2019-10-08 11:13:38 +02:00
<?xml version="1.0" encoding="utf-8"?>
2020-01-15 16:23:40 +01:00
<?xml version="1.0" encoding="utf-8"?>
2019-10-08 11:13:38 +02:00
< !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
< html xmlns = "http://www.w3.org/1999/xhtml" lang = "en" xml:lang = "en" >
< head >
2020-02-04 16:13:52 +01:00
<!-- 2020 - 02 - 04 mar. 16:13 -->
2019-10-08 11:13:38 +02:00
< meta http-equiv = "Content-Type" content = "text/html;charset=utf-8" / >
< meta name = "viewport" content = "width=device-width, initial-scale=1" / >
2020-01-15 16:23:40 +01:00
< title > Active Damping applied on the Simscape Model< / title >
2019-10-08 11:13:38 +02:00
< meta name = "generator" content = "Org mode" / >
< meta name = "author" content = "Dehaeze Thomas" / >
< style type = "text/css" >
<!-- /* --> <![CDATA[/*> <!-- */
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
< / style >
< link rel = "stylesheet" type = "text/css" href = "../css/htmlize.css" / >
< link rel = "stylesheet" type = "text/css" href = "../css/readtheorg.css" / >
< link rel = "stylesheet" type = "text/css" href = "../css/zenburn.css" / >
< script type = "text/javascript" src = "../js/jquery.min.js" > < / script >
< script type = "text/javascript" src = "../js/bootstrap.min.js" > < / script >
< script type = "text/javascript" src = "../js/jquery.stickytableheaders.min.js" > < / script >
< script type = "text/javascript" src = "../js/readtheorg.js" > < / script >
< script type = "text/javascript" >
/*
@licstart The following is the entire license notice for the
JavaScript code in this tag.
2020-01-15 16:23:40 +01:00
Copyright (C) 2012-2020 Free Software Foundation, Inc.
2019-10-08 11:13:38 +02:00
The JavaScript code in this tag is free software: you can
redistribute it and/or modify it under the terms of the GNU
General Public License (GNU GPL) as published by the Free Software
Foundation, either version 3 of the License, or (at your option)
any later version. The code is distributed WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
As additional permission under GNU GPL version 3 section 7, you
may distribute non-source (e.g., minimized or compacted) forms of
that code without the copy of the GNU GPL normally required by
section 4, provided you include this license notice and a URL
through which recipients can access the Corresponding Source.
@licend The above is the entire license notice
for the JavaScript code in this tag.
*/
<!-- /* --> <![CDATA[/*> <!-- */
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
< / script >
2020-02-04 16:13:52 +01:00
< script >
MathJax = {
tex: { macros: {
bm: ["\\boldsymbol{#1}",1],
}
}
};
< / script >
< script type = "text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">< / script >
2019-10-08 11:13:38 +02:00
< / head >
< body >
< div id = "org-div-home-and-up" >
< a accesskey = "h" href = "../index.html" > UP < / a >
|
< a accesskey = "H" href = "../index.html" > HOME < / a >
< / div > < div id = "content" >
2020-01-15 16:23:40 +01:00
< h1 class = "title" > Active Damping applied on the Simscape Model< / h1 >
2019-10-18 17:34:45 +02:00
< div id = "table-of-contents" >
< h2 > Table of Contents< / h2 >
< div id = "text-table-of-contents" >
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org97abc59" > 1. Undamped System< / a >
2020-01-15 16:23:40 +01:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org7d459a2" > 1.1. Identification of the dynamics for Active Damping< / a >
2020-01-15 16:23:40 +01:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org6a76f18" > 1.1.1. Initialize the Simulation< / a > < / li >
< li > < a href = "#orgceae930" > 1.1.2. Identification< / a > < / li >
< li > < a href = "#org50cac8d" > 1.1.3. Obtained Plants for Active Damping< / a > < / li >
2020-01-15 16:23:40 +01:00
< / ul >
< / li >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orgb30c7fd" > 1.2. Tomography Experiment< / a >
2019-10-18 17:34:45 +02:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orgf71542f" > 1.2.1. Simulation< / a > < / li >
< li > < a href = "#org15546d3" > 1.2.2. Results< / a > < / li >
2020-01-15 16:23:40 +01:00
< / ul >
< / li >
2019-10-18 17:34:45 +02:00
< / ul >
< / li >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org097f664" > 2. Variability of the system dynamics for Active Damping< / a >
2019-10-18 17:34:45 +02:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org39af6f9" > 2.1. Variation of the Sample Mass< / a > < / li >
< li > < a href = "#org229c4c5" > 2.2. Variation of the Spindle Angle< / a > < / li >
< li > < a href = "#org352fc0c" > 2.3. Variation of the Spindle Rotation Speed< / a >
2019-10-18 17:34:45 +02:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orgc6e2b26" > 2.3.1. Dynamics of the Active Damping plants< / a > < / li >
< li > < a href = "#org8aa8182" > 2.3.2. Variation of the poles and zeros with the Spindle rotation frequency< / a > < / li >
2019-10-18 17:34:45 +02:00
< / ul >
< / li >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org0153a58" > 2.4. Variation of the Tilt Angle< / a > < / li >
< li > < a href = "#org4e27559" > 2.5. Scans of the Translation Stage< / a > < / li >
< li > < a href = "#orgb3ee7e4" > 2.6. Conclusion< / a > < / li >
2019-10-18 17:34:45 +02:00
< / ul >
< / li >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orgf08b709" > 3. Integral Force Feedback< / a >
2019-10-18 17:34:45 +02:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org87395b8" > 3.1. Control Design< / a >
2019-10-18 17:34:45 +02:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org77e4473" > 3.1.1. Plant< / a > < / li >
< li > < a href = "#org1c94029" > 3.1.2. Control Design< / a > < / li >
< li > < a href = "#orga4ebb1c" > 3.1.3. Diagonal Controller< / a > < / li >
< li > < a href = "#orgad90da1" > 3.1.4. IFF with High Pass Filter< / a > < / li >
2019-10-18 17:34:45 +02:00
< / ul >
< / li >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org98b7048" > 3.2. Tomography Experiment< / a >
2020-01-15 16:23:40 +01:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org43bf533" > 3.2.1. Simulation with IFF Controller< / a > < / li >
< li > < a href = "#orge0b6480" > 3.2.2. Simulation with IFF Controller with added High Pass Filter< / a > < / li >
< li > < a href = "#org5f65a86" > 3.2.3. Compare with Undamped system< / a > < / li >
2019-10-18 17:34:45 +02:00
< / ul >
< / li >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org22577cc" > 3.3. Conclusion< / a > < / li >
2020-01-15 16:23:40 +01:00
< / ul >
< / li >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org93105e9" > 4. Direct Velocity Feedback< / a >
2020-01-15 16:23:40 +01:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org0181bc6" > 4.1. Control Design< / a >
2019-10-18 17:34:45 +02:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org0baaad9" > 4.1.1. Plant< / a > < / li >
< li > < a href = "#org9d0d598" > 4.1.2. Control Design< / a > < / li >
< li > < a href = "#orgc664cda" > 4.1.3. Diagonal Controller< / a > < / li >
2020-01-15 16:23:40 +01:00
< / ul >
< / li >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org30a47bd" > 4.2. Tomography Experiment< / a >
2019-10-18 17:34:45 +02:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orged4c8ff" > 4.2.1. Initialize the Simulation< / a > < / li >
< li > < a href = "#orgafcf6c3" > 4.2.2. Simulation< / a > < / li >
< li > < a href = "#orgdee965e" > 4.2.3. Compare with Undamped system< / a > < / li >
2019-10-18 17:34:45 +02:00
< / ul >
< / li >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orgc1e250f" > 4.3. Conclusion< / a > < / li >
2019-10-18 17:34:45 +02:00
< / ul >
< / li >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orga585807" > 5. Inertial Control< / a >
2020-01-15 16:23:40 +01:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orgef3b74a" > 5.1. Control Design< / a >
< ul >
< li > < a href = "#org62bfbc7" > 5.1.1. Plant< / a > < / li >
< li > < a href = "#orgeeec2e5" > 5.1.2. Control Design< / a > < / li >
< li > < a href = "#org240b7fd" > 5.1.3. Diagonal Controller< / a > < / li >
2020-01-21 17:28:49 +01:00
< / ul >
< / li >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orgea439d2" > 5.2. Tomography Experiment< / a >
2020-01-15 16:23:40 +01:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orgd52597f" > 5.2.1. Initialize the Simulation< / a > < / li >
< li > < a href = "#org2ad0ade" > 5.2.2. Simulation< / a > < / li >
< li > < a href = "#orgfd09099" > 5.2.3. Compare with Undamped system< / a > < / li >
< / ul >
< / li >
< li > < a href = "#org5a63825" > 5.3. Conclusion< / a > < / li >
< / ul >
< / li >
< li > < a href = "#org230c9f4" > 6. Comparison< / a >
< ul >
< li > < a href = "#org4baffd6" > 6.1. Load the plants< / a > < / li >
< li > < a href = "#orga058c69" > 6.2. Sensitivity to Disturbance< / a > < / li >
< li > < a href = "#org7d53c0f" > 6.3. Damped Plant< / a > < / li >
< li > < a href = "#org70d41b8" > 6.4. Tomography Experiment< / a >
2020-01-21 17:28:49 +01:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#org604ad48" > 6.4.1. Load the Simulation Data< / a > < / li >
< li > < a href = "#orgc2877fd" > 6.4.2. Frequency Domain Analysis< / a > < / li >
2020-01-15 16:23:40 +01:00
< / ul >
< / li >
< / ul >
< / li >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orgbe23ba6" > 7. Useful Functions< / a >
2020-01-15 16:23:40 +01:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orge26884f" > 7.1. prepareTomographyExperiment< / a >
2019-10-18 17:34:45 +02:00
< ul >
2020-02-04 16:13:52 +01:00
< li > < a href = "#orgbd71c69" > Function Description< / a > < / li >
< li > < a href = "#org79eafae" > Optional Parameters< / a > < / li >
< li > < a href = "#orge7b78fc" > Initialize the Simulation< / a > < / li >
2020-01-15 16:23:40 +01:00
< / ul >
< / li >
2019-10-18 17:34:45 +02:00
< / ul >
< / li >
< / ul >
< / div >
< / div >
< p >
2020-02-04 16:13:52 +01:00
First, in section < a href = "#orgcd3c1c9" > 1< / a > , we will looked at the undamped system.
2019-10-18 17:34:45 +02:00
< / p >
< p >
Then, we will compare three active damping techniques:
< / p >
< ul class = "org-ul" >
2020-02-04 16:13:52 +01:00
< li > In section < a href = "#org81e3ebf" > 3< / a > : the integral force feedback is used< / li >
< li > In section < a href = "#org5349d23" > 4< / a > : the direct velocity feedback is used< / li >
< li > In section < a href = "#org6300794" > 5< / a > : inertial control is used< / li >
2019-10-18 17:34:45 +02:00
< / ul >
< p >
For each of the active damping technique, we will:
< / p >
< ul class = "org-ul" >
< li > Look at the damped plant< / li >
2020-01-15 16:23:40 +01:00
< li > Simulate tomography experiments< / li >
< li > Compare the sensitivity from disturbances< / li >
2019-10-18 17:34:45 +02:00
< / ul >
< p >
The disturbances are:
< / p >
< ul class = "org-ul" >
< li > Ground motion< / li >
< li > Motion errors of all the stages< / li >
< / ul >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org97abc59" class = "outline-2" >
< h2 id = "org97abc59" > < span class = "section-number-2" > 1< / span > Undamped System< / h2 >
2019-10-18 17:34:45 +02:00
< div class = "outline-text-2" id = "text-1" >
< p >
2020-02-04 16:13:52 +01:00
< a id = "orgcd3c1c9" > < / a >
2019-10-18 17:34:45 +02:00
< / p >
< p >
We first look at the undamped system.
The performance of this undamped system will be compared with the damped system using various techniques.
< / p >
< / div >
2019-10-25 16:02:23 +02:00
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org7d459a2" class = "outline-3" >
< h3 id = "org7d459a2" > < span class = "section-number-3" > 1.1< / span > Identification of the dynamics for Active Damping< / h3 >
2019-10-18 17:34:45 +02:00
< div class = "outline-text-3" id = "text-1-1" >
2020-01-15 16:23:40 +01:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org6a76f18" class = "outline-4" >
< h4 id = "org6a76f18" > < span class = "section-number-4" > 1.1.1< / span > Initialize the Simulation< / h4 >
2020-01-15 16:23:40 +01:00
< div class = "outline-text-4" id = "text-1-1-1" >
2019-10-18 17:34:45 +02:00
< p >
We initialize all the stages with the default parameters.
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > initializeNanoHexapod(< span class = "org-string" > 'actuator'< / span > , < span class = "org-string" > 'piezo'< / span > );
initializeSample(< span class = "org-string" > 'mass'< / span > , 50);
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
We set the references to zero.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-02-04 16:13:52 +01:00
< pre class = "src src-matlab" > initializeReferences();
< / pre >
< / div >
< div class = "org-src-container" >
< pre class = "src src-matlab" > initializeDisturbances(< span class = "org-string" > 'enable'< / span > , < span class = "org-constant" > false< / span > );
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
2019-10-25 16:02:23 +02:00
< p >
2020-01-15 16:23:40 +01:00
And all the controllers are set to 0.
2019-10-25 16:02:23 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > K = tf(zeros(6));
save(< span class = "org-string" > './mat/controllers.mat'< / span > , < span class = "org-string" > 'K'< / span > , < span class = "org-string" > '-append'< / span > );
K_ine = tf(zeros(6));
save(< span class = "org-string" > './mat/controllers.mat'< / span > , < span class = "org-string" > 'K_ine'< / span > , < span class = "org-string" > '-append'< / span > );
K_iff = tf(zeros(6));
save(< span class = "org-string" > './mat/controllers.mat'< / span > , < span class = "org-string" > 'K_iff'< / span > , < span class = "org-string" > '-append'< / span > );
K_dvf = tf(zeros(6));
save(< span class = "org-string" > './mat/controllers.mat'< / span > , < span class = "org-string" > 'K_dvf'< / span > , < span class = "org-string" > '-append'< / span > );
2019-10-25 16:02:23 +02:00
< / pre >
< / div >
2019-10-18 17:34:45 +02:00
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgceae930" class = "outline-4" >
< h4 id = "orgceae930" > < span class = "section-number-4" > 1.1.2< / span > Identification< / h4 >
2020-01-15 16:23:40 +01:00
< div class = "outline-text-4" id = "text-1-1-2" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
First, we identify the dynamics of the system using the < code > linearize< / code > function.
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > < span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Options for Linearized< / span > < / span >
options = linearizeOptions;
options.SampleTime = 0;
< span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Name of the Simulink File< / span > < / span >
mdl = < span class = "org-string" > 'sim_nass_active_damping'< / span > ;
< span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Input/Output definition< / span > < / span >
clear io; io_i = 1;
io(io_i) = linio([mdl, < span class = "org-string" > '/Fnl'< / span > ], 1, < span class = "org-string" > 'openinput'< / span > ); io_i = io_i < span class = "org-type" > +< / span > 1;
io(io_i) = linio([mdl, < span class = "org-string" > '/Micro-Station'< / span > ], 3, < span class = "org-string" > 'openoutput'< / span > , [], < span class = "org-string" > 'Dnlm'< / span > ); io_i = io_i < span class = "org-type" > +< / span > 1;
io(io_i) = linio([mdl, < span class = "org-string" > '/Micro-Station'< / span > ], 3, < span class = "org-string" > 'openoutput'< / span > , [], < span class = "org-string" > 'Fnlm'< / span > ); io_i = io_i < span class = "org-type" > +< / span > 1;
io(io_i) = linio([mdl, < span class = "org-string" > '/Micro-Station'< / span > ], 3, < span class = "org-string" > 'openoutput'< / span > , [], < span class = "org-string" > 'Vlm'< / span > ); io_i = io_i < span class = "org-type" > +< / span > 1;
< span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Run the linearization< / span > < / span >
2020-02-04 16:13:52 +01:00
G = linearize(mdl, io, 0.5, options);
2020-01-15 16:23:40 +01:00
G.InputName = {< span class = "org-string" > 'Fnl1'< / span > , < span class = "org-string" > 'Fnl2'< / span > , < span class = "org-string" > 'Fnl3'< / span > , < span class = "org-string" > 'Fnl4'< / span > , < span class = "org-string" > 'Fnl5'< / span > , < span class = "org-string" > 'Fnl6'< / span > };
G.OutputName = {< span class = "org-string" > 'Dnlm1'< / span > , < span class = "org-string" > 'Dnlm2'< / span > , < span class = "org-string" > 'Dnlm3'< / span > , < span class = "org-string" > 'Dnlm4'< / span > , < span class = "org-string" > 'Dnlm5'< / span > , < span class = "org-string" > 'Dnlm6'< / span > , ...
< span class = "org-string" > 'Fnlm1'< / span > , < span class = "org-string" > 'Fnlm2'< / span > , < span class = "org-string" > 'Fnlm3'< / span > , < span class = "org-string" > 'Fnlm4'< / span > , < span class = "org-string" > 'Fnlm5'< / span > , < span class = "org-string" > 'Fnlm6'< / span > , ...
< span class = "org-string" > 'Vnlm1'< / span > , < span class = "org-string" > 'Vnlm2'< / span > , < span class = "org-string" > 'Vnlm3'< / span > , < span class = "org-string" > 'Vnlm4'< / span > , < span class = "org-string" > 'Vnlm5'< / span > , < span class = "org-string" > 'Vnlm6'< / span > };
< / pre >
2019-10-18 17:34:45 +02:00
< / div >
2019-10-25 16:02:23 +02:00
2020-01-15 16:23:40 +01:00
< p >
We then create transfer functions corresponding to the active damping plants.
2019-10-25 16:02:23 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > G_iff = minreal(G({< span class = "org-string" > 'Fnlm1'< / span > , < span class = "org-string" > 'Fnlm2'< / span > , < span class = "org-string" > 'Fnlm3'< / span > , < span class = "org-string" > 'Fnlm4'< / span > , < span class = "org-string" > 'Fnlm5'< / span > , < span class = "org-string" > 'Fnlm6'< / span > }, {< span class = "org-string" > 'Fnl1'< / span > , < span class = "org-string" > 'Fnl2'< / span > , < span class = "org-string" > 'Fnl3'< / span > , < span class = "org-string" > 'Fnl4'< / span > , < span class = "org-string" > 'Fnl5'< / span > , < span class = "org-string" > 'Fnl6'< / span > }));
G_dvf = minreal(G({< span class = "org-string" > 'Dnlm1'< / span > , < span class = "org-string" > 'Dnlm2'< / span > , < span class = "org-string" > 'Dnlm3'< / span > , < span class = "org-string" > 'Dnlm4'< / span > , < span class = "org-string" > 'Dnlm5'< / span > , < span class = "org-string" > 'Dnlm6'< / span > }, {< span class = "org-string" > 'Fnl1'< / span > , < span class = "org-string" > 'Fnl2'< / span > , < span class = "org-string" > 'Fnl3'< / span > , < span class = "org-string" > 'Fnl4'< / span > , < span class = "org-string" > 'Fnl5'< / span > , < span class = "org-string" > 'Fnl6'< / span > }));
G_ine = minreal(G({< span class = "org-string" > 'Vnlm1'< / span > , < span class = "org-string" > 'Vnlm2'< / span > , < span class = "org-string" > 'Vnlm3'< / span > , < span class = "org-string" > 'Vnlm4'< / span > , < span class = "org-string" > 'Vnlm5'< / span > , < span class = "org-string" > 'Vnlm6'< / span > }, {< span class = "org-string" > 'Fnl1'< / span > , < span class = "org-string" > 'Fnl2'< / span > , < span class = "org-string" > 'Fnl3'< / span > , < span class = "org-string" > 'Fnl4'< / span > , < span class = "org-string" > 'Fnl5'< / span > , < span class = "org-string" > 'Fnl6'< / span > }));
< / pre >
2019-10-18 17:34:45 +02:00
< / div >
< p >
2020-01-15 16:23:40 +01:00
And we save them for further analysis.
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > save(< span class = "org-string" > './active_damping/mat/undamped_plants.mat'< / span > , < span class = "org-string" > 'G_iff'< / span > , < span class = "org-string" > 'G_dvf'< / span > , < span class = "org-string" > 'G_ine'< / span > );
< / pre >
2019-10-18 17:34:45 +02:00
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org50cac8d" class = "outline-4" >
< h4 id = "org50cac8d" > < span class = "section-number-4" > 1.1.3< / span > Obtained Plants for Active Damping< / h4 >
2020-01-15 16:23:40 +01:00
< div class = "outline-text-4" id = "text-1-1-3" >
2020-01-21 17:28:49 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/undamped_plants.mat'< / span > , < span class = "org-string" > 'G_iff'< / span > , < span class = "org-string" > 'G_dvf'< / span > , < span class = "org-string" > 'G_ine'< / span > );
< / pre >
< / div >
2019-10-25 16:02:23 +02:00
2020-01-21 17:28:49 +01:00
2020-02-04 16:13:52 +01:00
< div id = "orgae07e00" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/nass_active_damping_iff_plant.png" alt = "nass_active_damping_iff_plant.png" / >
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< p > < span class = "figure-number" > Figure 1: < / span > < code > G_iff< / code > : IFF Plant (< a href = "./figs/nass_active_damping_iff_plant.png" > png< / a > , < a href = "./figs/nass_active_damping_iff_plant.pdf" > pdf< / a > )< / p >
2019-10-18 17:34:45 +02:00
< / div >
2019-10-25 16:02:23 +02:00
2019-10-18 17:34:45 +02:00
2020-02-04 16:13:52 +01:00
< div id = "org54ba9ab" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/nass_active_damping_ine_plant.png" alt = "nass_active_damping_ine_plant.png" / >
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< p > < span class = "figure-number" > Figure 2: < / span > < code > G_dvf< / code > : Plant for Direct Velocity Feedback (< a href = "./figs/nass_active_damping_dvf_plant.png" > png< / a > , < a href = "./figs/nass_active_damping_dvf_plant.pdf" > pdf< / a > )< / p >
2019-10-18 17:34:45 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org8d04315" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/nass_active_damping_inertial_plant.png" alt = "nass_active_damping_inertial_plant.png" / >
2019-10-18 17:34:45 +02:00
< / p >
2020-01-21 17:28:49 +01:00
< p > < span class = "figure-number" > Figure 3: < / span > < code > G_ine< / code > : Inertial Feedback Plant (< a href = "./figs/nass_active_damping_inertial_plant.png" > png< / a > , < a href = "./figs/nass_active_damping_inertial_plant.pdf" > pdf< / a > )< / p >
2020-01-15 16:23:40 +01:00
< / div >
< / div >
< / div >
< / div >
2019-10-18 17:34:45 +02:00
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgb30c7fd" class = "outline-3" >
< h3 id = "orgb30c7fd" > < span class = "section-number-3" > 1.2< / span > Tomography Experiment< / h3 >
2020-01-15 16:23:40 +01:00
< div class = "outline-text-3" id = "text-1-2" >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgf71542f" class = "outline-4" >
< h4 id = "orgf71542f" > < span class = "section-number-4" > 1.2.1< / span > Simulation< / h4 >
2020-01-15 16:23:40 +01:00
< div class = "outline-text-4" id = "text-1-2-1" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
We initialize elements for the tomography experiment.
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > prepareTomographyExperiment();
< / pre >
2019-10-18 17:34:45 +02:00
< / div >
< p >
2020-01-15 16:23:40 +01:00
We change the simulation stop time.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > load(< span class = "org-string" > 'mat/conf_simscape.mat'< / span > );
< span class = "org-matlab-simulink-keyword" > set_param< / span > (< span class = "org-variable-name" > conf_simscape< / span > , < span class = "org-string" > 'StopTime'< / span > , < span class = "org-string" > '3'< / span > );
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
And we simulate the system.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > < span class = "org-matlab-simulink-keyword" > sim< / span > (< span class = "org-string" > 'sim_nass_active_damping'< / span > );
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
Finally, we save the simulation results for further analysis
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > save(< span class = "org-string" > './active_damping/mat/tomo_exp.mat'< / span > , < span class = "org-string" > 'En'< / span > , < span class = "org-string" > 'Eg'< / span > , < span class = "org-string" > '-append'< / span > );
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
2020-01-15 16:23:40 +01:00
< / div >
< / div >
2019-10-18 17:34:45 +02:00
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org15546d3" class = "outline-4" >
< h4 id = "org15546d3" > < span class = "section-number-4" > 1.2.2< / span > Results< / h4 >
2020-01-15 16:23:40 +01:00
< div class = "outline-text-4" id = "text-1-2-2" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
We load the results of tomography experiments.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/tomo_exp.mat'< / span > , < span class = "org-string" > 'En'< / span > );
t = linspace(0, 3, length(En(< span class = "org-type" > :< / span > ,1)));
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "orga9eaa7e" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/nass_act_damp_undamped_sim_tomo_trans.png" alt = "nass_act_damp_undamped_sim_tomo_trans.png" / >
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< p > < span class = "figure-number" > Figure 4: < / span > Position Error during tomography experiment - Translations (< a href = "./figs/nass_act_damp_undamped_sim_tomo_trans.png" > png< / a > , < a href = "./figs/nass_act_damp_undamped_sim_tomo_trans.pdf" > pdf< / a > )< / p >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "orge6dfe03" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/nass_act_damp_undamped_sim_tomo_rot.png" alt = "nass_act_damp_undamped_sim_tomo_rot.png" / >
< / p >
< p > < span class = "figure-number" > Figure 5: < / span > Position Error during tomography experiment - Rotations (< a href = "./figs/nass_act_damp_undamped_sim_tomo_rot.png" > png< / a > , < a href = "./figs/nass_act_damp_undamped_sim_tomo_rot.pdf" > pdf< / a > )< / p >
< / div >
2019-10-18 17:34:45 +02:00
< / div >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org097f664" class = "outline-2" >
< h2 id = "org097f664" > < span class = "section-number-2" > 2< / span > Variability of the system dynamics for Active Damping< / h2 >
2020-01-15 16:23:40 +01:00
< div class = "outline-text-2" id = "text-2" >
2019-10-18 17:34:45 +02:00
< p >
2020-02-04 16:13:52 +01:00
< a id = "org2ff3e99" > < / a >
< / p >
< p >
The goal of this section is to study how the dynamics of the Active Damping plants are changing with the experimental conditions.
These experimental conditions are:
< / p >
< ul class = "org-ul" >
< li > The mass of the sample (section < a href = "#orgf4c0294" > 2.1< / a > )< / li >
< li > The spindle angle with a null rotating speed (section < a href = "#org103d069" > 2.2< / a > )< / li >
< li > The spindle rotation speed (section < a href = "#org329a267" > 2.3< / a > )< / li >
< li > The tilt angle (section < a href = "#org3f724e4" > 2.4< / a > )< / li >
< li > The scans of the translation stage (section < a href = "#org6499091" > 2.5< / a > )< / li >
< / ul >
< p >
For the identification of the dynamics, the system is simulation for \(\approx 0.5s\) before the linearization is performed.
This is done in order for the transient phase to be over.
< / p >
< / div >
< div id = "outline-container-org39af6f9" class = "outline-3" >
< h3 id = "org39af6f9" > < span class = "section-number-3" > 2.1< / span > Variation of the Sample Mass< / h3 >
< div class = "outline-text-3" id = "text-2-1" >
< p >
< a id = "orgf4c0294" > < / a >
< / p >
< p >
For all the identifications, the disturbances are disabled and no controller are used.
< / p >
< p >
We identify the dynamics for the following sample mass.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > masses = [1, 10, 50]; < span class = "org-comment" > % [kg]< / span >
< / pre >
< / div >
< div id = "org568a9b1" class = "figure" >
< p > < img src = "figs/act_damp_variability_iff_sample_mass.png" alt = "act_damp_variability_iff_sample_mass.png" / >
< / p >
< p > < span class = "figure-number" > Figure 6: < / span > Variability of the IFF plant with the Sample Mass (< a href = "./figs/act_damp_variability_iff_sample_mass.png" > png< / a > , < a href = "./figs/act_damp_variability_iff_sample_mass.pdf" > pdf< / a > )< / p >
< / div >
< div id = "orgb99e55d" class = "figure" >
< p > < img src = "figs/act_damp_variability_dvf_sample_mass.png" alt = "act_damp_variability_dvf_sample_mass.png" / >
< / p >
< p > < span class = "figure-number" > Figure 7: < / span > Variability of the DVF plant with the Sample Mass (< a href = "./figs/act_damp_variability_dvf_sample_mass.png" > png< / a > , < a href = "./figs/act_damp_variability_dvf_sample_mass.pdf" > pdf< / a > )< / p >
< / div >
< div id = "org34d5224" class = "figure" >
< p > < img src = "figs/act_damp_variability_ine_sample_mass.png" alt = "act_damp_variability_ine_sample_mass.png" / >
< / p >
< p > < span class = "figure-number" > Figure 8: < / span > Variability of the Inertial plant with the Sample Mass (< a href = "./figs/act_damp_variability_ine_sample_mass.png" > png< / a > , < a href = "./figs/act_damp_variability_ine_sample_mass.pdf" > pdf< / a > )< / p >
< / div >
< / div >
< / div >
< div id = "outline-container-org229c4c5" class = "outline-3" >
< h3 id = "org229c4c5" > < span class = "section-number-3" > 2.2< / span > Variation of the Spindle Angle< / h3 >
< div class = "outline-text-3" id = "text-2-2" >
< p >
< a id = "org103d069" > < / a >
< / p >
< p >
We identify the dynamics for the following Spindle angles.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > Rz_amplitudes = [0, < span class = "org-constant" > pi< / span > < span class = "org-type" > /< / span > 4, < span class = "org-constant" > pi< / span > < span class = "org-type" > /< / span > 2, < span class = "org-constant" > pi< / span > ]; < span class = "org-comment" > % [rad]< / span >
< / pre >
< / div >
< div id = "orgd4b2f43" class = "figure" >
< p > < img src = "figs/act_damp_variability_iff_spindle_angle.png" alt = "act_damp_variability_iff_spindle_angle.png" / >
< / p >
< p > < span class = "figure-number" > Figure 9: < / span > Variability of the IFF plant with the Spindle Angle (< a href = "./figs/act_damp_variability_iff_spindle_angle.png" > png< / a > , < a href = "./figs/act_damp_variability_iff_spindle_angle.pdf" > pdf< / a > )< / p >
< / div >
< div id = "org83b65c2" class = "figure" >
< p > < img src = "figs/act_damp_variability_dvf_spindle_angle.png" alt = "act_damp_variability_dvf_spindle_angle.png" / >
< / p >
< p > < span class = "figure-number" > Figure 10: < / span > Variability of the DVF plant with the Spindle Angle (< a href = "./figs/act_damp_variability_dvf_spindle_angle.png" > png< / a > , < a href = "./figs/act_damp_variability_dvf_spindle_angle.pdf" > pdf< / a > )< / p >
< / div >
< div id = "org9d12465" class = "figure" >
< p > < img src = "figs/act_damp_variability_ine_spindle_angle.png" alt = "act_damp_variability_ine_spindle_angle.png" / >
< / p >
< p > < span class = "figure-number" > Figure 11: < / span > Variability of the Inertial plant with the Spindle Angle (< a href = "./figs/act_damp_variability_ine_spindle_angle.png" > png< / a > , < a href = "./figs/act_damp_variability_ine_spindle_angle.pdf" > pdf< / a > )< / p >
< / div >
< / div >
< / div >
< div id = "outline-container-org352fc0c" class = "outline-3" >
< h3 id = "org352fc0c" > < span class = "section-number-3" > 2.3< / span > Variation of the Spindle Rotation Speed< / h3 >
< div class = "outline-text-3" id = "text-2-3" >
< p >
< a id = "org329a267" > < / a >
< / p >
< p >
We identify the dynamics for the following Spindle rotation periods.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > Rz_periods = [60, 6, 2, 1]; < span class = "org-comment" > % [s]< / span >
< / pre >
< / div >
< p >
The identification of the dynamics is done at the same Spindle angle position.
< / p >
< / div >
< div id = "outline-container-orgc6e2b26" class = "outline-4" >
< h4 id = "orgc6e2b26" > < span class = "section-number-4" > 2.3.1< / span > Dynamics of the Active Damping plants< / h4 >
< div class = "outline-text-4" id = "text-2-3-1" >
< div id = "org3436e1a" class = "figure" >
< p > < img src = "figs/act_damp_variability_iff_spindle_speed.png" alt = "act_damp_variability_iff_spindle_speed.png" / >
< / p >
< p > < span class = "figure-number" > Figure 12: < / span > Variability of the IFF plant with the Spindle rotation speed (< a href = "./figs/act_damp_variability_iff_spindle_speed.png" > png< / a > , < a href = "./figs/act_damp_variability_iff_spindle_speed.pdf" > pdf< / a > )< / p >
< / div >
< div id = "orga1a9583" class = "figure" >
< p > < img src = "figs/act_damp_variability_iff_spindle_speed_zoom.png" alt = "act_damp_variability_iff_spindle_speed_zoom.png" / >
< / p >
< p > < span class = "figure-number" > Figure 13: < / span > Variability of the IFF plant with the Spindle rotation speed (< a href = "./figs/act_damp_variability_iff_spindle_speed_zoom.png" > png< / a > , < a href = "./figs/act_damp_variability_iff_spindle_speed_zoom.pdf" > pdf< / a > )< / p >
< / div >
< div id = "org06821ac" class = "figure" >
< p > < img src = "figs/act_damp_variability_dvf_spindle_speed.png" alt = "act_damp_variability_dvf_spindle_speed.png" / >
< / p >
< p > < span class = "figure-number" > Figure 14: < / span > Variability of the DVF plant with the Spindle rotation speed (< a href = "./figs/act_damp_variability_dvf_spindle_speed.png" > png< / a > , < a href = "./figs/act_damp_variability_dvf_spindle_speed.pdf" > pdf< / a > )< / p >
< / div >
< div id = "org0c492f1" class = "figure" >
< p > < img src = "figs/act_damp_variability_dvf_spindle_speed_zoom.png" alt = "act_damp_variability_dvf_spindle_speed_zoom.png" / >
< / p >
< p > < span class = "figure-number" > Figure 15: < / span > Variability of the DVF plant with the Spindle rotation speed (< a href = "./figs/act_damp_variability_dvf_spindle_speed_zoom.png" > png< / a > , < a href = "./figs/act_damp_variability_dvf_spindle_speed_zoom.pdf" > pdf< / a > )< / p >
< / div >
< div id = "org61474a1" class = "figure" >
< p > < img src = "figs/act_damp_variability_ine_spindle_speed.png" alt = "act_damp_variability_ine_spindle_speed.png" / >
< / p >
< p > < span class = "figure-number" > Figure 16: < / span > Variability of the Inertial plant with the Spindle rotation speed (< a href = "./figs/act_damp_variability_ine_spindle_speed.png" > png< / a > , < a href = "./figs/act_damp_variability_ine_spindle_speed.pdf" > pdf< / a > )< / p >
< / div >
< div id = "orgf54e8be" class = "figure" >
< p > < img src = "figs/act_damp_variability_ine_spindle_speed_zoom.png" alt = "act_damp_variability_ine_spindle_speed_zoom.png" / >
< / p >
< p > < span class = "figure-number" > Figure 17: < / span > Variability of the Inertial plant with the Spindle rotation speed (< a href = "./figs/act_damp_variability_ine_spindle_speed_zoom.png" > png< / a > , < a href = "./figs/act_damp_variability_ine_spindle_speed_zoom.pdf" > pdf< / a > )< / p >
< / div >
< / div >
< / div >
< div id = "outline-container-org8aa8182" class = "outline-4" >
< h4 id = "org8aa8182" > < span class = "section-number-4" > 2.3.2< / span > Variation of the poles and zeros with the Spindle rotation frequency< / h4 >
< div class = "outline-text-4" id = "text-2-3-2" >
< div id = "org88e0700" class = "figure" >
< p > < img src = "figs/campbell_diagram_spindle_rotation.png" alt = "campbell_diagram_spindle_rotation.png" / >
< / p >
< p > < span class = "figure-number" > Figure 18: < / span > Evolution of the pole with respect to the spindle rotation speed (< a href = "./figs/campbell_diagram_spindle_rotation.png" > png< / a > , < a href = "./figs/campbell_diagram_spindle_rotation.pdf" > pdf< / a > )< / p >
< / div >
< div id = "orgb70444b" class = "figure" >
< p > < img src = "figs/variation_zeros_active_damping_plants.png" alt = "variation_zeros_active_damping_plants.png" / >
< / p >
< p > < span class = "figure-number" > Figure 19: < / span > Evolution of the zero with respect to the spindle rotation speed (< a href = "./figs/variation_zeros_active_damping_plants.png" > png< / a > , < a href = "./figs/variation_zeros_active_damping_plants.pdf" > pdf< / a > )< / p >
< / div >
< / div >
< / div >
< / div >
< div id = "outline-container-org0153a58" class = "outline-3" >
< h3 id = "org0153a58" > < span class = "section-number-3" > 2.4< / span > Variation of the Tilt Angle< / h3 >
< div class = "outline-text-3" id = "text-2-4" >
< p >
< a id = "org3f724e4" > < / a >
< / p >
< p >
We identify the dynamics for the following Tilt stage angles.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > Ry_amplitudes = [< span class = "org-type" > -< / span > 3< span class = "org-type" > *< / span > < span class = "org-constant" > pi< / span > < span class = "org-type" > /< / span > 180, 3< span class = "org-type" > *< / span > < span class = "org-constant" > pi< / span > < span class = "org-type" > /< / span > 180]; < span class = "org-comment" > % [rad]< / span >
< / pre >
< / div >
< div id = "org3b6edaa" class = "figure" >
< p > < img src = "figs/act_damp_variability_iff_tilt_angle.png" alt = "act_damp_variability_iff_tilt_angle.png" / >
< / p >
< p > < span class = "figure-number" > Figure 20: < / span > Variability of the IFF plant with the Tilt stage Angle (< a href = "./figs/act_damp_variability_iff_tilt_angle.png" > png< / a > , < a href = "./figs/act_damp_variability_iff_tilt_angle.pdf" > pdf< / a > )< / p >
< / div >
< div id = "org07994f6" class = "figure" >
< p > < img src = "figs/act_damp_variability_dvf_tilt_angle.png" alt = "act_damp_variability_dvf_tilt_angle.png" / >
< / p >
< p > < span class = "figure-number" > Figure 21: < / span > Variability of the DVF plant with the Tilt Angle (< a href = "./figs/act_damp_variability_dvf_tilt_angle.png" > png< / a > , < a href = "./figs/act_damp_variability_dvf_tilt_angle.pdf" > pdf< / a > )< / p >
< / div >
< div id = "org8d15388" class = "figure" >
< p > < img src = "figs/act_damp_variability_ine_tilt_angle.png" alt = "act_damp_variability_ine_tilt_angle.png" / >
< / p >
< p > < span class = "figure-number" > Figure 22: < / span > Variability of the Inertial plant with the Tilt Angle (< a href = "./figs/act_damp_variability_ine_tilt_angle.png" > png< / a > , < a href = "./figs/act_damp_variability_ine_tilt_angle.pdf" > pdf< / a > )< / p >
< / div >
< / div >
< / div >
< div id = "outline-container-org4e27559" class = "outline-3" >
< h3 id = "org4e27559" > < span class = "section-number-3" > 2.5< / span > Scans of the Translation Stage< / h3 >
< div class = "outline-text-3" id = "text-2-5" >
< p >
< a id = "org6499091" > < / a >
< / p >
< p >
We want here to verify if the dynamics used for Active damping is varying when using the translation stage for scans.
< / p >
< p >
We initialize the translation stage reference to be a sinus with an amplitude of 5mm and a period of 1s (Figure < a href = "#orgcd997d7" > 23< / a > ).
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > initializeReferences(< span class = "org-string" > 'Dy_type'< / span > , < span class = "org-string" > 'sinusoidal'< / span > , ...
< span class = "org-string" > 'Dy_amplitude'< / span > , 5e< span class = "org-type" > -< / span > 3, ...< span class = "org-comment" > % [m]< / span >
< span class = "org-string" > 'Dy_period'< / span > , 1); < span class = "org-comment" > % [s]< / span >
< / pre >
< / div >
< div id = "orgcd997d7" class = "figure" >
< p > < img src = "figs/ty_scanning_reference_sinus.png" alt = "ty_scanning_reference_sinus.png" / >
< / p >
< p > < span class = "figure-number" > Figure 23: < / span > Reference path for the translation stage (< a href = "./figs/ty_scanning_reference_sinus.png" > png< / a > , < a href = "./figs/ty_scanning_reference_sinus.pdf" > pdf< / a > )< / p >
< / div >
< p >
We identify the dynamics at different positions (times) when scanning with the Translation stage.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > t_lin = [0.5, 0.75, 1, 1.25];
< / pre >
< / div >
< div id = "orgd5f0d49" class = "figure" >
< p > < img src = "figs/act_damp_variability_iff_ty_scans.png" alt = "act_damp_variability_iff_ty_scans.png" / >
< / p >
< p > < span class = "figure-number" > Figure 24: < / span > Variability of the IFF plant at different Ty scan positions (< a href = "./figs/act_damp_variability_iff_ty_scans.png" > png< / a > , < a href = "./figs/act_damp_variability_iff_ty_scans.pdf" > pdf< / a > )< / p >
< / div >
< div id = "orgf38c00d" class = "figure" >
< p > < img src = "figs/act_damp_variability_dvf_ty_scans.png" alt = "act_damp_variability_dvf_ty_scans.png" / >
< / p >
< p > < span class = "figure-number" > Figure 25: < / span > Variability of the DVF plant at different Ty scan positions (< a href = "./figs/act_damp_variability_dvf_ty_scans.png" > png< / a > , < a href = "./figs/act_damp_variability_dvf_ty_scans.pdf" > pdf< / a > )< / p >
< / div >
< div id = "orga10665d" class = "figure" >
< p > < img src = "figs/act_damp_variability_ine_ty_scans.png" alt = "act_damp_variability_ine_ty_scans.png" / >
< / p >
< p > < span class = "figure-number" > Figure 26: < / span > Variability of the Inertial plant at different Ty scan positions (< a href = "./figs/act_damp_variability_ine_ty_scans.png" > png< / a > , < a href = "./figs/act_damp_variability_ine_ty_scans.pdf" > pdf< / a > )< / p >
< / div >
< / div >
< / div >
< div id = "outline-container-orgb3ee7e4" class = "outline-3" >
< h3 id = "orgb3ee7e4" > < span class = "section-number-3" > 2.6< / span > Conclusion< / h3 >
< div class = "outline-text-3" id = "text-2-6" >
< table id = "orgf5b86c1" border = "2" cellspacing = "0" cellpadding = "6" rules = "groups" frame = "hsides" >
< caption class = "t-above" > < span class = "table-number" > Table 1:< / span > Conclusion on the variability of the system dynamics for active damping< / caption >
< colgroup >
< col class = "org-center" / >
< col class = "org-center" / >
< / colgroup >
< thead >
< tr >
< th scope = "col" class = "org-center" >   < / th >
< th scope = "col" class = "org-center" > < b > Change of Dynamics< / b > < / th >
< / tr >
< / thead >
< tbody >
< tr >
< td class = "org-center" > < b > Sample Mass< / b > < / td >
< td class = "org-center" > Large< / td >
< / tr >
< tr >
< td class = "org-center" > < b > Spindle Angle< / b > < / td >
< td class = "org-center" > Small< / td >
< / tr >
< tr >
< td class = "org-center" > < b > Spindle Rotation Speed< / b > < / td >
< td class = "org-center" > First resonance is split in two resonances< / td >
< / tr >
< tr >
< td class = "org-center" > < b > Tilt Angle< / b > < / td >
< td class = "org-center" > Negligible< / td >
< / tr >
< tr >
< td class = "org-center" > < b > Translation Stage scans< / b > < / td >
< td class = "org-center" > Negligible< / td >
< / tr >
< / tbody >
< / table >
< p >
Also, for the Inertial Sensor, a RHP zero may appear when the spindle is rotating fast.
< / p >
< div class = "important" >
< p >
When using either a force sensor or a relative motion sensor for active damping, the only “ parameter” that induce a large change for the dynamics to be controlled is the < b > sample mass< / b > .
Thus, the developed damping techniques should be robust to variations of the sample mass.
< / p >
< / div >
< / div >
< / div >
< / div >
< div id = "outline-container-orgf08b709" class = "outline-2" >
< h2 id = "orgf08b709" > < span class = "section-number-2" > 3< / span > Integral Force Feedback< / h2 >
< div class = "outline-text-2" id = "text-3" >
< p >
< a id = "org81e3ebf" > < / a >
2020-01-15 16:23:40 +01:00
< / p >
< div class = "note" >
< p >
All the files (data and Matlab scripts) are accessible < a href = "data/iff.zip" > here< / a > .
< / p >
< / div >
< p >
Integral Force Feedback is applied on the simscape model.
< / p >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org87395b8" class = "outline-3" >
< h3 id = "org87395b8" > < span class = "section-number-3" > 3.1< / span > Control Design< / h3 >
< div class = "outline-text-3" id = "text-3-1" >
2020-01-15 16:23:40 +01:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org77e4473" class = "outline-4" >
< h4 id = "org77e4473" > < span class = "section-number-4" > 3.1.1< / span > Plant< / h4 >
< div class = "outline-text-4" id = "text-3-1-1" >
2020-01-15 16:23:40 +01:00
< p >
Let’ s load the previously indentified undamped plant:
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/undamped_plants.mat'< / span > , < span class = "org-string" > 'G_iff'< / span > );
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-02-04 16:13:52 +01:00
Let’ s look at the transfer function from actuator forces in the nano-hexapod to the force sensor in the nano-hexapod legs for all 6 pairs of actuator/sensor (figure < a href = "#org3a42d2a" > 27< / a > ).
2019-10-18 17:34:45 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< div id = "org3a42d2a" class = "figure" >
2019-10-18 17:34:45 +02:00
< p > < img src = "figs/iff_plant.png" alt = "iff_plant.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 27: < / span > Transfer function from forces applied in the legs to force sensor (< a href = "./figs/iff_plant.png" > png< / a > , < a href = "./figs/iff_plant.pdf" > pdf< / a > )< / p >
2019-10-18 17:34:45 +02:00
< / div >
2020-01-15 16:23:40 +01:00
< / div >
< / div >
2019-10-18 17:34:45 +02:00
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org1c94029" class = "outline-4" >
< h4 id = "org1c94029" > < span class = "section-number-4" > 3.1.2< / span > Control Design< / h4 >
< div class = "outline-text-4" id = "text-3-1-2" >
2019-10-18 17:34:45 +02:00
< p >
The controller for each pair of actuator/sensor is:
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > K_iff = 1000< span class = "org-type" > /< / span > s;
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-02-04 16:13:52 +01:00
The corresponding loop gains are shown in figure < a href = "#org0308d43" > 28< / a > .
2019-10-18 17:34:45 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< div id = "org0308d43" class = "figure" >
2019-10-18 17:34:45 +02:00
< p > < img src = "figs/iff_open_loop.png" alt = "iff_open_loop.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 28: < / span > Loop Gain for the Integral Force Feedback (< a href = "./figs/iff_open_loop.png" > png< / a > , < a href = "./figs/iff_open_loop.pdf" > pdf< / a > )< / p >
2019-10-18 17:34:45 +02:00
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orga4ebb1c" class = "outline-4" >
< h4 id = "orga4ebb1c" > < span class = "section-number-4" > 3.1.3< / span > Diagonal Controller< / h4 >
< div class = "outline-text-4" id = "text-3-1-3" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
We create the diagonal controller and we add a minus sign as we have a positive
feedback architecture.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > K_iff = < span class = "org-type" > -< / span > K_iff< span class = "org-type" > *< / span > eye(6);
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
We save the controller for further analysis.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > save(< span class = "org-string" > './active_damping/mat/K_iff.mat'< / span > , < span class = "org-string" > 'K_iff'< / span > );
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
2020-01-15 16:23:40 +01:00
< / div >
< / div >
2020-01-20 17:20:50 +01:00
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgad90da1" class = "outline-4" >
< h4 id = "orgad90da1" > < span class = "section-number-4" > 3.1.4< / span > IFF with High Pass Filter< / h4 >
< div class = "outline-text-4" id = "text-3-1-4" >
2020-01-20 17:20:50 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > w_hpf = 2< span class = "org-type" > *< / span > < span class = "org-constant" > pi< / span > < span class = "org-type" > *< / span > 10; < span class = "org-comment" > % Cut-off frequency for the high pass filter [rad/s]< / span >
2020-01-21 17:28:49 +01:00
K_iff = 2< span class = "org-type" > *< / span > < span class = "org-constant" > pi< / span > < span class = "org-type" > *< / span > 200< span class = "org-type" > /< / span > s < span class = "org-type" > *< / span > (s< span class = "org-type" > /< / span > w_hpf)< span class = "org-type" > /< / span > (s< span class = "org-type" > /< / span > w_hpf < span class = "org-type" > +< / span > 1);
2020-01-20 17:20:50 +01:00
< / pre >
< / div >
< p >
2020-02-04 16:13:52 +01:00
The corresponding loop gains are shown in figure < a href = "#orgf71e7d4" > 29< / a > .
2020-01-20 17:20:50 +01:00
< / p >
2020-02-04 16:13:52 +01:00
< div id = "orgf71e7d4" class = "figure" >
2020-01-20 17:20:50 +01:00
< p > < img src = "figs/iff_hpf_open_loop.png" alt = "iff_hpf_open_loop.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 29: < / span > Loop Gain for the Integral Force Feedback with an High pass filter (< a href = "./figs/iff_hpf_open_loop.png" > png< / a > , < a href = "./figs/iff_hpf_open_loop.pdf" > pdf< / a > )< / p >
2020-01-20 17:20:50 +01:00
< / div >
< p >
We create the diagonal controller and we add a minus sign as we have a positive
feedback architecture.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > K_iff = < span class = "org-type" > -< / span > K_iff< span class = "org-type" > *< / span > eye(6);
< / pre >
< / div >
< p >
We save the controller for further analysis.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > save(< span class = "org-string" > './active_damping/mat/K_iff_hpf.mat'< / span > , < span class = "org-string" > 'K_iff'< / span > );
< / pre >
< / div >
< / div >
< / div >
2020-01-15 16:23:40 +01:00
< / div >
2019-10-18 17:34:45 +02:00
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org98b7048" class = "outline-3" >
< h3 id = "org98b7048" > < span class = "section-number-3" > 3.2< / span > Tomography Experiment< / h3 >
< div class = "outline-text-3" id = "text-3-2" >
2020-01-15 16:23:40 +01:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org43bf533" class = "outline-4" >
< h4 id = "org43bf533" > < span class = "section-number-4" > 3.2.1< / span > Simulation with IFF Controller< / h4 >
< div class = "outline-text-4" id = "text-3-2-1" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
We initialize elements for the tomography experiment.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > prepareTomographyExperiment();
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
We set the IFF controller.
2019-10-25 16:02:23 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/K_iff.mat'< / span > , < span class = "org-string" > 'K_iff'< / span > );
save(< span class = "org-string" > './mat/controllers.mat'< / span > , < span class = "org-string" > 'K_iff'< / span > , < span class = "org-string" > '-append'< / span > );
2019-10-25 16:02:23 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
We change the simulation stop time.
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > load(< span class = "org-string" > 'mat/conf_simscape.mat'< / span > );
< span class = "org-matlab-simulink-keyword" > set_param< / span > (< span class = "org-variable-name" > conf_simscape< / span > , < span class = "org-string" > 'StopTime'< / span > , < span class = "org-string" > '3'< / span > );
< / pre >
2019-10-18 17:34:45 +02:00
< / div >
< p >
2020-01-15 16:23:40 +01:00
And we simulate the system.
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > < span class = "org-matlab-simulink-keyword" > sim< / span > (< span class = "org-string" > 'sim_nass_active_damping'< / span > );
< / pre >
2019-10-18 17:34:45 +02:00
< / div >
2020-01-15 16:23:40 +01:00
< p >
Finally, we save the simulation results for further analysis
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > En_iff = En;
Eg_iff = Eg;
save(< span class = "org-string" > './active_damping/mat/tomo_exp.mat'< / span > , < span class = "org-string" > 'En_iff'< / span > , < span class = "org-string" > 'Eg_iff'< / span > , < span class = "org-string" > '-append'< / span > );
< / pre >
2019-10-18 17:34:45 +02:00
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orge0b6480" class = "outline-4" >
< h4 id = "orge0b6480" > < span class = "section-number-4" > 3.2.2< / span > Simulation with IFF Controller with added High Pass Filter< / h4 >
< div class = "outline-text-4" id = "text-3-2-2" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-20 17:20:50 +01:00
We initialize elements for the tomography experiment.
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
2020-01-20 17:20:50 +01:00
< pre class = "src src-matlab" > prepareTomographyExperiment();
2020-01-15 16:23:40 +01:00
< / pre >
< / div >
2019-10-18 17:34:45 +02:00
2020-01-20 17:20:50 +01:00
< p >
We set the IFF controller with the High Pass Filter.
< / p >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
2020-01-20 17:20:50 +01:00
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/K_iff_hpf.mat'< / span > , < span class = "org-string" > 'K_iff'< / span > );
save(< span class = "org-string" > './mat/controllers.mat'< / span > , < span class = "org-string" > 'K_iff'< / span > , < span class = "org-string" > '-append'< / span > );
2020-01-15 16:23:40 +01:00
< / pre >
< / div >
2019-10-18 17:34:45 +02:00
2020-01-20 17:20:50 +01:00
< p >
We change the simulation stop time.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > load(< span class = "org-string" > 'mat/conf_simscape.mat'< / span > );
< span class = "org-matlab-simulink-keyword" > set_param< / span > (< span class = "org-variable-name" > conf_simscape< / span > , < span class = "org-string" > 'StopTime'< / span > , < span class = "org-string" > '3'< / span > );
< / pre >
< / div >
2019-10-18 17:34:45 +02:00
2020-01-20 17:20:50 +01:00
< p >
And we simulate the system.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > < span class = "org-matlab-simulink-keyword" > sim< / span > (< span class = "org-string" > 'sim_nass_active_damping'< / span > );
< / pre >
< / div >
< p >
Finally, we save the simulation results for further analysis
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > En_iff_hpf = En;
Eg_iff_hpf = Eg;
save(< span class = "org-string" > './active_damping/mat/tomo_exp.mat'< / span > , < span class = "org-string" > 'En_iff_hpf'< / span > , < span class = "org-string" > 'Eg_iff_hpf'< / span > , < span class = "org-string" > '-append'< / span > );
< / pre >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org5f65a86" class = "outline-4" >
< h4 id = "org5f65a86" > < span class = "section-number-4" > 3.2.3< / span > Compare with Undamped system< / h4 >
< div class = "outline-text-4" id = "text-3-2-3" >
2020-01-20 17:20:50 +01:00
< p >
We load the results of tomography experiments.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/tomo_exp.mat'< / span > , < span class = "org-string" > 'En'< / span > , < span class = "org-string" > 'En_iff'< / span > , < span class = "org-string" > 'En_iff_hpf'< / span > );
t = linspace(0, 3, length(En(< span class = "org-type" > :< / span > ,1)));
< / pre >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org623648a" class = "figure" >
2020-01-20 17:20:50 +01:00
< p > < img src = "figs/nass_act_damp_iff_sim_tomo_xy.png" alt = "nass_act_damp_iff_sim_tomo_xy.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 30: < / span > Position Error during tomography experiment - XY Motion (< a href = "./figs/nass_act_damp_iff_sim_tomo_xy.png" > png< / a > , < a href = "./figs/nass_act_damp_iff_sim_tomo_xy.pdf" > pdf< / a > )< / p >
2020-01-20 17:20:50 +01:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "orgfa2a7a6" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/nass_act_damp_iff_sim_tomo_trans.png" alt = "nass_act_damp_iff_sim_tomo_trans.png" / >
2019-10-18 17:34:45 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 31: < / span > Position Error during tomography experiment - Translations (< a href = "./figs/nass_act_damp_iff_sim_tomo_trans.png" > png< / a > , < a href = "./figs/nass_act_damp_iff_sim_tomo_trans.pdf" > pdf< / a > )< / p >
2019-10-18 17:34:45 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org016ac9d" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/nass_act_damp_iff_sim_tomo_rot.png" alt = "nass_act_damp_iff_sim_tomo_rot.png" / >
2019-10-18 17:34:45 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 32: < / span > Position Error during tomography experiment - Rotations (< a href = "./figs/nass_act_damp_iff_sim_tomo_rot.png" > png< / a > , < a href = "./figs/nass_act_damp_iff_sim_tomo_rot.pdf" > pdf< / a > )< / p >
2020-01-15 16:23:40 +01:00
< / div >
2019-10-18 17:34:45 +02:00
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org22577cc" class = "outline-3" >
< h3 id = "org22577cc" > < span class = "section-number-3" > 3.3< / span > Conclusion< / h3 >
< div class = "outline-text-3" id = "text-3-3" >
2019-10-18 17:34:45 +02:00
< div class = "important" >
< p >
Integral Force Feedback:
< / p >
< ul class = "org-ul" >
< li > Robust (guaranteed stability)< / li >
< li > Acceptable Damping< / li >
< li > Increase the sensitivity to disturbances at low frequencies< / li >
< / ul >
< / div >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org93105e9" class = "outline-2" >
< h2 id = "org93105e9" > < span class = "section-number-2" > 4< / span > Direct Velocity Feedback< / h2 >
< div class = "outline-text-2" id = "text-4" >
2019-10-18 17:34:45 +02:00
< p >
2020-02-04 16:13:52 +01:00
< a id = "org5349d23" > < / a >
2019-10-18 17:34:45 +02:00
< / p >
2019-10-25 16:02:23 +02:00
< div class = "note" >
< p >
2020-01-15 16:23:40 +01:00
All the files (data and Matlab scripts) are accessible < a href = "data/dvf.zip" > here< / a > .
2019-10-25 16:02:23 +02:00
< / p >
< / div >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
In the Direct Velocity Feedback (DVF), a derivative feedback is applied between the measured actuator displacement to the actuator force input.
The actuator displacement can be measured with a capacitive sensor for instance.
2019-10-18 17:34:45 +02:00
< / p >
< / div >
2019-10-25 16:02:23 +02:00
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org0181bc6" class = "outline-3" >
< h3 id = "org0181bc6" > < span class = "section-number-3" > 4.1< / span > Control Design< / h3 >
< div class = "outline-text-3" id = "text-4-1" >
2019-10-18 17:34:45 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org0baaad9" class = "outline-4" >
< h4 id = "org0baaad9" > < span class = "section-number-4" > 4.1.1< / span > Plant< / h4 >
< div class = "outline-text-4" id = "text-4-1-1" >
2020-01-15 16:23:40 +01:00
< p >
Let’ s load the undamped plant:
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/undamped_plants.mat'< / span > , < span class = "org-string" > 'G_dvf'< / span > );
< / pre >
2019-10-18 17:34:45 +02:00
< / div >
< p >
2020-02-04 16:13:52 +01:00
Let’ s look at the transfer function from actuator forces in the nano-hexapod to the measured displacement of the actuator for all 6 pairs of actuator/sensor (figure < a href = "#orgb6f6883" > 33< / a > ).
2019-10-18 17:34:45 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< div id = "orgb6f6883" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/dvf_plant.png" alt = "dvf_plant.png" / >
2019-10-18 17:34:45 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 33: < / span > Transfer function from forces applied in the legs to leg displacement sensor (< a href = "./figs/dvf_plant.png" > png< / a > , < a href = "./figs/dvf_plant.pdf" > pdf< / a > )< / p >
2020-01-15 16:23:40 +01:00
< / div >
2019-10-18 17:34:45 +02:00
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org9d0d598" class = "outline-4" >
< h4 id = "org9d0d598" > < span class = "section-number-4" > 4.1.2< / span > Control Design< / h4 >
< div class = "outline-text-4" id = "text-4-1-2" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
The Direct Velocity Feedback is defined below.
A Low pass Filter is added to make the controller transfer function proper.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > K_dvf = s< span class = "org-type" > *< / span > 20000< span class = "org-type" > /< / span > (1 < span class = "org-type" > +< / span > s< span class = "org-type" > /< / span > 2< span class = "org-type" > /< / span > < span class = "org-constant" > pi< / span > < span class = "org-type" > /< / span > 10000);
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-02-04 16:13:52 +01:00
The obtained loop gains are shown in figure < a href = "#org684052f" > 34< / a > .
2019-10-18 17:34:45 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< div id = "org684052f" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/dvf_open_loop.png" alt = "dvf_open_loop.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 34: < / span > Loop Gain for the Integral Force Feedback (< a href = "./figs/dvf_open_loop.png" > png< / a > , < a href = "./figs/dvf_open_loop.pdf" > pdf< / a > )< / p >
2020-01-15 16:23:40 +01:00
< / div >
< / div >
2019-10-18 17:34:45 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgc664cda" class = "outline-4" >
< h4 id = "orgc664cda" > < span class = "section-number-4" > 4.1.3< / span > Diagonal Controller< / h4 >
< div class = "outline-text-4" id = "text-4-1-3" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
We create the diagonal controller and we add a minus sign as we have a positive feedback architecture.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > K_dvf = < span class = "org-type" > -< / span > K_dvf< span class = "org-type" > *< / span > eye(6);
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
We save the controller for further analysis.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > save(< span class = "org-string" > './active_damping/mat/K_dvf.mat'< / span > , < span class = "org-string" > 'K_dvf'< / span > );
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org30a47bd" class = "outline-3" >
< h3 id = "org30a47bd" > < span class = "section-number-3" > 4.2< / span > Tomography Experiment< / h3 >
< div class = "outline-text-3" id = "text-4-2" >
2020-01-15 16:23:40 +01:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orged4c8ff" class = "outline-4" >
< h4 id = "orged4c8ff" > < span class = "section-number-4" > 4.2.1< / span > Initialize the Simulation< / h4 >
< div class = "outline-text-4" id = "text-4-2-1" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
We initialize elements for the tomography experiment.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > prepareTomographyExperiment();
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
We set the DVF controller.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/K_dvf.mat'< / span > , < span class = "org-string" > 'K_dvf'< / span > );
save(< span class = "org-string" > './mat/controllers.mat'< / span > , < span class = "org-string" > 'K_dvf'< / span > , < span class = "org-string" > '-append'< / span > );
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgafcf6c3" class = "outline-4" >
< h4 id = "orgafcf6c3" > < span class = "section-number-4" > 4.2.2< / span > Simulation< / h4 >
< div class = "outline-text-4" id = "text-4-2-2" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
We change the simulation stop time.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > load(< span class = "org-string" > 'mat/conf_simscape.mat'< / span > );
< span class = "org-matlab-simulink-keyword" > set_param< / span > (< span class = "org-variable-name" > conf_simscape< / span > , < span class = "org-string" > 'StopTime'< / span > , < span class = "org-string" > '3'< / span > );
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
And we simulate the system.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > < span class = "org-matlab-simulink-keyword" > sim< / span > (< span class = "org-string" > 'sim_nass_active_damping'< / span > );
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
Finally, we save the simulation results for further analysis
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > En_dvf = En;
Eg_dvf = Eg;
save(< span class = "org-string" > './active_damping/mat/tomo_exp.mat'< / span > , < span class = "org-string" > 'En_dvf'< / span > , < span class = "org-string" > 'Eg_dvf'< / span > , < span class = "org-string" > '-append'< / span > );
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
2020-01-15 16:23:40 +01:00
< / div >
< / div >
2019-10-18 17:34:45 +02:00
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgdee965e" class = "outline-4" >
< h4 id = "orgdee965e" > < span class = "section-number-4" > 4.2.3< / span > Compare with Undamped system< / h4 >
< div class = "outline-text-4" id = "text-4-2-3" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
We load the results of tomography experiments.
2019-10-25 16:02:23 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/tomo_exp.mat'< / span > , < span class = "org-string" > 'En'< / span > , < span class = "org-string" > 'En_dvf'< / span > );
t = linspace(0, 3, length(En(< span class = "org-type" > :< / span > ,1)));
2019-10-25 16:02:23 +02:00
< / pre >
< / div >
2019-10-18 17:34:45 +02:00
2020-02-04 16:13:52 +01:00
< div id = "org36b30ec" class = "figure" >
2020-01-20 17:20:50 +01:00
< p > < img src = "figs/nass_act_damp_dvf_sim_tomo_xy.png" alt = "nass_act_damp_dvf_sim_tomo_xy.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 35: < / span > Position Error during tomography experiment - XY Motion (< a href = "./figs/nass_act_damp_dvf_sim_tomo_xy.png" > png< / a > , < a href = "./figs/nass_act_damp_dvf_sim_tomo_xy.pdf" > pdf< / a > )< / p >
2020-01-20 17:20:50 +01:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org4df3961" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/nass_act_damp_dvf_sim_tomo_trans.png" alt = "nass_act_damp_dvf_sim_tomo_trans.png" / >
2019-10-18 17:34:45 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 36: < / span > Position Error during tomography experiment - Translations (< a href = "./figs/nass_act_damp_dvf_sim_tomo_trans.png" > png< / a > , < a href = "./figs/nass_act_damp_dvf_sim_tomo_trans.pdf" > pdf< / a > )< / p >
2019-10-18 17:34:45 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org259181f" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/nass_act_damp_dvf_sim_tomo_rot.png" alt = "nass_act_damp_dvf_sim_tomo_rot.png" / >
2019-10-18 17:34:45 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 37: < / span > Position Error during tomography experiment - Rotations (< a href = "./figs/nass_act_damp_dvf_sim_tomo_rot.png" > png< / a > , < a href = "./figs/nass_act_damp_dvf_sim_tomo_rot.pdf" > pdf< / a > )< / p >
2019-10-18 17:34:45 +02:00
< / div >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgc1e250f" class = "outline-3" >
< h3 id = "orgc1e250f" > < span class = "section-number-3" > 4.3< / span > Conclusion< / h3 >
< div class = "outline-text-3" id = "text-4-3" >
2019-10-18 17:34:45 +02:00
< div class = "important" >
< p >
2020-01-15 16:23:40 +01:00
Direct Velocity Feedback:
2019-10-18 17:34:45 +02:00
< / p >
< ul class = "org-ul" >
< li > < / li >
< / ul >
< / div >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orga585807" class = "outline-2" >
< h2 id = "orga585807" > < span class = "section-number-2" > 5< / span > Inertial Control< / h2 >
< div class = "outline-text-2" id = "text-5" >
2019-10-18 17:34:45 +02:00
< p >
2020-02-04 16:13:52 +01:00
< a id = "org6300794" > < / a >
2019-10-25 16:02:23 +02:00
< / p >
< div class = "note" >
< p >
2020-01-15 16:23:40 +01:00
All the files (data and Matlab scripts) are accessible < a href = "data/ine.zip" > here< / a > .
2019-10-18 17:34:45 +02:00
< / p >
2019-10-25 16:02:23 +02:00
< / div >
2019-10-18 17:34:45 +02:00
< p >
2020-01-20 17:20:50 +01:00
In Inertial Control, a feedback is applied between the measured < b > absolute< / b > motion (velocity or acceleration) of the platform to the actuator force input.
2019-10-18 17:34:45 +02:00
< / p >
< / div >
2019-10-25 16:02:23 +02:00
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgef3b74a" class = "outline-3" >
< h3 id = "orgef3b74a" > < span class = "section-number-3" > 5.1< / span > Control Design< / h3 >
< div class = "outline-text-3" id = "text-5-1" >
2019-10-18 17:34:45 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org62bfbc7" class = "outline-4" >
< h4 id = "org62bfbc7" > < span class = "section-number-4" > 5.1.1< / span > Plant< / h4 >
< div class = "outline-text-4" id = "text-5-1-1" >
2020-01-15 16:23:40 +01:00
< p >
Let’ s load the undamped plant:
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/undamped_plants.mat'< / span > , < span class = "org-string" > 'G_ine'< / span > );
< / pre >
2019-10-18 17:34:45 +02:00
< / div >
< p >
2020-02-04 16:13:52 +01:00
Let’ s look at the transfer function from actuator forces in the nano-hexapod to the measured velocity of the nano-hexapod platform in the direction of the corresponding actuator for all 6 pairs of actuator/sensor (figure < a href = "#org4952d1e" > 38< / a > ).
2019-10-18 17:34:45 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< div id = "org4952d1e" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/ine_plant.png" alt = "ine_plant.png" / >
2019-10-18 17:34:45 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 38: < / span > Transfer function from forces applied in the legs to leg velocity sensor (< a href = "./figs/ine_plant.png" > png< / a > , < a href = "./figs/ine_plant.pdf" > pdf< / a > )< / p >
2020-01-15 16:23:40 +01:00
< / div >
2019-10-18 17:34:45 +02:00
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgeeec2e5" class = "outline-4" >
< h4 id = "orgeeec2e5" > < span class = "section-number-4" > 5.1.2< / span > Control Design< / h4 >
< div class = "outline-text-4" id = "text-5-1-2" >
2019-10-18 17:34:45 +02:00
< p >
2020-02-04 16:13:52 +01:00
The controller is defined below and the obtained loop gain is shown in figure < a href = "#org7db3cd8" > 39< / a > .
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-20 17:20:50 +01:00
< pre class = "src src-matlab" > K_ine = 1e4< span class = "org-type" > /< / span > (1< span class = "org-type" > +< / span > s< span class = "org-type" > /< / span > (2< span class = "org-type" > *< / span > < span class = "org-constant" > pi< / span > < span class = "org-type" > *< / span > 100));
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org7db3cd8" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/ine_open_loop_gain.png" alt = "ine_open_loop_gain.png" / >
2019-10-18 17:34:45 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 39: < / span > Loop Gain for Inertial Control (< a href = "./figs/ine_open_loop_gain.png" > png< / a > , < a href = "./figs/ine_open_loop_gain.pdf" > pdf< / a > )< / p >
2020-01-15 16:23:40 +01:00
< / div >
< / div >
2019-10-18 17:34:45 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org240b7fd" class = "outline-4" >
< h4 id = "org240b7fd" > < span class = "section-number-4" > 5.1.3< / span > Diagonal Controller< / h4 >
< div class = "outline-text-4" id = "text-5-1-3" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
We create the diagonal controller and we add a minus sign as we have a positive feedback architecture.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > K_ine = < span class = "org-type" > -< / span > K_ine< span class = "org-type" > *< / span > eye(6);
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
We save the controller for further analysis.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > save(< span class = "org-string" > './active_damping/mat/K_ine.mat'< / span > , < span class = "org-string" > 'K_ine'< / span > );
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgea439d2" class = "outline-3" >
< h3 id = "orgea439d2" > < span class = "section-number-3" > 5.2< / span > Tomography Experiment< / h3 >
< div class = "outline-text-3" id = "text-5-2" >
2020-01-15 16:23:40 +01:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgd52597f" class = "outline-4" >
< h4 id = "orgd52597f" > < span class = "section-number-4" > 5.2.1< / span > Initialize the Simulation< / h4 >
< div class = "outline-text-4" id = "text-5-2-1" >
2019-10-18 17:34:45 +02:00
< p >
2020-01-15 16:23:40 +01:00
We initialize elements for the tomography experiment.
2019-10-18 17:34:45 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > prepareTomographyExperiment();
2019-10-18 17:34:45 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
We set the Inertial controller.
2019-10-18 17:34:45 +02:00
< / p >
2019-10-25 16:02:23 +02:00
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/K_ine.mat'< / span > , < span class = "org-string" > 'K_ine'< / span > );
save(< span class = "org-string" > './mat/controllers.mat'< / span > , < span class = "org-string" > 'K_ine'< / span > , < span class = "org-string" > '-append'< / span > );
2019-10-25 16:02:23 +02:00
< / pre >
< / div >
2019-10-18 17:34:45 +02:00
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org2ad0ade" class = "outline-4" >
< h4 id = "org2ad0ade" > < span class = "section-number-4" > 5.2.2< / span > Simulation< / h4 >
< div class = "outline-text-4" id = "text-5-2-2" >
2019-10-25 16:02:23 +02:00
< p >
2020-01-15 16:23:40 +01:00
We change the simulation stop time.
2019-10-25 16:02:23 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > load(< span class = "org-string" > 'mat/conf_simscape.mat'< / span > );
< span class = "org-matlab-simulink-keyword" > set_param< / span > (< span class = "org-variable-name" > conf_simscape< / span > , < span class = "org-string" > 'StopTime'< / span > , < span class = "org-string" > '3'< / span > );
2019-10-25 16:02:23 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
And we simulate the system.
2019-10-25 16:02:23 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > < span class = "org-matlab-simulink-keyword" > sim< / span > (< span class = "org-string" > 'sim_nass_active_damping'< / span > );
2019-10-25 16:02:23 +02:00
< / pre >
< / div >
< p >
2020-01-15 16:23:40 +01:00
Finally, we save the simulation results for further analysis
2019-10-25 16:02:23 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > En_ine = En;
Eg_ine = Eg;
save(< span class = "org-string" > './active_damping/mat/tomo_exp.mat'< / span > , < span class = "org-string" > 'En_ine'< / span > , < span class = "org-string" > 'Eg_ine'< / span > , < span class = "org-string" > '-append'< / span > );
2019-10-25 16:02:23 +02:00
< / pre >
< / div >
2020-01-15 16:23:40 +01:00
< / div >
< / div >
2019-10-25 16:02:23 +02:00
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgfd09099" class = "outline-4" >
< h4 id = "orgfd09099" > < span class = "section-number-4" > 5.2.3< / span > Compare with Undamped system< / h4 >
< div class = "outline-text-4" id = "text-5-2-3" >
2019-10-25 16:02:23 +02:00
< p >
2020-01-15 16:23:40 +01:00
We load the results of tomography experiments.
2019-10-25 16:02:23 +02:00
< / p >
< div class = "org-src-container" >
2020-01-15 16:23:40 +01:00
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/tomo_exp.mat'< / span > , < span class = "org-string" > 'En'< / span > , < span class = "org-string" > 'En_ine'< / span > );
t = linspace(0, 3, length(En_ine(< span class = "org-type" > :< / span > ,1)));
2019-10-25 16:02:23 +02:00
< / pre >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org1f18df3" class = "figure" >
2020-01-20 17:20:50 +01:00
< p > < img src = "figs/nass_act_damp_ine_sim_tomo_xy.png" alt = "nass_act_damp_ine_sim_tomo_xy.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 40: < / span > Position Error during tomography experiment - XY Motion (< a href = "./figs/nass_act_damp_ine_sim_tomo_xy.png" > png< / a > , < a href = "./figs/nass_act_damp_ine_sim_tomo_xy.pdf" > pdf< / a > )< / p >
2020-01-20 17:20:50 +01:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org16410dd" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/nass_act_damp_ine_sim_tomo_trans.png" alt = "nass_act_damp_ine_sim_tomo_trans.png" / >
2019-10-25 16:02:23 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 41: < / span > Position Error during tomography experiment - Translations (< a href = "./figs/nass_act_damp_ine_sim_tomo_trans.png" > png< / a > , < a href = "./figs/nass_act_damp_ine_sim_tomo_trans.pdf" > pdf< / a > )< / p >
2019-10-25 16:02:23 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "orgb8ccc00" class = "figure" >
2020-01-15 16:23:40 +01:00
< p > < img src = "figs/nass_act_damp_ine_sim_tomo_rot.png" alt = "nass_act_damp_ine_sim_tomo_rot.png" / >
2019-10-25 16:02:23 +02:00
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 42: < / span > Position Error during tomography experiment - Rotations (< a href = "./figs/nass_act_damp_ine_sim_tomo_rot.png" > png< / a > , < a href = "./figs/nass_act_damp_ine_sim_tomo_rot.pdf" > pdf< / a > )< / p >
2019-10-25 16:02:23 +02:00
< / div >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org5a63825" class = "outline-3" >
< h3 id = "org5a63825" > < span class = "section-number-3" > 5.3< / span > Conclusion< / h3 >
< div class = "outline-text-3" id = "text-5-3" >
2019-10-18 17:34:45 +02:00
< div class = "important" >
< p >
2020-01-15 16:23:40 +01:00
Inertial Control:
2019-10-18 17:34:45 +02:00
< / p >
< / div >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org230c9f4" class = "outline-2" >
< h2 id = "org230c9f4" > < span class = "section-number-2" > 6< / span > Comparison< / h2 >
2020-01-21 17:28:49 +01:00
< div class = "outline-text-2" id = "text-6" >
< p >
2020-02-04 16:13:52 +01:00
< a id = "org36034dc" > < / a >
2020-01-21 17:28:49 +01:00
< / p >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org4baffd6" class = "outline-3" >
< h3 id = "org4baffd6" > < span class = "section-number-3" > 6.1< / span > Load the plants< / h3 >
2020-01-21 17:28:49 +01:00
< div class = "outline-text-3" id = "text-6-1" >
< div class = "org-src-container" >
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/plants.mat'< / span > , < span class = "org-string" > 'G'< / span > , < span class = "org-string" > 'G_iff'< / span > , < span class = "org-string" > 'G_ine'< / span > , < span class = "org-string" > 'G_dvf'< / span > );
< / pre >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orga058c69" class = "outline-3" >
< h3 id = "orga058c69" > < span class = "section-number-3" > 6.2< / span > Sensitivity to Disturbance< / h3 >
2020-01-21 17:28:49 +01:00
< div class = "outline-text-3" id = "text-6-2" >
2020-02-04 16:13:52 +01:00
< div id = "org287ecb6" class = "figure" >
2019-10-25 16:02:23 +02:00
< p > < img src = "figs/sensitivity_comp_ground_motion_z.png" alt = "sensitivity_comp_ground_motion_z.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 43: < / span > Sensitivity to ground motion in the Z direction on the Z motion error (< a href = "./figs/sensitivity_comp_ground_motion_z.png" > png< / a > , < a href = "./figs/sensitivity_comp_ground_motion_z.pdf" > pdf< / a > )< / p >
2019-10-25 16:02:23 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org43ef4d9" class = "figure" >
2019-10-25 16:02:23 +02:00
< p > < img src = "figs/sensitivity_comp_direct_forces_z.png" alt = "sensitivity_comp_direct_forces_z.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 44: < / span > Compliance in the Z direction: Sensitivity of direct forces applied on the sample in the Z direction on the Z motion error (< a href = "./figs/sensitivity_comp_direct_forces_z.png" > png< / a > , < a href = "./figs/sensitivity_comp_direct_forces_z.pdf" > pdf< / a > )< / p >
2019-10-25 16:02:23 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org694aa4d" class = "figure" >
2019-10-25 16:02:23 +02:00
< p > < img src = "figs/sensitivity_comp_spindle_z.png" alt = "sensitivity_comp_spindle_z.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 45: < / span > Sensitivity to forces applied in the Z direction by the Spindle on the Z motion error (< a href = "./figs/sensitivity_comp_spindle_z.png" > png< / a > , < a href = "./figs/sensitivity_comp_spindle_z.pdf" > pdf< / a > )< / p >
2019-10-25 16:02:23 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "orgefc9b61" class = "figure" >
2019-10-25 16:02:23 +02:00
< p > < img src = "figs/sensitivity_comp_ty_z.png" alt = "sensitivity_comp_ty_z.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 46: < / span > Sensitivity to forces applied in the Z direction by the Y translation stage on the Z motion error (< a href = "./figs/sensitivity_comp_ty_z.png" > png< / a > , < a href = "./figs/sensitivity_comp_ty_z.pdf" > pdf< / a > )< / p >
2019-10-25 16:02:23 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org09a62ce" class = "figure" >
2019-10-25 16:02:23 +02:00
< p > < img src = "figs/sensitivity_comp_ty_x.png" alt = "sensitivity_comp_ty_x.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 47: < / span > Sensitivity to forces applied in the X direction by the Y translation stage on the X motion error (< a href = "./figs/sensitivity_comp_ty_x.png" > png< / a > , < a href = "./figs/sensitivity_comp_ty_x.pdf" > pdf< / a > )< / p >
2019-10-25 16:02:23 +02:00
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org7d53c0f" class = "outline-3" >
< h3 id = "org7d53c0f" > < span class = "section-number-3" > 6.3< / span > Damped Plant< / h3 >
2020-01-21 17:28:49 +01:00
< div class = "outline-text-3" id = "text-6-3" >
2019-10-25 16:02:23 +02:00
2020-02-04 16:13:52 +01:00
< div id = "orgea4578a" class = "figure" >
2019-10-25 16:02:23 +02:00
< p > < img src = "figs/plant_comp_damping_z.png" alt = "plant_comp_damping_z.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 48: < / span > Plant for the \(z\) direction for different active damping technique used (< a href = "./figs/plant_comp_damping_z.png" > png< / a > , < a href = "./figs/plant_comp_damping_z.pdf" > pdf< / a > )< / p >
2019-10-25 16:02:23 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "orgcf7fd3d" class = "figure" >
2019-10-25 16:02:23 +02:00
< p > < img src = "figs/plant_comp_damping_x.png" alt = "plant_comp_damping_x.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 49: < / span > Plant for the \(x\) direction for different active damping technique used (< a href = "./figs/plant_comp_damping_x.png" > png< / a > , < a href = "./figs/plant_comp_damping_x.pdf" > pdf< / a > )< / p >
2019-10-25 16:02:23 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org0ee741c" class = "figure" >
2019-10-25 16:02:23 +02:00
< p > < img src = "figs/plant_comp_damping_coupling.png" alt = "plant_comp_damping_coupling.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 50: < / span > Comparison of one off-diagonal plant for different damping technique applied (< a href = "./figs/plant_comp_damping_coupling.png" > png< / a > , < a href = "./figs/plant_comp_damping_coupling.pdf" > pdf< / a > )< / p >
2020-01-15 16:23:40 +01:00
< / div >
< / div >
< / div >
2020-01-20 17:40:31 +01:00
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org70d41b8" class = "outline-3" >
< h3 id = "org70d41b8" > < span class = "section-number-3" > 6.4< / span > Tomography Experiment< / h3 >
2020-01-21 17:28:49 +01:00
< div class = "outline-text-3" id = "text-6-4" >
2020-01-20 17:36:30 +01:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org604ad48" class = "outline-4" >
< h4 id = "org604ad48" > < span class = "section-number-4" > 6.4.1< / span > Load the Simulation Data< / h4 >
2020-01-21 17:28:49 +01:00
< div class = "outline-text-4" id = "text-6-4-1" >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
2020-01-20 17:36:30 +01:00
< pre class = "src src-matlab" > load(< span class = "org-string" > './active_damping/mat/tomo_exp.mat'< / span > , < span class = "org-string" > 'En'< / span > , < span class = "org-string" > 'En_iff_hpf'< / span > , < span class = "org-string" > 'En_dvf'< / span > , < span class = "org-string" > 'En_ine'< / span > );
En_iff = En_iff_hpf;
2020-01-15 16:23:40 +01:00
t = linspace(0, 3, length(En(< span class = "org-type" > :< / span > ,1)));
< / pre >
< / div >
2020-01-20 17:36:30 +01:00
< / div >
< / div >
2020-01-15 16:23:40 +01:00
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgc2877fd" class = "outline-4" >
< h4 id = "orgc2877fd" > < span class = "section-number-4" > 6.4.2< / span > Frequency Domain Analysis< / h4 >
2020-01-21 17:28:49 +01:00
< div class = "outline-text-4" id = "text-6-4-2" >
2020-01-20 17:36:30 +01:00
< p >
Window used for < code > pwelch< / code > function.
< / p >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
2020-01-20 17:36:30 +01:00
< pre class = "src src-matlab" > n_av = 8;
han_win = hanning(ceil(length(En(< span class = "org-type" > :< / span > , 1))< span class = "org-type" > /< / span > n_av));
2020-01-15 16:23:40 +01:00
< / pre >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "org50bc9af" class = "figure" >
2020-01-20 17:36:30 +01:00
< p > < img src = "figs/act_damp_tomo_exp_comp_psd_trans.png" alt = "act_damp_tomo_exp_comp_psd_trans.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 51: < / span > PSD of the translation errors in the X direction for applied Active Damping techniques (< a href = "./figs/act_damp_tomo_exp_comp_psd_trans.png" > png< / a > , < a href = "./figs/act_damp_tomo_exp_comp_psd_trans.pdf" > pdf< / a > )< / p >
2020-01-20 17:36:30 +01:00
< / div >
2020-01-15 16:23:40 +01:00
2020-01-20 17:36:30 +01:00
2020-02-04 16:13:52 +01:00
< div id = "org333cdfb" class = "figure" >
2020-01-20 17:36:30 +01:00
< p > < img src = "figs/act_damp_tomo_exp_comp_psd_rot.png" alt = "act_damp_tomo_exp_comp_psd_rot.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 52: < / span > PSD of the rotation errors in the X direction for applied Active Damping techniques (< a href = "./figs/act_damp_tomo_exp_comp_psd_rot.png" > png< / a > , < a href = "./figs/act_damp_tomo_exp_comp_psd_rot.pdf" > pdf< / a > )< / p >
2020-01-20 17:20:50 +01:00
< / div >
2020-01-20 17:36:30 +01:00
2020-02-04 16:13:52 +01:00
< div id = "org29382b7" class = "figure" >
2020-01-20 17:36:30 +01:00
< p > < img src = "figs/act_damp_tomo_exp_comp_cps_trans.png" alt = "act_damp_tomo_exp_comp_cps_trans.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 53: < / span > CPS of the translation errors in the X direction for applied Active Damping techniques (< a href = "./figs/act_damp_tomo_exp_comp_cps_trans.png" > png< / a > , < a href = "./figs/act_damp_tomo_exp_comp_cps_trans.pdf" > pdf< / a > )< / p >
2020-01-20 17:20:50 +01:00
< / div >
2020-01-20 17:36:30 +01:00
2020-02-04 16:13:52 +01:00
< div id = "orgcc5d27e" class = "figure" >
2020-01-20 17:36:30 +01:00
< p > < img src = "figs/act_damp_tomo_exp_comp_cps_rot.png" alt = "act_damp_tomo_exp_comp_cps_rot.png" / >
< / p >
2020-02-04 16:13:52 +01:00
< p > < span class = "figure-number" > Figure 54: < / span > CPS of the rotation errors in the X direction for applied Active Damping techniques (< a href = "./figs/act_damp_tomo_exp_comp_cps_rot.png" > png< / a > , < a href = "./figs/act_damp_tomo_exp_comp_cps_rot.pdf" > pdf< / a > )< / p >
2020-01-15 16:23:40 +01:00
< / div >
2019-10-25 16:02:23 +02:00
< / div >
< / div >
< / div >
2019-10-18 17:34:45 +02:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgbe23ba6" class = "outline-2" >
< h2 id = "orgbe23ba6" > < span class = "section-number-2" > 7< / span > Useful Functions< / h2 >
2020-01-21 17:28:49 +01:00
< div class = "outline-text-2" id = "text-7" >
2020-01-15 16:23:40 +01:00
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orge26884f" class = "outline-3" >
< h3 id = "orge26884f" > < span class = "section-number-3" > 7.1< / span > prepareTomographyExperiment< / h3 >
2020-01-21 17:28:49 +01:00
< div class = "outline-text-3" id = "text-7-1" >
2019-10-18 17:34:45 +02:00
< p >
2020-02-04 16:13:52 +01:00
< a id = "org2453c47" > < / a >
2019-10-18 17:34:45 +02:00
< / p >
2020-01-15 16:23:40 +01:00
< p >
This Matlab function is accessible < a href = "src/prepareTomographyExperiment.m" > here< / a > .
< / p >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orgbd71c69" class = "outline-4" >
< h4 id = "orgbd71c69" > Function Description< / h4 >
< div class = "outline-text-4" id = "text-orgbd71c69" >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > < span class = "org-keyword" > function< / span > < span class = "org-variable-name" > []< / span > = < span class = "org-function-name" > prepareTomographyExperiment< / span > (< span class = "org-variable-name" > args< / span > )
< / pre >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-org79eafae" class = "outline-4" >
< h4 id = "org79eafae" > Optional Parameters< / h4 >
< div class = "outline-text-4" id = "text-org79eafae" >
2020-01-15 16:23:40 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > arguments
args.nass_actuator char {mustBeMember(args.nass_actuator,{< span class = "org-string" > 'piezo'< / span > , < span class = "org-string" > 'lorentz'< / span > })} = < span class = "org-string" > 'piezo'< / span >
args.sample_mass (1,1) double {mustBeNumeric, mustBePositive} = 50
args.Ry_period (1,1) double {mustBeNumeric, mustBePositive} = 1
< span class = "org-keyword" > end< / span >
< / pre >
< / div >
< / div >
< / div >
2020-02-04 16:13:52 +01:00
< div id = "outline-container-orge7b78fc" class = "outline-4" >
< h4 id = "orge7b78fc" > Initialize the Simulation< / h4 >
< div class = "outline-text-4" id = "text-orge7b78fc" >
2020-01-15 16:23:40 +01:00
< p >
We initialize all the stages with the default parameters.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
< / pre >
< / div >
< p >
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > initializeNanoHexapod(< span class = "org-string" > 'actuator'< / span > , args.nass_actuator);
initializeSample(< span class = "org-string" > 'mass'< / span > , args.sample_mass);
< / pre >
< / div >
< p >
We set the references to zero.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > initializeReferences(< span class = "org-string" > 'Rz_type'< / span > , < span class = "org-string" > 'rotating'< / span > , < span class = "org-string" > 'Rz_period'< / span > , args.Ry_period);
< / pre >
< / div >
< p >
And all the controllers are set to 0.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > K = tf(zeros(6));
save(< span class = "org-string" > './mat/controllers.mat'< / span > , < span class = "org-string" > 'K'< / span > , < span class = "org-string" > '-append'< / span > );
K_ine = tf(zeros(6));
save(< span class = "org-string" > './mat/controllers.mat'< / span > , < span class = "org-string" > 'K_ine'< / span > , < span class = "org-string" > '-append'< / span > );
K_iff = tf(zeros(6));
save(< span class = "org-string" > './mat/controllers.mat'< / span > , < span class = "org-string" > 'K_iff'< / span > , < span class = "org-string" > '-append'< / span > );
K_dvf = tf(zeros(6));
save(< span class = "org-string" > './mat/controllers.mat'< / span > , < span class = "org-string" > 'K_dvf'< / span > , < span class = "org-string" > '-append'< / span > );
< / pre >
< / div >
< / div >
< / div >
2019-10-18 17:34:45 +02:00
< / div >
< / div >
2019-10-08 11:13:38 +02:00
< / div >
< div id = "postamble" class = "status" >
< p class = "author" > Author: Dehaeze Thomas< / p >
2020-02-04 16:13:52 +01:00
< p class = "date" > Created: 2020-02-04 mar. 16:13< / p >
2019-10-08 11:13:38 +02:00
< / div >
< / body >
< / html >