2020-04-01 17:19:55 +02:00
#+TITLE : Determination of the optimal nano-hexapod's stiffness
:DRAWER:
#+STARTUP : overview
#+LANGUAGE : en
#+EMAIL : dehaeze.thomas@gmail.com
#+AUTHOR : Dehaeze Thomas
#+HTML_HEAD : <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD : <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD : <link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>
#+HTML_HEAD : <script type="text/javascript" src="./js/jquery.min.js"></script>
#+HTML_HEAD : <script type="text/javascript" src="./js/bootstrap.min.js"></script>
#+HTML_HEAD : <script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD : <script type="text/javascript" src="./js/readtheorg.js"></script>
#+HTML_MATHJAX : align: center tagside: right font: TeX
#+PROPERTY : header-args:matlab :session *MATLAB*
#+PROPERTY : header-args:matlab+ :comments org
#+PROPERTY : header-args:matlab+ :results none
#+PROPERTY : header-args:matlab+ :exports both
#+PROPERTY : header-args:matlab+ :eval no-export
#+PROPERTY : header-args:matlab+ :output-dir figs
2020-04-02 21:38:31 +02:00
#+PROPERTY : header-args:matlab+ :tangle ../matlab/optimal_stiffness.m
2020-04-01 17:19:55 +02:00
#+PROPERTY : header-args:matlab+ :mkdirp yes
#+PROPERTY : header-args:shell :eval no-export
#+PROPERTY : header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/org/}{config.tex}")
#+PROPERTY : header-args:latex+ :imagemagick t :fit yes
#+PROPERTY : header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY : header-args:latex+ :imoutoptions -quality 100
#+PROPERTY : header-args:latex+ :results raw replace :buffer no
#+PROPERTY : header-args:latex+ :eval no-export
#+PROPERTY : header-args:latex+ :exports both
#+PROPERTY : header-args:latex+ :mkdirp yes
#+PROPERTY : header-args:latex+ :output-dir figs
:END:
* Introduction :ignore:
As shown before, many parameters other than the nano-hexapod itself do influence the plant dynamics:
- The micro-station compliance (studied [[file:uncertainty_support.org ][here ]])
- The payload mass and dynamical properties (studied [[file:uncertainty_payload.org ][here ]] and [[file:uncertainty_experiment.org ][here ]])
- The experimental conditions, mainly the spindle rotation speed (studied [[file:uncertainty_experiment.org ][here ]])
As seen before, the stiffness of the nano-hexapod greatly influence the effect of such parameters.
We wish here to see if we can determine an optimal stiffness of the nano-hexapod such that:
- Section [[sec:spindle_rotation_speed ]]: the change of its dynamics due to the spindle rotation speed is acceptable
- Section [[sec:micro_station_compliance ]]: the support compliance dynamics is not much present in the nano-hexapod dynamics
- Section [[sec:payload_impedance ]]: the change of payload impedance has acceptable effect on the plant dynamics
2020-04-02 15:29:38 +02:00
The overall goal is to design a nano-hexapod that will allow the highest possible control bandwidth.
2020-04-01 17:19:55 +02:00
* Spindle Rotation Speed
<<sec:spindle_rotation_speed >>
** Introduction :ignore:
2020-04-02 15:29:38 +02:00
2020-04-01 17:19:55 +02:00
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
2020-04-02 15:29:38 +02:00
<<matlab-dir >>
2020-04-01 17:19:55 +02:00
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
2020-04-02 15:29:38 +02:00
<<matlab-init >>
2020-04-01 17:19:55 +02:00
#+end_src
#+begin_src matlab :tangle no
simulinkproject('../');
#+end_src
#+begin_src matlab
2020-04-02 21:38:31 +02:00
load('mat/conf_simulink.mat');
2020-04-01 17:19:55 +02:00
open('nass_model.slx')
#+end_src
2020-04-02 15:29:38 +02:00
** Initialization
We initialize all the stages with the default parameters.
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
#+end_src
2020-04-02 21:38:31 +02:00
The worst case scenario is a rotation speed of 60rpm with a payload mass of 10Kg.
2020-04-02 15:29:38 +02:00
#+begin_src matlab
initializeSample('mass', 10);
#+end_src
We don't include gravity nor disturbances in this model as it adds complexity to the simulations and does not alter the obtained dynamics.
#+begin_src matlab
2020-04-02 21:38:31 +02:00
initializeSimscapeConfiguration('gravity', true);
2020-04-02 15:29:38 +02:00
initializeDisturbances('enable', false);
initializeLoggingConfiguration('log', 'none');
2020-04-03 14:10:14 +02:00
initializeController();
2020-04-02 15:29:38 +02:00
#+end_src
#+begin_src matlab :exports none
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'En'); io_i = io_i + 1;
#+end_src
** Identification when rotating at maximum speed
#+begin_src matlab
2020-04-03 14:10:14 +02:00
Rz_rpm = linspace(0, 60, 6);
2020-04-02 15:29:38 +02:00
#+end_src
#+begin_src matlab
2020-04-03 14:10:14 +02:00
Ks = logspace(3,9,7); % [N/m]
2020-04-02 15:29:38 +02:00
#+end_src
2020-04-02 21:38:31 +02:00
#+begin_src matlab :exports none
2020-04-03 14:10:14 +02:00
Gk_wz_iff = {zeros(length(Ks), length(Rz_rpm))};
Gk_wz_dvf = {zeros(length(Ks), length(Rz_rpm))};
Gk_wz_err = {zeros(length(Ks), length(Rz_rpm))};
2020-04-02 15:29:38 +02:00
#+end_src
2020-04-02 21:38:31 +02:00
#+begin_src matlab :exports none
2020-04-02 15:29:38 +02:00
for i = 1:length(Ks)
2020-04-03 14:10:14 +02:00
for j = 1:length(Rz_rpm)
initializeReferences('Rz_type', 'rotating-not-filtered', ...
'Rz_period', 60/Rz_rpm(j));
initializeNanoHexapod('k', Ks(i));
2020-04-02 15:29:38 +02:00
2020-04-03 14:10:14 +02:00
%% Run the linearization
G = linearize(mdl, io);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
2020-04-02 15:29:38 +02:00
2020-04-03 14:10:14 +02:00
Gk_wz_iff(i,j) = {minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Gk_wz_dvf(i,j) = {minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
2020-04-02 15:29:38 +02:00
2020-04-03 14:10:14 +02:00
Jinvt = tf(inv(nano_hexapod.J)');
Jinvt.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Jinvt.OutputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
Gk_wz_err(i,j) = {-minreal(G({'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))*Jinvt};
end
2020-04-02 15:29:38 +02:00
end
#+end_src
2020-04-02 21:38:31 +02:00
#+begin_src matlab :exports none
2020-04-03 14:10:14 +02:00
save('mat/optimal_stiffness_Gk_wz.mat', 'Ks', 'Rz_rpm', ...
2020-04-02 15:29:38 +02:00
'Gk_wz_iff', 'Gk_wz_dvf', 'Gk_wz_err');
#+end_src
2020-04-03 14:10:14 +02:00
** Change of dynamics
2020-04-02 15:29:38 +02:00
#+begin_src matlab :exports none
load('mat/optimal_stiffness_Gk_wz.mat');
#+end_src
2020-04-03 14:10:14 +02:00
Change of dynamics for IFF
2020-04-02 15:29:38 +02:00
#+begin_src matlab :exports none
2020-04-03 14:10:14 +02:00
freqs = logspace(-2, 3, 1000);
2020-04-02 15:29:38 +02:00
figure;
ax1 = subplot(2, 1, 1);
hold on;
2020-04-03 14:10:14 +02:00
for i = 1:length(Ks)
for j = 1:length(Rz_rpm)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_wz_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
end
2020-04-02 15:29:38 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
2020-04-03 14:10:14 +02:00
for i = 1:length(Ks)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gk_wz_iff{i,1}('Fnlm1', 'Fnl1'), freqs, 'Hz')))), '-', ...
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
for j = 2:length(Rz_rpm)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gk_wz_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz')))), '-', ...
'HandleVisibility', 'off');
end
2020-04-02 15:29:38 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-03 14:10:14 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
2020-04-02 15:29:38 +02:00
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
2020-04-03 14:10:14 +02:00
Change of dynamics for DVF
2020-04-02 15:29:38 +02:00
#+begin_src matlab :exports none
2020-04-03 14:10:14 +02:00
freqs = logspace(-2, 3, 1000);
2020-04-02 15:29:38 +02:00
figure;
ax1 = subplot(2, 1, 1);
hold on;
2020-04-03 14:10:14 +02:00
for i = 1:length(Ks)
for j = 1:length(Rz_rpm)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_wz_dvf{i,j}('Dnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
end
2020-04-02 15:29:38 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
2020-04-03 14:10:14 +02:00
for i = 1:length(Ks)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gk_wz_dvf{i,1}('Dnlm1', 'Fnl1'), freqs, 'Hz')))), '-', ...
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
for j = 2:length(Rz_rpm)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gk_wz_dvf{i,j}('Dnlm1', 'Fnl1'), freqs, 'Hz')))), '-', ...
'HandleVisibility', 'off');
end
2020-04-02 15:29:38 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-03 14:10:14 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
2020-04-02 15:29:38 +02:00
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
2020-04-03 14:10:14 +02:00
Change of dynamics from $F_x$ to $D_x$.
2020-04-02 15:29:38 +02:00
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
2020-04-03 14:10:14 +02:00
for i = 1:length(Ks)
for j = 1:length(Rz_rpm)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_wz_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-');
end
2020-04-02 15:29:38 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
2020-04-03 14:10:14 +02:00
for i = 1:length(Ks)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gk_wz_err{i,1}('Ex', 'Fx'), freqs, 'Hz')))), '-', ...
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
for j = 2:length(Rz_rpm)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gk_wz_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))), '-', ...
'HandleVisibility', 'off');
end
2020-04-02 15:29:38 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-03 14:10:14 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
2020-04-02 15:29:38 +02:00
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
2020-04-03 14:10:14 +02:00
Change of coupling from $F_x$ to $D_y$ with the rotating speed.
2020-04-02 15:29:38 +02:00
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
hold on;
2020-04-03 14:10:14 +02:00
for i = 1:length(Ks)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_wz_err{i,1}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
for j = 1:length(Rz_rpm)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_wz_err{i,j}('Ey', 'Fx'), freqs, 'Hz'))), '--', ...
'HandleVisibility', 'off');
end
2020-04-02 15:29:38 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
xlim([freqs(1), freqs(end)]);
legend('location', 'northeast');
#+end_src
2020-04-01 17:19:55 +02:00
** Conclusion :ignore:
2020-04-02 15:29:38 +02:00
#+begin_important
The leg stiffness should be at higher than $k_i = 10^4\ [N/m]$ such that the main resonance frequency does not shift too much when rotating.
For the coupling, it is more difficult to conclude about the minimum required leg stiffness.
#+end_important
#+begin_notes
Note that we can use very soft nano-hexapod if we limit the spindle rotating speed.
#+end_notes
2020-04-01 17:19:55 +02:00
* Micro-Station Compliance Effect
<<sec:micro_station_compliance >>
** Introduction :ignore:
- take the 6dof compliance of the micro-station
- simple model + uncertainty
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
2020-04-02 21:38:31 +02:00
<<matlab-dir >>
2020-04-01 17:19:55 +02:00
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
2020-04-02 21:38:31 +02:00
<<matlab-init >>
2020-04-01 17:19:55 +02:00
#+end_src
#+begin_src matlab :tangle no
simulinkproject('../');
#+end_src
#+begin_src matlab
2020-04-02 21:38:31 +02:00
load('mat/conf_simulink.mat');
2020-04-01 17:19:55 +02:00
open('nass_model.slx')
#+end_src
2020-04-02 21:38:31 +02:00
** Identification of the micro-station compliance
We initialize all the stages with the default parameters.
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod('type', 'compliance');
#+end_src
We put nothing on top of the micro-hexapod.
#+begin_src matlab
initializeAxisc('type', 'none');
initializeMirror('type', 'none');
initializeNanoHexapod('type', 'none');
initializeSample('type', 'none');
#+end_src
#+begin_src matlab :exports none
initializeReferences();
initializeDisturbances();
initializeController();
initializeSimscapeConfiguration();
initializeLoggingConfiguration();
#+end_src
And we identify the dynamics from forces/torques applied on the micro-hexapod top platform to the motion of the micro-hexapod top platform at the same point.
#+begin_src matlab :exports noone
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Compliance/Fm'], 1, 'openinput'); io_i = io_i + 1; % Direct Forces/Torques applied on the micro-hexapod top platform
io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Compliance/Dm'], 1, 'output'); io_i = io_i + 1; % Absolute displacement of the top platform
%% Run the linearization
Gm = linearize(mdl, io, 0);
Gm.InputName = {'Fmx', 'Fmy', 'Fmz', 'Mmx', 'Mmy', 'Mmz'};
Gm.OutputName = {'Dx', 'Dy', 'Dz', 'Drx', 'Dry', 'Drz'};
#+end_src
#+begin_src matlab :exports none
labels = {'$D_x/F_ {x}$', '$D_y/F_ {y}$', '$D_z/F_ {z}$', '$R_{x}/M_ {x}$', '$R_{y}/M_ {y}$', '$R_{R}/M_ {z}$'};
freqs = logspace(1, 3, 1000);
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(Gm(1, 1), freqs, 'Hz'))), 'k-', 'DisplayName', labels{1});
for i = 2:6
plot(freqs, abs(squeeze(freqresp(Gm(1, i), freqs, 'Hz'))), 'DisplayName', labels{i});
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]');
ylabel('Compliance');
legend('location', 'northwest');
#+end_src
2020-04-03 14:10:14 +02:00
#+header : :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/opt_stiff_micro_station_compliance.pdf" :var figsize= "full-tall" :post pdf2svg(file=*this*, ext= "png")
<<plt-matlab >>
#+end_src
#+name : fig:opt_stiff_micro_station_compliance
#+caption : Identified Compliance of the Micro-Station ([[./figs/opt_stiff_micro_station_compliance.png][png]], [[./figs/opt_stiff_micro_station_compliance.pdf][pdf]])
[[file:figs/opt_stiff_micro_station_compliance.png ]]
2020-04-02 21:38:31 +02:00
** Identification of the dynamics with a rigid micro-station
#+begin_src matlab :exports none
initializeReferences();
initializeDisturbances();
initializeController();
initializeSimscapeConfiguration();
initializeLoggingConfiguration();
initializeSimscapeConfiguration('gravity', false);
#+end_src
#+begin_src matlab :exports none
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'En'); io_i = io_i + 1;
#+end_src
#+begin_src matlab
Ks = logspace(3,9,7); % [N/m]
#+end_src
#+begin_src matlab
2020-04-03 14:10:14 +02:00
initializeSample('type', 'rigid', 'mass', 10);
2020-04-02 21:38:31 +02:00
#+end_src
#+begin_src matlab
initializeGround('type', 'rigid');
initializeGranite('type', 'rigid');
initializeTy('type', 'rigid');
initializeRy('type', 'rigid');
initializeRz('type', 'rigid');
initializeMicroHexapod('type', 'rigid');
initializeAxisc('type', 'rigid');
initializeMirror('type', 'rigid');
#+end_src
#+begin_src matlab :exports none
Gmr_iff = {zeros(length(Ks))};
Gmr_dvf = {zeros(length(Ks))};
Gmr_err = {zeros(length(Ks))};
#+end_src
#+begin_src matlab :exports none
for i = 1:length(Ks)
initializeNanoHexapod('k', Ks(i));
G = linearize(mdl, io);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gmr_iff(i) = {minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Gmr_dvf(i) = {minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Jinvt = tf(inv(nano_hexapod.J)');
Jinvt.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Jinvt.OutputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
Gmr_err(i) = {-minreal(G({'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))*Jinvt};
end
#+end_src
** Identification of the dynamics with a flexible micro-station
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
#+end_src
#+begin_src matlab :exports none
Gmf_iff = {zeros(length(Ks))};
Gmf_dvf = {zeros(length(Ks))};
Gmf_err = {zeros(length(Ks))};
#+end_src
#+begin_src matlab :exports none
for i = 1:length(Ks)
initializeNanoHexapod('k', Ks(i));
G = linearize(mdl, io);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gmf_iff(i) = {minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Gmf_dvf(i) = {minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Jinvt = tf(inv(nano_hexapod.J)');
Jinvt.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Jinvt.OutputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
Gmf_err(i) = {-minreal(G({'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))*Jinvt};
end
#+end_src
#+begin_src matlab :exports none
save('mat/optimal_stiffness_micro_station_compliance.mat', 'Ks', ...
'Gmr_iff', 'Gmr_dvf', 'Gmr_err', ...
'Gmf_iff', 'Gmf_dvf', 'Gmf_err');
#+end_src
** Obtained Dynamics
#+begin_src matlab :exports none
load('mat/optimal_stiffness_micro_station_compliance.mat');
#+end_src
2020-04-03 14:10:14 +02:00
The IFF plant only changes when the stiffness is $10^7 [N/m]$ or higher.
2020-04-02 21:38:31 +02:00
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gmr_iff{i}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gmf_iff{i}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
set(gca,'ColorOrderIndex',i);
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gmr_iff{i}('Fnlm1', 'Fnl1'), freqs, 'Hz')))), '-', ...
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
2020-04-02 21:38:31 +02:00
set(gca,'ColorOrderIndex',i);
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gmf_iff{i}('Fnlm1', 'Fnl1'), freqs, 'Hz')))), '--', ...
'HandleVisibility', 'off');
2020-04-02 21:38:31 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-03 14:10:14 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'northwest');
2020-04-02 21:38:31 +02:00
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
DVF plant
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gmr_dvf{i}('Dnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gmf_dvf{i}('Dnlm1', 'Fnl1'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
set(gca,'ColorOrderIndex',i);
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gmr_dvf{i}('Dnlm1', 'Fnl1'), freqs, 'Hz')))), '-');
2020-04-02 21:38:31 +02:00
set(gca,'ColorOrderIndex',i);
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gmf_dvf{i}('Dnlm1', 'Fnl1'), freqs, 'Hz')))), '--');
2020-04-02 21:38:31 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-03 14:10:14 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
2020-04-02 21:38:31 +02:00
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
X direction
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gmr_err{i}('Ex', 'Fx'), freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gmf_err{i}('Ex', 'Fx'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
set(gca,'ColorOrderIndex',i);
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gmr_err{i}('Ex', 'Fx'), freqs, 'Hz')))), '-');
2020-04-02 21:38:31 +02:00
set(gca,'ColorOrderIndex',i);
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gmf_err{i}('Ex', 'Fx'), freqs, 'Hz')))), '--');
2020-04-02 21:38:31 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-03 14:10:14 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
2020-04-02 21:38:31 +02:00
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
Z direction
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gmr_err{i}('Ez', 'Fz'), freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gmf_err{i}('Ez', 'Fz'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
set(gca,'ColorOrderIndex',i);
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gmr_err{i}('Ez', 'Fz'), freqs, 'Hz')))), '-');
2020-04-02 21:38:31 +02:00
set(gca,'ColorOrderIndex',i);
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gmf_err{i}('Ez', 'Fz'), freqs, 'Hz')))), '--');
2020-04-02 21:38:31 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-03 14:10:14 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
2020-04-02 21:38:31 +02:00
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
2020-04-01 17:19:55 +02:00
** Conclusion :ignore:
* Payload "Impedance" Effect
<<sec:payload_impedance >>
** Introduction :ignore:
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir >>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init >>
#+end_src
#+begin_src matlab :tangle no
simulinkproject('../');
#+end_src
#+begin_src matlab
2020-04-02 21:38:31 +02:00
load('mat/conf_simulink.mat');
2020-04-01 17:19:55 +02:00
open('nass_model.slx')
#+end_src
2020-04-02 15:29:38 +02:00
** Initialization
We initialize all the stages with the default parameters.
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
#+end_src
2020-04-02 21:38:31 +02:00
We don't include disturbances in this model as it adds complexity to the simulations and does not alter the obtained dynamics.
2020-04-02 15:29:38 +02:00
#+begin_src matlab
2020-04-02 21:38:31 +02:00
initializeSimscapeConfiguration('gravity', true);
2020-04-02 15:29:38 +02:00
initializeDisturbances('enable', false);
#+end_src
We set the controller type to Open-Loop, and we do not need to log any signal.
#+begin_src matlab
2020-04-02 21:38:31 +02:00
initializeController();
2020-04-02 15:29:38 +02:00
initializeLoggingConfiguration('log', 'none');
2020-04-02 21:38:31 +02:00
initializeReferences();
2020-04-02 15:29:38 +02:00
#+end_src
#+begin_src matlab :exports none
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'En'); io_i = io_i + 1;
#+end_src
2020-04-02 21:38:31 +02:00
** Identification of the dynamics while change the payload dynamics
2020-04-02 15:29:38 +02:00
- Change of mass: from 1kg to 50kg
- Change of resonance frequency: from 50Hz to 500Hz
- The damping ratio of the payload is fixed to $\xi = 0.2$
2020-04-02 21:38:31 +02:00
We identify the dynamics for the following payload masses =Ms= and nano-hexapod leg's stiffnesses =Ks= :
2020-04-02 15:29:38 +02:00
#+begin_src matlab
Ms = [1, 20, 50]; % [Kg]
2020-04-02 21:38:31 +02:00
Ks = logspace(3,9,7); % [N/m]
2020-04-02 15:29:38 +02:00
#+end_src
2020-04-02 21:38:31 +02:00
#+begin_src matlab :exports none
2020-04-02 15:29:38 +02:00
Gm_iff = {zeros(length(Ks), length(Ms))};
Gm_dvf = {zeros(length(Ks), length(Ms))};
Gm_err = {zeros(length(Ks), length(Ms))};
#+end_src
2020-04-02 21:38:31 +02:00
#+begin_src matlab :exports none
2020-04-02 15:29:38 +02:00
for i = 1:length(Ks)
for j = 1:length(Ms)
initializeNanoHexapod('k', Ks(i));
initializeSample('mass', Ms(j), 'freq', 100*ones(6,1));
G = linearize(mdl, io);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gm_iff(i,j) = {minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Gm_dvf(i,j) = {minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Jinvt = tf(inv(nano_hexapod.J)');
Jinvt.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Jinvt.OutputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
Gm_err(i,j) = {-minreal(G({'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))*Jinvt};
end
end
#+end_src
2020-04-02 21:38:31 +02:00
We then identify the dynamics for the following payload resonance frequencies =Fs= :
2020-04-02 15:29:38 +02:00
#+begin_src matlab
Fs = [50, 200, 500]; % [Hz]
#+end_src
2020-04-02 21:38:31 +02:00
#+begin_src matlab :exports none
2020-04-02 15:29:38 +02:00
Gf_iff = {zeros(length(Ks), length(Fs))};
Gf_dvf = {zeros(length(Ks), length(Fs))};
Gf_err = {zeros(length(Ks), length(Fs))};
#+end_src
2020-04-02 21:38:31 +02:00
#+begin_src matlab :exports none
2020-04-02 15:29:38 +02:00
for i = 1:length(Ks)
for j = 1:length(Fs)
initializeNanoHexapod('k', Ks(i));
initializeSample('mass', 20, 'freq', Fs(j)*ones(6,1));
G = linearize(mdl, io);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gf_iff(i,j) = {minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Gf_dvf(i,j) = {minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Jinvt = tf(inv(nano_hexapod.J)');
Jinvt.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Jinvt.OutputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
Gf_err(i,j) = {-minreal(G({'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))*Jinvt};
end
end
#+end_src
2020-04-02 21:38:31 +02:00
#+begin_src matlab :exports none
2020-04-02 15:29:38 +02:00
save('mat/optimal_stiffness_Gm_Gf.mat', 'Ks', 'Ms', 'Fs', ...
'Gm_iff', 'Gm_dvf', 'Gm_err', ...
'Gf_iff', 'Gf_dvf', 'Gf_err');
#+end_src
2020-04-03 14:10:14 +02:00
** TODO Change of optimal gain for decentralized control
2020-04-02 15:29:38 +02:00
For each payload, compute the optimal gain for the IFF control.
The optimal value corresponds to critical damping to *all* the 6 modes of the nano-hexapod.
#+begin_src matlab
load('mat/optimal_stiffness_Gm_Gf.mat');
#+end_src
Change of Mass
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
if j == 1
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz')))), '-', ...
2020-04-02 15:29:38 +02:00
'DisplayName', sprintf('$K = %.0e$ [N/m]', Ks(i)));
else
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz')))), '-', ...
2020-04-02 15:29:38 +02:00
'HandleVisibility', 'off');
end
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-03 14:10:14 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
2020-04-02 15:29:38 +02:00
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
2020-04-03 14:10:14 +02:00
Optimal gains:
#+begin_src matlab
opt_gains = [20 60 200 600 2000 6000 20000];
#+end_src
Change of poles with mass
#+begin_src matlab :exports none
i = 7;
figure;
hold on;
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',j);
cl_poles = pole(feedback(Gm_iff{i,j}, (-gains(k)/s)*eye(6)));
plot(real(cl_poles), imag(cl_poles), '.');
end
#+end_src
#+begin_src matlab :exports none
i = 4;
gains = logspace(1, 3, 500);
figure;
hold on;
for j = 1:length(Ms)
for k = 1:length(gains)
set(gca,'ColorOrderIndex',j);
cl_poles = pole(feedback(Gm_iff{i,j}, (-gains(k)/s)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(k)*ones(size(poles_damp)), poles_damp, '.');
end
end
xlabel('Control Gain');
ylabel('Damping of the Poles');
set(gca, 'XScale', 'log');
ylim([0,pi/2]);
#+end_src
#+begin_src matlab :exports none
i = 7;
gains = logspace(3, 5, 500);
figure;
hold on;
for j = 1:length(Ms)
for k = 1:length(gains)
set(gca,'ColorOrderIndex',j);
cl_poles = pole(feedback(Gm_iff{i,j}, (-gains(k)/s)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(k)*ones(size(poles_damp)), poles_damp, '.');
end
end
xlabel('Control Gain');
ylabel('Damping of the Poles');
set(gca, 'XScale', 'log');
ylim([0,pi/2]);
#+end_src
2020-04-02 15:29:38 +02:00
Change of payload resonance frequency
2020-04-03 14:10:14 +02:00
#+begin_src matlab :exports none
i = 1;
gains = logspace(0, 2, 100);
figure;
hold on;
for j = 1:length(Fs)
for k = 1:length(gains)
set(gca,'ColorOrderIndex',j);
cl_poles = pole(feedback(Gf_iff{i,j}, (-gains(k)/s)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(k)*ones(size(poles_damp)), poles_damp, '.');
end
end
xlabel('Control Gain');
ylabel('Damping of the Poles');
set(gca, 'XScale', 'log');
ylim([0,pi/2]);
#+end_src
#+begin_src matlab :exports none
i = 7;
gains = logspace(3, 5, 100);
figure;
hold on;
for j = 1:length(Fs)
for k = 1:length(gains)
set(gca,'ColorOrderIndex',j);
cl_poles = pole(feedback(Gf_iff{i,j}, (-gains(k)/s)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(k)*ones(size(poles_damp)), poles_damp, '.');
end
end
xlabel('Control Gain');
ylabel('Damping of the Poles');
set(gca, 'XScale', 'log');
ylim([0,pi/2]);
#+end_src
2020-04-02 15:29:38 +02:00
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
for j = 1:length(Fs)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gf_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
for j = 1:length(Fs)
set(gca,'ColorOrderIndex',i);
if j == 1
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gf_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz')))), '-', ...
2020-04-02 15:29:38 +02:00
'DisplayName', sprintf('$K = %.0e$ [N/m]', Ks(i)));
else
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gf_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz')))), '-', ...
2020-04-02 15:29:38 +02:00
'HandleVisibility', 'off');
end
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-03 14:10:14 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'southwest');
2020-04-02 15:29:38 +02:00
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
** Change of dynamics for the primary controller
For each stiffness, plot the total spread of dynamics.
#+begin_src matlab
load('mat/optimal_stiffness_Gm_Gf.mat');
#+end_src
*** Frequency variation
Same payload mass, but different stiffness resulting in different resonance frequency.
All curves
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
for j = 1:length(Fs)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
for j = 1:length(Fs)
set(gca,'ColorOrderIndex',i);
if j == 1
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$K = %.0e$ [N/m]', Ks(i)));
else
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'HandleVisibility', 'off');
end
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
X direction
#+begin_src matlab :exports none
i = 1;
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title(sprintf('$k = %.0e$ [N/m]', Ks(i)))
ax2 = subplot(2, 2, 3);
hold on;
for j = 1:length(Fs)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$\\omega_0 = %.0f$ [Hz]', Fs(j)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
i = 7;
ax1 = subplot(2, 2, 2);
hold on;
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title(sprintf('$k = %.0e$ [N/m]', Ks(i)))
ax2 = subplot(2, 2, 4);
hold on;
for j = 1:length(Fs)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$\\omega_0 = %.0f$ [Hz]', Fs(j)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
Z direction:
We can see two mass lines for the soft nano-hexapod:
- The first mass line corresponds to $\frac{1}{(m_n + m_p)s^2}$ where $m_p = 20\ [kg]$ is the mass of the payload and $m_n = 15\ [Kg]$ is the mass of the nano-hexapod top platform and attached mirror
- The second mass line corresponds to $\frac{1}{m_n s^2}$
#+begin_src matlab :exports none
i = 1;
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title(sprintf('$k = %.0e$ [N/m]', Ks(i)))
ax2 = subplot(2, 2, 3);
hold on;
for j = 1:length(Fs)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$\\omega_0 = %.0f$ [Hz]', Fs(j)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
i = 7;
ax1 = subplot(2, 2, 2);
hold on;
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title(sprintf('$k = %.0e$ [N/m]', Ks(i)))
ax2 = subplot(2, 2, 4);
hold on;
for j = 1:length(Fs)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$\\omega_0 = %.0f$ [Hz]', Fs(j)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
*** Mass variation
All mixed, X direction
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
if j == 1
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$K = %.0e$ [N/m]', Ks(i)));
else
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'HandleVisibility', 'off');
end
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
All mixed, Z direction
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
if j == 1
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$K = %.0e$ [N/m]', Ks(i)));
else
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-', ...
'HandleVisibility', 'off');
end
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
Z direction
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
i = 1;
ax1 = subplot(2, 2, 1);
hold on;
for j = 1:length(Ms)
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title(sprintf('$k = %.0e$ [N/m]', Ks(i)))
ax2 = subplot(2, 2, 3);
hold on;
for j = 1:length(Ms)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
i = 7;
ax1 = subplot(2, 2, 2);
hold on;
for j = 1:length(Ms)
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title(sprintf('$k = %.0e$ [N/m]', Ks(i)))
ax2 = subplot(2, 2, 4);
hold on;
for j = 1:length(Ms)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(j)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
*** Total variation
Total change of dynamics due to change of the payload:
- mass from 1kg to 50kg
- main resonance from 50Hz to 500Hz
For a soft nano-hexapod
#+begin_src matlab :exports none
i = 1;
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
for j = 1:length(Ms)
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for j = 1:length(Fs)
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
2020-04-02 15:29:38 +02:00
for j = 1:length(Ms)
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
2020-04-02 15:29:38 +02:00
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-03 14:10:14 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
2020-04-02 15:29:38 +02:00
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
For a stiff nano-hexapod
#+begin_src matlab :exports none
i = 7;
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
for j = 1:length(Ms)
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for j = 1:length(Fs)
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
2020-04-02 15:29:38 +02:00
for j = 1:length(Ms)
2020-04-03 14:10:14 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
2020-04-02 15:29:38 +02:00
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-03 14:10:14 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
2020-04-02 15:29:38 +02:00
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
2020-04-01 17:19:55 +02:00
** Conclusion :ignore:
2020-04-02 21:38:31 +02:00
* Total Change of dynamics
2020-04-03 14:10:14 +02:00
#+begin_src matlab :exports none
load('mat/optimal_stiffness_Gm_Gf.mat');
load('mat/optimal_stiffness_micro_station_compliance.mat');
load('mat/optimal_stiffness_Gk_wz.mat');
#+end_src
- =Gk_wz_err= - Change of spindle rotation speed
- =Gf_err= - Change of payload resonance
- =Gm_err= - Change of payload mass
- =Gmr_err= - Rigid Micro-Station
- =Gmf_err= - Flexible Micro-Station
Soft nano-hexapod
#+begin_src matlab :exports none
i = 1;
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
% =Gf_err= - Change of payload resonance
plot(freqs, abs(squeeze(freqresp(Gf_err{i,1}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', 'Payload Freq');
for j = 2:length(Fs)
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'HandleVisibility', 'off');
end
% =Gm_err= - Change of payload mass
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(Gm_err{i,1}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', 'Payload Mass');
for j = 2:length(Ms)
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'HandleVisibility', 'off');
end
% =Gm_err= - Change of payload mass
set(gca,'ColorOrderIndex',3);
plot(freqs, abs(squeeze(freqresp(Gk_wz_err{i,1}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', 'Rotationg Speed');
for j = 2:length(Rz_rpm)
set(gca,'ColorOrderIndex',3);
plot(freqs, abs(squeeze(freqresp(Gk_wz_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'HandleVisibility', 'off');
end
set(gca,'ColorOrderIndex',4);
% =Gmr_err= - Rigid Micro-Station
plot(freqs, abs(squeeze(freqresp(Gmr_err{i}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', 'Rigid $\mu$-station');
% =Gmf_err= - Flexible Micro-Station
plot(freqs, abs(squeeze(freqresp(Gmf_err{i}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', 'Flexible $\mu$-station');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
legend('location', 'southwest');
ax2 = subplot(2, 1, 2);
hold on;
for j = 1:length(Rz_rpm)
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gk_wz_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
end
for j = 1:length(Fs)
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
end
% =Gm_err= - Change of payload mass
for j = 1:length(Ms)
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
end
% =Gmr_err= - Rigid Micro-Station
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gmr_err{i}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
% =Gmf_err= - Flexible Micro-Station
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gmf_err{i}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
#+begin_src matlab :exports none
i = 1;
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
% =Gf_err= - Change of payload resonance
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
% =Gm_err= - Change of payload mass
for j = 1:length(Ms)
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
% Spindle Rotation Speed
for j = 1:length(Rz_rpm)
plot(freqs, abs(squeeze(freqresp(Gk_wz_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
% =Gmr_err= - Rigid Micro-Station
plot(freqs, abs(squeeze(freqresp(Gmr_err{i}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
% =Gmf_err= - Flexible Micro-Station
plot(freqs, abs(squeeze(freqresp(Gmf_err{i}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
% =Gf_err= - Change of payload resonance
for j = 1:length(Fs)
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
end
% =Gm_err= - Change of payload mass
for j = 1:length(Ms)
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
end
% Spindle Rotation Speed
for j = 1:length(Rz_rpm)
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gk_wz_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
end
% =Gmr_err= - Rigid Micro-Station
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gmr_err{i}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
% =Gmf_err= - Flexible Micro-Station
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gmf_err{i}('Ex', 'Fx'), freqs, 'Hz')))), 'k-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
Comparison with initial TF
#+begin_src matlab :exports none
i = 1;
G0 = abs(squeeze(freqresp(Gmr_err{i}('Ex', 'Fx'), freqs, 'Hz')));
freqs = logspace(-1, 3, 1000);
figure;
hold on;
% =Gf_err= - Change of payload resonance
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))./G0, 'k-');
end
% =Gm_err= - Change of payload mass
for j = 1:length(Ms)
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))./G0, 'k-');
end
% Spindle Rotation Speed
for j = 1:length(Rz_rpm)
plot(freqs, abs(squeeze(freqresp(Gk_wz_err{i,j}('Ex', 'Fx'), freqs, 'Hz')))./G0, 'k-');
end
% =Gmf_err= - Flexible Micro-Station
plot(freqs, abs(squeeze(freqresp(Gmf_err{i}('Ex', 'Fx'), freqs, 'Hz')))./G0, 'k-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
xlim([freqs(1), freqs(end)]);
ylim([1e-2, 1e2])
#+end_src
- [ ] Make a gif with the stiffness varying