197 lines
8.0 KiB
Mathematica
197 lines
8.0 KiB
Mathematica
|
function [micro_hexapod] = initializeMicroHexapod(args)
|
||
|
arguments
|
||
|
args.rigid logical {mustBeNumericOrLogical} = false
|
||
|
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||
|
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||
|
end
|
||
|
|
||
|
%% Stewart Object
|
||
|
micro_hexapod = struct();
|
||
|
micro_hexapod.h = 350; % Total height of the platform [mm]
|
||
|
micro_hexapod.jacobian = 270; % Distance from the top of the mobile platform to the Jacobian point [mm]
|
||
|
|
||
|
%% Bottom Plate - Mechanical Design
|
||
|
BP = struct();
|
||
|
|
||
|
BP.rad.int = 110; % Internal Radius [mm]
|
||
|
BP.rad.ext = 207.5; % External Radius [mm]
|
||
|
BP.thickness = 26; % Thickness [mm]
|
||
|
BP.leg.rad = 175.5; % Radius where the legs articulations are positionned [mm]
|
||
|
BP.leg.ang = 9.5; % Angle Offset [deg]
|
||
|
BP.density = 8000; % Density of the material [kg/m^3]
|
||
|
BP.color = [0.6 0.6 0.6]; % Color [rgb]
|
||
|
BP.shape = [BP.rad.int BP.thickness; BP.rad.int 0; BP.rad.ext 0; BP.rad.ext BP.thickness];
|
||
|
|
||
|
%% Top Plate - Mechanical Design
|
||
|
TP = struct();
|
||
|
|
||
|
TP.rad.int = 82; % Internal Radius [mm]
|
||
|
TP.rad.ext = 150; % Internal Radius [mm]
|
||
|
TP.thickness = 26; % Thickness [mm]
|
||
|
TP.leg.rad = 118; % Radius where the legs articulations are positionned [mm]
|
||
|
TP.leg.ang = 12.1; % Angle Offset [deg]
|
||
|
TP.density = 8000; % Density of the material [kg/m^3]
|
||
|
TP.color = [0.6 0.6 0.6]; % Color [rgb]
|
||
|
TP.shape = [TP.rad.int TP.thickness; TP.rad.int 0; TP.rad.ext 0; TP.rad.ext TP.thickness];
|
||
|
|
||
|
%% Struts
|
||
|
Leg = struct();
|
||
|
|
||
|
Leg.stroke = 10e-3; % Maximum Stroke of each leg [m]
|
||
|
if args.rigid
|
||
|
Leg.k.ax = 1e12; % Stiffness of each leg [N/m]
|
||
|
else
|
||
|
Leg.k.ax = 2e7; % Stiffness of each leg [N/m]
|
||
|
end
|
||
|
Leg.ksi.ax = 0.1; % Modal damping ksi = 1/2*c/sqrt(km) []
|
||
|
Leg.rad.bottom = 25; % Radius of the cylinder of the bottom part [mm]
|
||
|
Leg.rad.top = 17; % Radius of the cylinder of the top part [mm]
|
||
|
Leg.density = 8000; % Density of the material [kg/m^3]
|
||
|
Leg.color.bottom = [0.5 0.5 0.5]; % Color [rgb]
|
||
|
Leg.color.top = [0.5 0.5 0.5]; % Color [rgb]
|
||
|
|
||
|
Leg.sphere.bottom = Leg.rad.bottom; % Size of the sphere at the end of the leg [mm]
|
||
|
Leg.sphere.top = Leg.rad.top; % Size of the sphere at the end of the leg [mm]
|
||
|
Leg.m = TP.density*((pi*(TP.rad.ext/1000)^2)*(TP.thickness/1000)-(pi*(TP.rad.int/1000^2))*(TP.thickness/1000))/6; % TODO [kg]
|
||
|
Leg = updateDamping(Leg);
|
||
|
|
||
|
|
||
|
%% Sphere
|
||
|
SP = struct();
|
||
|
|
||
|
SP.height.bottom = 27; % [mm]
|
||
|
SP.height.top = 27; % [mm]
|
||
|
SP.density.bottom = 8000; % [kg/m^3]
|
||
|
SP.density.top = 8000; % [kg/m^3]
|
||
|
SP.color.bottom = [0.6 0.6 0.6]; % [rgb]
|
||
|
SP.color.top = [0.6 0.6 0.6]; % [rgb]
|
||
|
SP.k.ax = 0; % [N*m/deg]
|
||
|
SP.ksi.ax = 10;
|
||
|
|
||
|
SP.thickness.bottom = SP.height.bottom-Leg.sphere.bottom; % [mm]
|
||
|
SP.thickness.top = SP.height.top-Leg.sphere.top; % [mm]
|
||
|
SP.rad.bottom = Leg.sphere.bottom; % [mm]
|
||
|
SP.rad.top = Leg.sphere.top; % [mm]
|
||
|
SP.m = SP.density.bottom*2*pi*((SP.rad.bottom*1e-3)^2)*(SP.height.bottom*1e-3); % TODO [kg]
|
||
|
|
||
|
SP = updateDamping(SP);
|
||
|
|
||
|
%%
|
||
|
Leg.support.bottom = [0 SP.thickness.bottom; 0 0; SP.rad.bottom 0; SP.rad.bottom SP.height.bottom];
|
||
|
Leg.support.top = [0 SP.thickness.top; 0 0; SP.rad.top 0; SP.rad.top SP.height.top];
|
||
|
|
||
|
%%
|
||
|
micro_hexapod.BP = BP;
|
||
|
micro_hexapod.TP = TP;
|
||
|
micro_hexapod.Leg = Leg;
|
||
|
micro_hexapod.SP = SP;
|
||
|
|
||
|
%%
|
||
|
micro_hexapod = initializeParameters(micro_hexapod);
|
||
|
|
||
|
%% Setup equilibrium position of each leg
|
||
|
micro_hexapod.L0 = inverseKinematicsHexapod(micro_hexapod, args.AP, args.ARB);
|
||
|
|
||
|
%% Save
|
||
|
save('./mat/stages.mat', 'micro_hexapod', '-append');
|
||
|
|
||
|
%%
|
||
|
function [element] = updateDamping(element)
|
||
|
field = fieldnames(element.k);
|
||
|
for i = 1:length(field)
|
||
|
element.c.(field{i}) = 2*element.ksi.(field{i})*sqrt(element.k.(field{i})*element.m);
|
||
|
end
|
||
|
end
|
||
|
|
||
|
%%
|
||
|
function [stewart] = initializeParameters(stewart)
|
||
|
%% Connection points on base and top plate w.r.t. World frame at the center of the base plate
|
||
|
stewart.pos_base = zeros(6, 3);
|
||
|
stewart.pos_top = zeros(6, 3);
|
||
|
|
||
|
alpha_b = stewart.BP.leg.ang*pi/180; % angle de décalage par rapport à 120 deg (pour positionner les supports bases)
|
||
|
alpha_t = stewart.TP.leg.ang*pi/180; % +- offset angle from 120 degree spacing on top
|
||
|
|
||
|
height = (stewart.h-stewart.BP.thickness-stewart.TP.thickness-stewart.Leg.sphere.bottom-stewart.Leg.sphere.top-stewart.SP.thickness.bottom-stewart.SP.thickness.top)*0.001; % TODO
|
||
|
|
||
|
radius_b = stewart.BP.leg.rad*0.001; % rayon emplacement support base
|
||
|
radius_t = stewart.TP.leg.rad*0.001; % top radius in meters
|
||
|
|
||
|
for i = 1:3
|
||
|
% base points
|
||
|
angle_m_b = (2*pi/3)* (i-1) - alpha_b;
|
||
|
angle_p_b = (2*pi/3)* (i-1) + alpha_b;
|
||
|
stewart.pos_base(2*i-1,:) = [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0];
|
||
|
stewart.pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0];
|
||
|
|
||
|
% top points
|
||
|
% Top points are 60 degrees offset
|
||
|
angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6;
|
||
|
angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6;
|
||
|
stewart.pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height];
|
||
|
stewart.pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height];
|
||
|
end
|
||
|
|
||
|
% permute pos_top points so that legs are end points of base and top points
|
||
|
stewart.pos_top = [stewart.pos_top(6,:); stewart.pos_top(1:5,:)]; %6th point on top connects to 1st on bottom
|
||
|
stewart.pos_top_tranform = stewart.pos_top - height*[zeros(6, 2),ones(6, 1)];
|
||
|
|
||
|
%% leg vectors
|
||
|
legs = stewart.pos_top - stewart.pos_base;
|
||
|
leg_length = zeros(6, 1);
|
||
|
leg_vectors = zeros(6, 3);
|
||
|
for i = 1:6
|
||
|
leg_length(i) = norm(legs(i,:));
|
||
|
leg_vectors(i,:) = legs(i,:) / leg_length(i);
|
||
|
end
|
||
|
|
||
|
stewart.Leg.lenght = 1000*leg_length(1)/1.5;
|
||
|
stewart.Leg.shape.bot = [0 0; ...
|
||
|
stewart.Leg.rad.bottom 0; ...
|
||
|
stewart.Leg.rad.bottom stewart.Leg.lenght; ...
|
||
|
stewart.Leg.rad.top stewart.Leg.lenght; ...
|
||
|
stewart.Leg.rad.top 0.2*stewart.Leg.lenght; ...
|
||
|
0 0.2*stewart.Leg.lenght];
|
||
|
|
||
|
%% Calculate revolute and cylindrical axes
|
||
|
rev1 = zeros(6, 3);
|
||
|
rev2 = zeros(6, 3);
|
||
|
cyl1 = zeros(6, 3);
|
||
|
for i = 1:6
|
||
|
rev1(i,:) = cross(leg_vectors(i,:), [0 0 1]);
|
||
|
rev1(i,:) = rev1(i,:) / norm(rev1(i,:));
|
||
|
|
||
|
rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:));
|
||
|
rev2(i,:) = rev2(i,:) / norm(rev2(i,:));
|
||
|
|
||
|
cyl1(i,:) = leg_vectors(i,:);
|
||
|
end
|
||
|
|
||
|
|
||
|
%% Coordinate systems
|
||
|
stewart.lower_leg = struct('rotation', eye(3));
|
||
|
stewart.upper_leg = struct('rotation', eye(3));
|
||
|
|
||
|
for i = 1:6
|
||
|
stewart.lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
|
||
|
stewart.upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
|
||
|
end
|
||
|
|
||
|
%% Position Matrix
|
||
|
stewart.M_pos_base = stewart.pos_base + (height+(stewart.TP.thickness+stewart.Leg.sphere.top+stewart.SP.thickness.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)];
|
||
|
|
||
|
%% Compute Jacobian Matrix
|
||
|
aa = stewart.pos_top_tranform + (stewart.jacobian - stewart.TP.thickness - stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
|
||
|
stewart.J = getJacobianMatrix(leg_vectors', aa');
|
||
|
end
|
||
|
|
||
|
%%
|
||
|
function J = getJacobianMatrix(RM, M_pos_base)
|
||
|
% RM: [3x6] unit vector of each leg in the fixed frame
|
||
|
% M_pos_base: [3x6] vector of the leg connection at the top platform location in the fixed frame
|
||
|
J = zeros(6);
|
||
|
J(:, 1:3) = RM';
|
||
|
J(:, 4:6) = cross(M_pos_base, RM)';
|
||
|
end
|
||
|
end
|