2019-12-04 10:43:38 +01:00
#+TITLE : Tomography Experiment
:DRAWER:
#+STARTUP : overview
#+LANGUAGE : en
#+EMAIL : dehaeze.thomas@gmail.com
#+AUTHOR : Dehaeze Thomas
#+HTML_LINK_HOME : ../index.html
#+HTML_LINK_UP : ../index.html
2019-12-06 12:03:16 +01:00
# #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
# #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
# #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
# #+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
# #+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
# #+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
# #+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
2019-12-04 10:43:38 +01:00
#+HTML_MATHJAX : align: center tagside: right font: TeX
#+PROPERTY : header-args:matlab :session *MATLAB*
#+PROPERTY : header-args:matlab+ :comments org
#+PROPERTY : header-args:matlab+ :results none
#+PROPERTY : header-args:matlab+ :exports both
#+PROPERTY : header-args:matlab+ :eval no-export
#+PROPERTY : header-args:matlab+ :output-dir figs
#+PROPERTY : header-args:matlab+ :tangle matlab/modal_frf_coh.m
#+PROPERTY : header-args:matlab+ :mkdirp yes
#+PROPERTY : header-args:shell :eval no-export
#+PROPERTY : header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}")
#+PROPERTY : header-args:latex+ :imagemagick t :fit yes
#+PROPERTY : header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY : header-args:latex+ :imoutoptions -quality 100
#+PROPERTY : header-args:latex+ :results raw replace :buffer no
#+PROPERTY : header-args:latex+ :eval no-export
#+PROPERTY : header-args:latex+ :exports both
#+PROPERTY : header-args:latex+ :mkdirp yes
#+PROPERTY : header-args:latex+ :output-dir figs
:END:
* Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir >>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init >>
#+end_src
#+begin_src matlab :tangle no
simulinkproject('../');
#+end_src
#+begin_src matlab
open 'simscape/sim_nano_station_tomo.slx'
#+end_src
* Initialize Experiment
2019-12-06 12:03:16 +01:00
We first initialize all the stages.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod(struct('actuator', 'piezo'));
initializeSample(struct('mass', 1));
#+end_src
2019-12-06 12:03:16 +01:00
We initialize the reference path for all the stages.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
initializeReferences(struct('Rz_type', 'rotating', 'Rz_period', 1));
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
And we initialize the disturbances.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
initDisturbances();
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
* Run the Tomography Experiment
We first load the simulation configuration
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-11 17:07:25 +01:00
load('mat/conf_simscape.mat');
2019-12-04 10:43:38 +01:00
#+end_src
#+begin_src matlab
2019-12-06 12:03:16 +01:00
set_param(conf_simscape, 'StopTime', '1');
2019-12-04 10:43:38 +01:00
#+end_src
#+begin_src matlab
2019-12-06 12:03:16 +01:00
set_param('sim_nano_station_tomo', 'SimulationCommand', 'start');
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
* TODO Tests on the transformation from reference to wanted position
- [X] Are the rotation matrix commutable? => no
- [X] How to express the measured rotation errors? => screw axis coordinate seems nice (used in Taghirad's book)
- [ ] Should ask Veijo how he specifies the position of the Symetrie Hexapod
- [ ] Create functions for all distinct part and then include that in Simulink
- [ ] How the express the orientation error?
- [ ] If we use screw coordinate, can we add/subtract them?
- [ ] Do some simple tests to verify that the algorithm is working fine
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
** Introduction :ignore:
#+begin_quote
Rx = [1 0 0;
0 cos(t) -sin(t);
0 sin(t) cos(t)];
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
Ry = [ cos(t) 0 sin(t);
0 1 0;
-sin(t) 0 cos(t)];
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
Rz = [cos(t) -sin(t) 0;
sin(t) cos(t) 0;
0 0 1];
#+end_quote
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
Let's define the following frames:
- $\{W\}$ the frame that is *fixed to the granite* and its origin at the theoretical meeting point between the X-ray and the spindle axis.
- $\{S\}$ the frame *attached to the sample* (in reality attached to the top platform of the nano-hexapod) with its origin at 175mm above the top platform of the nano-hexapod.
Its origin is $O_S$.
- $\{T\}$ the theoretical wanted frame that correspond to the wanted pose of the frame $\{S\}$.
$\{T\}$ is computed from the wanted position of each stage. It is thus theoretical and does not correspond to a real position.
The origin of $T$ is $O_T$ and is the wanted position of the sample.
Thus:
- the *measurement* of the position of the sample corresponds to ${}^W O_S = \begin{bmatrix} {}^WP_ {x,m} & {}^WP_{y,m} & {}^WP_ {z,m} \end{bmatrix}^T$ in translation and to $\theta_m {}^W\bm{s}_m = \theta_m \cdot \begin{bmatrix} {}^Ws_ {x,m} & {}^Ws_{y,m} & {}^Ws_ {z,m} \end{bmatrix}^T$ in rotations
- the *wanted position* of the sample expressed w.r.t. the granite is ${}^W O_T = \begin{bmatrix} {}^WP_ {x,r} & {}^WP_{y,r} & {}^WP_ {z,r} \end{bmatrix}^T$ in translation and to $\theta_r {}^W\bm{s}_r = \theta_r \cdot \begin{bmatrix} {}^Ws_ {x,r} & {}^Ws_{y,r} & {}^Ws_ {z,r} \end{bmatrix}^T$ in rotations
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
** Wanted Position of the Sample with respect to the Granite
Let's define the wanted position of each stage.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
Ty = 0; % [m]
Ry = 3*pi/180; % [rad]
Rz = 180*pi/180; % [rad]
% Hexapod (first consider only translations)
Thx = 0; % [m]
Thy = 0; % [m]
Thz = 0; % [m]
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
Now, we compute the corresponding wanted translation and rotation of the sample with respect to the granite frame $\{W\}$.
This corresponds to ${}^WO_T$ and $\theta_m {}^Ws_m$.
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
To do so, we have to define the homogeneous transformation for each stage.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
% Translation Stage
Rty = [1 0 0 0;
0 1 0 Ty;
0 0 1 0;
0 0 0 1];
% Tilt Stage - Pure rotating aligned with Ob
Rry = [ cos(Ry) 0 sin(Ry) 0;
0 1 0 0;
-sin(Ry) 0 cos(Ry) 0;
0 0 0 1];
% Spindle - Rotation along the Z axis
Rrz = [cos(Rz) -sin(Rz) 0 0 ;
sin(Rz) cos(Rz) 0 0 ;
0 0 1 0 ;
0 0 0 1 ];
% Micro-Hexapod (only rotations first)
Rh = [1 0 0 Thx ;
0 1 0 Thy ;
0 0 1 Thz ;
0 0 0 1 ];
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
We combine the individual homogeneous transformations into one homogeneous transformation for all the station.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
Ttot = Rty*Rry*Rrz*Rh;
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
Using this homogeneous transformation, we can compute the wanted position and orientation of the sample with respect to the granite.
Translation.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
WOr = Ttot*[0;0;0;1];
WOr = WOr(1:3);
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
Rotation.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
thetar = acos((trace(Ttot(1:3, 1:3))-1)/2)
if thetar == 0
WSr = [0; 0; 0];
else
[V, D] = eig(Ttot(1:3, 1:3));
WSr = thetar*V(:, abs(diag(D) - 1) < eps(1));
2019-12-04 10:43:38 +01:00
end
#+end_src
#+begin_src matlab
2019-12-06 12:03:16 +01:00
WPr = [WOr ; WSr];
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
** Measured Position of the Sample with respect to the Granite
The measurement of the position of the sample using the metrology system gives the position and orientation of the sample with respect to the granite.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
% Measurements: Xm, Ym, Zm, Rx, Ry, Rz
Dxm = 0; % [m]
Dym = 0; % [m]
Dzm = 0; % [m]
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
Rxm = 0*pi/180; % [rad]
Rym = 0*pi/180; % [rad]
Rzm = 180*pi/180; % [rad]
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
Let's compute the corresponding orientation using screw axis.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
Trxm = [1 0 0;
0 cos(Rxm) -sin(Rxm);
0 sin(Rxm) cos(Rxm)];
Trym = [ cos(Rym) 0 sin(Rym);
0 1 0;
-sin(Rym) 0 cos(Rym)];
Trzm = [cos(Rzm) -sin(Rzm) 0;
sin(Rzm) cos(Rzm) 0;
0 0 1];
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
STw = [[ Trym*Trxm*Trzm , [Dxm; Dym; Dzm]]; 0 0 0 1];
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
We then obtain the orientation measurement in the form of screw coordinate $\theta_m ({}^Ws_ {x,m},\ {}^Ws_{y,m},\ {}^Ws_ {z,m})^T$ where:
- $\theta_m = \cos^{-1} \frac{\text{Tr}(R) - 1}{2}$
- ${}^W\bm{s}_m$ is the eigen vector of the rotation matrix $R$ corresponding to the eigen value $\lambda = 1$
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
thetam = acos((trace(STw(1:3, 1:3))-1)/2); % [rad]
if thetam == 0
WSm = [0; 0; 0];
else
[V, D] = eig(STw(1:3, 1:3));
WSm = thetam*V(:, abs(diag(D) - 1) < eps(1));
end
2019-12-04 10:43:38 +01:00
#+end_src
#+begin_src matlab
2019-12-06 12:03:16 +01:00
WPm = [Dxm ; Dym ; Dzm ; WSm];
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
** Positioning Error with respect to the Granite
The wanted position expressed with respect to the granite is ${}^WO_T$ and the measured position with respect to the granite is ${}^WO_S$, thus the *position error* expressed in $\{W\}$ is
\[ {}^W E = {}^W O_T - {}^W O_S \]
The same is true for rotations:
\[ \theta_\epsilon {}^W\bm{s}_ \epsilon = \theta_r {}^W\bm{s}_r - \theta_m {}^W\bm{s}_m \]
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
WPe = WPr - WPm;
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
#+begin_quote
Now we want to express this error in a frame attached to the *base of the nano-hexapod* with its origin at the same point where the Jacobian of the nano-hexapod is computed (175mm above the top platform + 90mm of total height of the nano-hexapod).
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
Or maybe should we want to express this error with respect to the *top platform of the nano-hexapod* ?
We are measuring the position of the top-platform, and we don't know exactly the position of the bottom platform.
We could compute the position of the bottom platform in two ways:
- from the encoders of each stage
- from the measurement of the nano-hexapod top platform + the internal metrology in the nano-hexapod (capacitive sensors e.g)
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
A third option is to say that the maximum stroke of the nano-hexapod is so small that the error should no change to much by the change of base.
#+end_quote
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
** Position Error Expressed in the Nano-Hexapod Frame
We now want the position error to be expressed in $\{S\}$ (the frame attach to the sample) for control:
\[ {}^S E = {}^S T_W \cdot {}^W E \]
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
Thus we need to compute the homogeneous transformation ${}^ST_W$.
Fortunately, this homogeneous transformation can be computed from the measurement of the sample position and orientation with respect to the granite.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
Trxm = [1 0 0;
0 cos(Rxm) -sin(Rxm);
0 sin(Rxm) cos(Rxm)];
Trym = [ cos(Rym) 0 sin(Rym);
0 1 0;
-sin(Rym) 0 cos(Rym)];
Trzm = [cos(Rzm) -sin(Rzm) 0;
sin(Rzm) cos(Rzm) 0;
0 0 1];
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
STw = [[ Trym*Trxm*Trzm , [Dxm; Dym; Dzm]]; 0 0 0 1];
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
Translation Error.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
SEm = STw * [WPe(1:3); 0];
SEm = SEm(1:3);
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
Rotation Error.
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
SEr = STw * [WPe(4:6); 0];
SEr = SEr(1:3);
2019-12-04 10:43:38 +01:00
#+end_src
#+begin_src matlab
2019-12-06 12:03:16 +01:00
Etot = [SEm ; SEr]
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
** Another try
Let's denote:
- $\{W\}$ the initial fixed frame
- $\{R\}$ the reference frame corresponding to the wanted pose of the sample
- $\{M\}$ the frame corresponding to the measured pose of the sample
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
We have then computed:
- ${}^WT_R$
- ${}^WT_M$
2019-12-04 10:43:38 +01:00
2019-12-06 12:03:16 +01:00
We have:
\begin{align}
{}^MT_R &= {}^MT_W {}^WT_R \\
&= {}^WT_M^t {}^WT_R
\end{align}
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
MTr = STw'*Ttot;
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
Position error:
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
MTr(1:3, 1:4)*[0; 0; 0; 1]
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
Orientation error:
2019-12-04 10:43:38 +01:00
#+begin_src matlab
2019-12-06 12:03:16 +01:00
MTr(1:3, 1:3)
2019-12-04 10:43:38 +01:00
#+end_src
2019-12-06 12:03:16 +01:00
** Verification
How can we verify that the computation is correct?
Options:
- Test with simscape multi-body
- Impose motion on each stage
- Measure the position error w.r.t. the NASS
- Compare with the computation