90 lines
3.0 KiB
Mathematica
90 lines
3.0 KiB
Mathematica
|
%% Define some constant values
|
|||
|
deg2rad = pi/180;
|
|||
|
x_axis = [1 0 0];
|
|||
|
y_axis = [0 1 0];
|
|||
|
z_axis = [0 0 1];
|
|||
|
|
|||
|
%% Connection points on base and top plate w.r.t. World frame at the center of the base plate
|
|||
|
pos_base = zeros(6, 3);
|
|||
|
pos_top = zeros(6, 3);
|
|||
|
|
|||
|
alpha_b = BP.leg.ang*deg2rad; % angle de d<EFBFBD>calage par rapport <EFBFBD> 120 deg (pour positionner les supports bases)
|
|||
|
alpha_t = TP.leg.ang*deg2rad; % +- offset angle from 120 degree spacing on top
|
|||
|
|
|||
|
height = (stewart.h-BP.thickness-TP.thickness-Leg.sphere.bottom-Leg.sphere.top-SP.thickness.bottom-SP.thickness.top)*0.001; % 2 meter height in home configuration
|
|||
|
|
|||
|
radius_b = BP.leg.rad*0.001; % rayon emplacement support base
|
|||
|
radius_t = TP.leg.rad*0.001; % top radius in meters
|
|||
|
|
|||
|
for i = 1:3
|
|||
|
% base points
|
|||
|
angle_m_b = (2*pi/3)* (i-1) - alpha_b;
|
|||
|
angle_p_b = (2*pi/3)* (i-1) + alpha_b;
|
|||
|
pos_base(2*i-1,:) = [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0];
|
|||
|
pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0];
|
|||
|
|
|||
|
% top points
|
|||
|
% Top points are 60 degrees offset
|
|||
|
angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6;
|
|||
|
angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6;
|
|||
|
pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height];
|
|||
|
pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height];
|
|||
|
end
|
|||
|
|
|||
|
% permute pos_top points so that legs are end points of base and top points
|
|||
|
pos_top = [pos_top(6,:); pos_top(1:5,:)]; %6th point on top connects to 1st on bottom
|
|||
|
pos_top_tranform = pos_top - height*[zeros(6, 2),ones(6, 1)];
|
|||
|
|
|||
|
%% Compute points w.r.t. to the body frame in a 3x6 matrix
|
|||
|
body_pts = pos_top' - height*[zeros(2,6);ones(1,6)];
|
|||
|
|
|||
|
%% leg vectors
|
|||
|
legs = pos_top - pos_base;
|
|||
|
leg_length = zeros(6, 1);
|
|||
|
leg_vectors = zeros(6, 3);
|
|||
|
for i = 1:6
|
|||
|
leg_length(i) = norm(legs(i,:));
|
|||
|
leg_vectors(i,:) = legs(i,:) / leg_length(i);
|
|||
|
end
|
|||
|
|
|||
|
Leg.lenght = 1000*leg_length(1)/1.5;
|
|||
|
|
|||
|
%% Calculate revolute and cylindrical axes
|
|||
|
rev1 = zeros(6, 3);
|
|||
|
rev2 = zeros(6, 3);
|
|||
|
rev3 = zeros(6, 3);
|
|||
|
rev4 = zeros(6, 3);
|
|||
|
cyl1 = zeros(6, 3);
|
|||
|
for i = 1:6
|
|||
|
rev1(i,:) = cross(leg_vectors(i,:), z_axis);
|
|||
|
rev1(i,:) = rev1(i,:) / norm(rev1(i,:));
|
|||
|
rev3(i,:) = rev1(i,:);
|
|||
|
|
|||
|
rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:));
|
|||
|
rev2(i,:) = rev2(i,:) / norm(rev2(i,:));
|
|||
|
rev4(i,:) = rev2(i,:);
|
|||
|
|
|||
|
cyl1(i,:) = leg_vectors(i,:);
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
%% Coordinate systems
|
|||
|
lower_leg = struct('origin', [0 0 0], 'rotation', eye(3), 'end_point', [0 0 0]);
|
|||
|
upper_leg = struct('origin', [0 0 0], 'rotation', eye(3), 'end_point', [0 0 0]);
|
|||
|
|
|||
|
for i = 1:6
|
|||
|
lower_leg(i).origin = pos_base(i,:) + (3/8)*legs(i,:);
|
|||
|
lower_leg(i).end_point = pos_base(i,:) + (3/4)*legs(i,:);
|
|||
|
lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
|
|||
|
upper_leg(i).origin = pos_base(i,:) + (1-3/8)*legs(i,:);
|
|||
|
upper_leg(i).end_point = pos_base(i,:) + (1/4)*legs(i,:);
|
|||
|
upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
|
|||
|
end
|
|||
|
|
|||
|
%% Position Matrix
|
|||
|
M_pos_base = pos_base + (height+(TP.thickness+Leg.sphere.top+SP.thickness.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)];
|
|||
|
|
|||
|
%% Compute Jacobian Matrix
|
|||
|
J = getJacobianMatrix(leg_vectors, M_pos_base);
|
|||
|
|