243 lines
8.0 KiB
Org Mode
243 lines
8.0 KiB
Org Mode
|
#+TITLE: Noise Budgeting
|
||
|
#+SETUPFILE: ./setup/org-setup-file.org
|
||
|
|
||
|
* Maximum Noise of the Relative Motion Sensors
|
||
|
** Matlab Init :noexport:ignore:
|
||
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||
|
<<matlab-dir>>
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||
|
<<matlab-init>>
|
||
|
#+end_src
|
||
|
|
||
|
#+BEGIN_SRC matlab
|
||
|
simulinkproject('../');
|
||
|
#+END_SRC
|
||
|
|
||
|
** Initialization
|
||
|
#+begin_src matlab
|
||
|
open('nass_model.slx');
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab
|
||
|
initializeGround();
|
||
|
initializeGranite();
|
||
|
initializeTy();
|
||
|
initializeRy();
|
||
|
initializeRz();
|
||
|
initializeMicroHexapod();
|
||
|
initializeAxisc();
|
||
|
initializeMirror();
|
||
|
|
||
|
initializeSimscapeConfiguration();
|
||
|
initializeDisturbances('enable', false);
|
||
|
initializeLoggingConfiguration('log', 'none');
|
||
|
|
||
|
initializeController('type', 'hac-dvf');
|
||
|
#+end_src
|
||
|
|
||
|
We set the stiffness of the payload fixation:
|
||
|
#+begin_src matlab
|
||
|
Kp = 1e8; % [N/m]
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab
|
||
|
initializeNanoHexapod('k', 1e5, 'c', 2e2);
|
||
|
|
||
|
Ms = 50;
|
||
|
initializeSample('mass', Ms, 'freq', sqrt(Kp/Ms)/2/pi*ones(6,1));
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab
|
||
|
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms);
|
||
|
#+end_src
|
||
|
|
||
|
** Control System
|
||
|
#+begin_src matlab
|
||
|
Kdvf = 5e3*s/(1+s/2/pi/1e3)*eye(6);
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab
|
||
|
h = 2.0;
|
||
|
Kl = 2e7 * eye(6) * ...
|
||
|
1/h*(s/(2*pi*100/h) + 1)/(s/(2*pi*100*h) + 1) * ...
|
||
|
1/h*(s/(2*pi*200/h) + 1)/(s/(2*pi*200*h) + 1) * ...
|
||
|
(s/2/pi/10 + 1)/(s/2/pi/10) * ...
|
||
|
1/(1 + s/2/pi/300);
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab
|
||
|
load('mat/stages.mat', 'nano_hexapod');
|
||
|
K = Kl*nano_hexapod.kinematics.J*diag([1, 1, 1, 1, 1, 0]);
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab :exports none
|
||
|
%% Name of the Simulink File
|
||
|
mdl = 'nass_model';
|
||
|
|
||
|
%% Micro-Hexapod
|
||
|
clear io; io_i = 1;
|
||
|
io(io_i) = linio([mdl, '/Noises'], 1, 'openinput', [], 'ndL'); io_i = io_i + 1;
|
||
|
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1;
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab
|
||
|
%% Run the linearization
|
||
|
G = linearize(mdl, io);
|
||
|
G.InputName = {'ndL1', 'ndL2', 'ndL3', 'ndL4', 'ndL5', 'ndL6'};
|
||
|
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab :exports none
|
||
|
freqs = logspace(0, 3, 1000);
|
||
|
|
||
|
figure;
|
||
|
hold on;
|
||
|
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
||
|
plot(freqs, abs(squeeze(freqresp(G(2, 2), freqs, 'Hz'))));
|
||
|
plot(freqs, abs(squeeze(freqresp(G(3, 3), freqs, 'Hz'))));
|
||
|
plot(freqs, abs(squeeze(freqresp(G(4, 4), freqs, 'Hz'))));
|
||
|
plot(freqs, abs(squeeze(freqresp(G(6, 5), freqs, 'Hz'))));
|
||
|
plot(freqs, abs(squeeze(freqresp(G(6, 6), freqs, 'Hz'))));
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
|
ylabel('Amplitude [m/m]'); set(gca, 'XTickLabel',[]);
|
||
|
#+end_src
|
||
|
|
||
|
** Maximum induced vibration's ASD
|
||
|
Required maximum induced ASD of the sample's vibration due to the relative motion sensor noise.
|
||
|
\[ \bm{\Gamma}_x(\omega) = \begin{bmatrix} \Gamma_x(\omega) & \Gamma_y(\omega) & \Gamma_{R_x}(\omega) & \Gamma_{R_y}(\omega) \end{bmatrix} \]
|
||
|
|
||
|
#+begin_src matlab
|
||
|
Gamma_x = [(1e-9)/(1 + s/2/pi/100); % Dx
|
||
|
(1e-9)/(1 + s/2/pi/100); % Dy
|
||
|
(1e-9)/(1 + s/2/pi/100); % Dz
|
||
|
(2e-8)/(1 + s/2/pi/100); % Rx
|
||
|
(2e-8)/(1 + s/2/pi/100)]; % Ry
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab
|
||
|
freqs = logspace(0, 3, 1000);
|
||
|
#+end_src
|
||
|
|
||
|
Corresponding RMS value in [nm rms, nrad rms]
|
||
|
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
|
||
|
data2orgtable([1e9*sqrt(trapz(freqs, (abs(squeeze(freqresp(Gamma_x, freqs, 'Hz')))').^2))]', {'Dx [nm]', 'Dy [nm]', 'Dz [nm]', 'Rx [nrad]', 'Ry [nrad]'}, {'Specifications'}, ' %.1f ');
|
||
|
#+end_src
|
||
|
|
||
|
#+RESULTS:
|
||
|
| | Specifications |
|
||
|
|-----------+----------------|
|
||
|
| Dx [nm] | 12.1 |
|
||
|
| Dy [nm] | 12.1 |
|
||
|
| Dz [nm] | 12.1 |
|
||
|
| Rx [nrad] | 241.8 |
|
||
|
| Ry [nrad] | 241.8 |
|
||
|
|
||
|
** Computation of the maximum relative motion sensor noise
|
||
|
Let's note $G$ the transfer function from the 6 sensor noise $n$ to the 5dof pose error $x$.
|
||
|
We have:
|
||
|
\[ x_i = \sum_{j=1}^6 G_{ij}(s) n_j, \quad i = 1 \dots 5 \]
|
||
|
In terms of ASD:
|
||
|
\[ \Gamma_{x_i}(\omega) = \sqrt{\sum_{j=1}^6 |G_{ij}(j\omega)|^2 \cdot {\Gamma_{n_j}}^2(\omega)}, \quad i = 1 \dots 5 \]
|
||
|
|
||
|
Let's suppose that the ASD of all the sensor noise are equal:
|
||
|
\[ \Gamma_{n_j} = \Gamma_{n}, \quad j = 1 \dots 6 \]
|
||
|
|
||
|
We then have an upper bound of the sensor noise for each of the considered motion errors:
|
||
|
\[ \Gamma_{n_i, \text{max}}(\omega) = \frac{\Gamma_{x_i}(\omega)}{\sqrt{\sum_{j=1}^6 |G_{ij}(j\omega)|^2}}, \quad i = 1 \dots 5 \]
|
||
|
|
||
|
#+begin_src matlab
|
||
|
Gamma_ndL = zeros(5, length(freqs));
|
||
|
for in = 1:5
|
||
|
Gamma_ndL(in, :) = abs(squeeze(freqresp(Gamma_x(in), freqs, 'Hz')))./sqrt(sum(abs(squeeze(freqresp(G(in, :), freqs, 'Hz'))).^2))';
|
||
|
end
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab :exports none
|
||
|
figure;
|
||
|
hold on;
|
||
|
for in = 1:5
|
||
|
plot(freqs, Gamma_ndL(in, :), 'k-');
|
||
|
end
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
|
xlabel('Frequency [Hz]'); ylabel('ASD [$\frac{m}{\sqrt{Hz}}$]');
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab :tangle no :exports results :results file replace
|
||
|
exportFig('figs/noise_budget_ndL_max_asd.pdf', 'width', 'wide', 'height', 'normal');
|
||
|
#+end_src
|
||
|
|
||
|
#+name: fig:noise_budget_ndL_max_asd
|
||
|
#+caption: Maximum estimated ASD of the relative motion sensor noise
|
||
|
#+RESULTS:
|
||
|
[[file:figs/noise_budget_ndL_max_asd.png]]
|
||
|
|
||
|
If the noise ASD of the relative motion sensor is bellow the maximum specified ASD for all the considered motion:
|
||
|
\[ \Gamma_n < \Gamma_{n_i, \text{max}}, \quad i = 1 \dots 5 \]
|
||
|
Then, the motion error due to sensor noise should be bellow the one specified.
|
||
|
|
||
|
#+begin_src matlab
|
||
|
Gamma_ndL_max = min(Gamma_ndL(1:5, :));
|
||
|
#+end_src
|
||
|
|
||
|
Let's take a sensor with a white noise up to 1kHz that is bellow the specified one:
|
||
|
#+begin_src matlab
|
||
|
Gamma_ndL_ex = abs(squeeze(freqresp(min(Gamma_ndL_max)/(1 + s/2/pi/1e3), freqs, 'Hz')));
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab :exports none
|
||
|
figure;
|
||
|
hold on;
|
||
|
plot(freqs, Gamma_ndL_max, 'k-', 'DisplayName', 'Specification');
|
||
|
plot(freqs, Gamma_ndL_ex, 'DisplayName', 'Sensor Example');
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
|
xlabel('Frequency [Hz]'); ylabel('ASD [m/sqrt(Hz)]');
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab :tangle no :exports results :results file replace
|
||
|
exportFig('figs/relative_motion_sensor_noise_ASD_example.pdf', 'width', 'wide', 'height', 'normal');
|
||
|
#+end_src
|
||
|
|
||
|
#+name: fig:relative_motion_sensor_noise_ASD_example
|
||
|
#+caption: Requirement maximum ASD of the sensor noise + example of a sensor validating the requirements
|
||
|
#+RESULTS:
|
||
|
[[file:figs/relative_motion_sensor_noise_ASD_example.png]]
|
||
|
|
||
|
The corresponding RMS value of the sensor noise taken as an example is [nm RMS]:
|
||
|
#+begin_src matlab :results replace value
|
||
|
1e9*sqrt(trapz(freqs, Gamma_ndL_max.^2))
|
||
|
#+end_src
|
||
|
|
||
|
#+RESULTS:
|
||
|
: 519.29
|
||
|
|
||
|
** Verification of the induced motion error
|
||
|
Verify that by taking the sensor noise, we have to wanted displacement error
|
||
|
From the sensor noise PSD $\Gamma_n(\omega)$, we can estimate the obtained displacement PSD $\Gamma_x(\omega)$:
|
||
|
\[ \Gamma_{x,i}(\omega) = \sqrt{ \sum_{j=1}^{6} |G_{ij}|^2(j\omega) \cdot \Gamma_{n,j}^2(\omega) }, \quad i = 1 \dots 5 \]
|
||
|
|
||
|
#+begin_src matlab
|
||
|
Gamma_xest = zeros(5, length(freqs));
|
||
|
|
||
|
for in = 1:5
|
||
|
Gamma_xest(in, :) = sqrt(sum(abs(squeeze(freqresp(G(in, :), freqs, 'Hz'))).^2.*Gamma_ndL_max.^2));
|
||
|
end
|
||
|
#+end_src
|
||
|
|
||
|
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
|
||
|
data2orgtable([1e9*sqrt(trapz(freqs, (Gamma_xest.^2)')); 1e9*sqrt(trapz(freqs, (abs(squeeze(freqresp(Gamma_x, freqs, 'Hz')))').^2))]', {'Dx [nm]', 'Dy [nm]', 'Dz [nm]', 'Rx [nrad]', 'Ry [nrad]'}, {'Results', 'Specifications'}, ' %.1f ');
|
||
|
#+end_src
|
||
|
|
||
|
#+RESULTS:
|
||
|
| | Results | Specifications |
|
||
|
|-----------+---------+----------------|
|
||
|
| Dx [nm] | 8.9 | 12.1 |
|
||
|
| Dy [nm] | 9.3 | 12.1 |
|
||
|
| Dz [nm] | 10.2 | 12.1 |
|
||
|
| Rx [nrad] | 110.2 | 241.8 |
|
||
|
| Ry [nrad] | 107.8 | 241.8 |
|