nass-simscape/active_damping_uniaxial/matlab/rmc.m

247 lines
9.4 KiB
Mathematica
Raw Normal View History

%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
open 'simscape/sim_nano_station_id.slx'
% Control Design
% Let's load the undamped plant:
load('./active_damping/mat/plants.mat', 'G');
% Let's look at the transfer function from actuator forces in the nano-hexapod to the measured displacement of the actuator for all 6 pairs of actuator/sensor (figure [[fig:rmc_plant]]).
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i=1:6
plot(freqs, abs(squeeze(freqresp(G.G_dleg(['Dm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i=1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_dleg(['Dm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
% #+NAME: fig:rmc_plant
% #+CAPTION: Transfer function from forces applied in the legs to leg displacement sensor ([[./figs/rmc_plant.png][png]], [[./figs/rmc_plant.pdf][pdf]])
% [[file:figs/rmc_plant.png]]
% The Relative Motion Controller is defined below.
% A Low pass Filter is added to make the controller transfer function proper.
K_rmc = s*50000/(1 + s/2/pi/10000);
% The obtained loop gains are shown in figure [[fig:rmc_open_loop]].
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i=1:6
plot(freqs, abs(squeeze(freqresp(K_rmc*G.G_dleg(['Dm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i=1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(K_rmc*G.G_dleg(['Dm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
% Identification of the damped plant
% Let's initialize the system prior to identification.
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod(struct('actuator', 'piezo'));
initializeSample(struct('mass', 50));
% And initialize the controllers.
K = tf(zeros(6));
save('./mat/controllers.mat', 'K', '-append');
K_iff = tf(zeros(6));
save('./mat/controllers.mat', 'K_iff', '-append');
K_rmc = -K_rmc*eye(6);
save('./mat/controllers.mat', 'K_rmc', '-append');
K_dvf = tf(zeros(6));
save('./mat/controllers.mat', 'K_dvf', '-append');
% We identify the system dynamics now that the RMC controller is ON.
G_rmc = identifyPlant();
% And we save the damped plant for further analysis.
save('./active_damping/mat/plants.mat', 'G_rmc', '-append');
% Sensitivity to disturbances
% As shown in figure [[fig:sensitivity_dist_rmc]], RMC control succeed in lowering the sensitivity to disturbances near resonance of the system.
freqs = logspace(0, 3, 1000);
figure;
subplot(2, 1, 1);
title('$D_g$ to $D$');
hold on;
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / D_{g,x}\right|$');
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dy', 'Dgy'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / D_{g,y}\right|$');
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / D_{g,z}\right|$');
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G_rmc.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_rmc.G_gm('Dy', 'Dgy'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_rmc.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]');
legend('location', 'northeast');
subplot(2, 1, 2);
title('$F_s$ to $D$');
hold on;
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{s,x}\right|$');
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dy', 'Fsy'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / F_{s,y}\right|$');
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{s,z}\right|$');
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G_rmc.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_rmc.G_fs('Dy', 'Fsy'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_rmc.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
legend('location', 'northeast');
% #+NAME: fig:sensitivity_dist_rmc
% #+CAPTION: Sensitivity to disturbance once the RMC controller is applied to the system ([[./figs/sensitivity_dist_rmc.png][png]], [[./figs/sensitivity_dist_rmc.pdf][pdf]])
% [[file:figs/sensitivity_dist_rmc.png]]
freqs = logspace(0, 3, 1000);
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{rz, z}\right|$');
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{ty, z}\right|$');
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{ty, x}\right|$');
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G_rmc.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_rmc.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_rmc.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
legend('location', 'northeast');
% Damped Plant
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dx', 'Fnx'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dy', 'Fny'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dz', 'Fnz'), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), '--');
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Dy', 'Fny'), freqs, 'Hz'))), '--');
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), '--');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
ax2 = subplot(2, 2, 2);
hold on;
plot(freqs, abs(squeeze(freqresp(G.G_cart('Rx', 'Mnx'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G.G_cart('Ry', 'Mny'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G.G_cart('Rz', 'Mnz'), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), '--');
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Ry', 'Mny'), freqs, 'Hz'))), '--');
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), '--');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [rad/(Nm)]'); xlabel('Frequency [Hz]');
ax3 = subplot(2, 2, 3);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{n,x}\right|$');
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dy', 'Fny'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / F_{n,y}\right|$');
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{n,z}\right|$');
set(gca,'ColorOrderIndex',1);
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Dy', 'Fny'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northwest');
ax4 = subplot(2, 2, 4);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), 'DisplayName', '$\left|R_x / M_{n,x}\right|$');
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Ry', 'Mny'), freqs, 'Hz'))), 'DisplayName', '$\left|R_y / M_{n,y}\right|$');
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), 'DisplayName', '$\left|R_z / M_{n,z}\right|$');
set(gca,'ColorOrderIndex',1);
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Ry', 'Mny'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northwest');
linkaxes([ax1,ax2,ax3,ax4],'x');