span > < span class = "org-constant" > pi< / span > ; < span class = "org-comment" > % rotational speed [rad/s]< / span >
w_heavy = 2< span class = "org-type" > *< / span > < span class = "org-constant" > pi< / span > < span class = "org-type" > /< / span > 60; < span class = "org-comment" > % rotational speed [rad/s]< / span >
2020-05-05 11:38:27 +02:00
< / pre >
< / div >
< p >
Finally, we consider a mass eccentricity of \(10\,mm\).
< / p >
< div class = "org-src-container" >
2021-02-20 23:09:27 +01:00
< pre class = "src src-matlab" > R = 0.01; < span class = "org-comment" > % Excentricity [m]< / span >
2020-05-05 11:38:27 +02:00
< / pre >
< / div >
< / div >
< / div >
2021-02-20 23:09:27 +01:00
< div id = "outline-container-orga2ea10d" class = "outline-2" >
< h2 id = "orga2ea10d" > < span class = "section-number-2" > 2< / span > Centrifugal forces for light and heavy sample< / h2 >
2020-05-05 11:38:27 +02:00
< div class = "outline-text-2" id = "text-2" >
< p >
From the formula \(F_c = m \omega^2 r\), we obtain the values shown below.
< / p >
< table border = "2" cellspacing = "0" cellpadding = "6" rules = "groups" frame = "hsides" >
< colgroup >
< col class = "org-left" / >
< col class = "org-right" / >
< / colgroup >
< thead >
< tr >
< th scope = "col" class = "org-left" >   < / th >
< th scope = "col" class = "org-right" > Force [N]< / th >
< / tr >
< / thead >
< tbody >
< tr >
< td class = "org-left" > light< / td >
2020-05-20 16:04:05 +02:00
< td class = "org-right" > 6.32< / td >
2020-05-05 11:38:27 +02:00
< / tr >
< tr >
< td class = "org-left" > heavy< / td >
2020-05-20 16:04:05 +02:00
< td class = "org-right" > 0.01< / td >
2020-05-05 11:38:27 +02:00
< / tr >
< / tbody >
< / table >
< / div >
< / div >
2021-02-20 23:09:27 +01:00
< div id = "outline-container-orgf375b50" class = "outline-2" >
< h2 id = "orgf375b50" > < span class = "section-number-2" > 3< / span > Centrifugal forces as a function of the rotation speed< / h2 >
2020-05-05 11:38:27 +02:00
< div class = "outline-text-2" id = "text-3" >
< p >
2021-02-20 23:09:27 +01:00
The centrifugal forces as a function of the rotation speed for light and heavy sample is shown on Figure < a href = "#org87b7644" > 2< / a > .
2020-05-05 11:38:27 +02:00
< / p >
2021-02-20 23:09:27 +01:00
< div id = "org87b7644" class = "figure" >
2020-05-05 11:38:27 +02:00
< p > < img src = "figs/centrifugal_forces_rpm.png" alt = "centrifugal_forces_rpm.png" / >
< / p >
< p > < span class = "figure-number" > Figure 2: < / span > Centrifugal forces function of the rotation speed< / p >
< / div >
< / div >
< / div >
2021-02-20 23:09:27 +01:00
< div id = "outline-container-orge7fb13d" class = "outline-2" >
< h2 id = "orge7fb13d" > < span class = "section-number-2" > 4< / span > Maximum rotation speed as a function of the mass< / h2 >
2020-05-05 11:38:27 +02:00
< div class = "outline-text-2" id = "text-4" >
< p >
2021-02-20 23:09:27 +01:00
We plot the maximum rotation speed as a function of the mass for different maximum force that we can use to counteract the centrifugal forces (Figure < a href = "#org8fe6a07" > 3< / a > ).
2020-05-05 11:38:27 +02:00
< / p >
< p >
2021-02-20 23:09:27 +01:00
From a specified maximum allowed centrifugal force (here set to \(10\,[N]\)), the maximum rotation speed as a function of the sample’ s mass is shown in Figure < a href = "#org8fe6a07" > 3< / a > .
2020-05-05 11:38:27 +02:00
< / p >
< div class = "org-src-container" >
2021-02-20 23:09:27 +01:00
< pre class = "src src-matlab" > F_max = 10; < span class = "org-comment" > % Maximum accepted centrifugal forces [N]< / span >
2020-05-05 11:38:27 +02:00
2021-02-20 23:09:27 +01:00
R = 0.01;
2020-05-05 11:38:27 +02:00
2021-02-20 23:09:27 +01:00
M_sample = 0< span class = "org-type" > :< / span > 1< span class = "org-type" > :< / span > 100;
M_reflector = 15;
2020-05-05 11:38:27 +02:00
< / pre >
< / div >
2021-02-20 23:09:27 +01:00
< div id = "org8fe6a07" class = "figure" >
2020-05-05 11:38:27 +02:00
< p > < img src = "figs/max_force_rpm.png" alt = "max_force_rpm.png" / >
< / p >
< p > < span class = "figure-number" > Figure 3: < / span > Maximum rotation speed as a function of the sample mass for an allowed centrifugal force of \(100\,[N]\)< / p >
< / div >
< / div >
< / div >
< / div >
< div id = "postamble" class = "status" >
< p class = "author" > Author: Dehaeze Thomas< / p >
2021-02-20 23:09:27 +01:00
< p class = "date" > Created: 2021-02-20 sam. 23:09< / p >
2020-05-05 11:38:27 +02:00
< / div >
< / body >
< / html >