2020-04-08 22:53:43 +02:00
#+TITLE : Control of the NASS with optimal stiffness
:DRAWER:
#+STARTUP : overview
#+PROPERTY : header-args:matlab :session *MATLAB*
#+PROPERTY : header-args:matlab+ :comments org
#+PROPERTY : header-args:matlab+ :results none
#+PROPERTY : header-args:matlab+ :exports both
#+PROPERTY : header-args:matlab+ :eval no-export
#+PROPERTY : header-args:matlab+ :output-dir figs
#+PROPERTY : header-args:matlab+ :tangle no
#+PROPERTY : header-args:matlab+ :mkdirp yes
#+PROPERTY : header-args:shell :eval no-export
#+PROPERTY : header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/org/}{config.tex}")
#+PROPERTY : header-args:latex+ :imagemagick t :fit yes
#+PROPERTY : header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY : header-args:latex+ :imoutoptions -quality 100
#+PROPERTY : header-args:latex+ :results file raw replace
#+PROPERTY : header-args:latex+ :buffer no
#+PROPERTY : header-args:latex+ :eval no-export
#+PROPERTY : header-args:latex+ :exports results
#+PROPERTY : header-args:latex+ :mkdirp yes
#+PROPERTY : header-args:latex+ :output-dir figs
#+PROPERTY : header-args:latex+ :post pdf2svg(file=*this*, ext="png")
:END:
* Introduction :ignore:
2020-04-14 17:22:53 +02:00
* Low Authority Control - Decentralized Direct Velocity Feedback
2020-04-08 22:53:43 +02:00
** Introduction :ignore:
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir >>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init >>
#+end_src
#+begin_src matlab :tangle no
simulinkproject('../');
#+end_src
#+begin_src matlab
load('mat/conf_simulink.mat');
open('nass_model.slx')
#+end_src
** Initialization
We initialize all the stages with the default parameters.
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
#+end_src
#+begin_src matlab
initializeSimscapeConfiguration();
initializeDisturbances('enable', false);
initializeLoggingConfiguration('log', 'none');
#+end_src
#+begin_src matlab
2020-04-14 17:22:53 +02:00
initializeController('type', 'hac-dvf');
#+end_src
We set the stiffness of the payload fixation:
#+begin_src matlab
Kp = 1e8; % [N/m]
2020-04-08 22:53:43 +02:00
#+end_src
** Identification
#+begin_src matlab
2020-04-14 17:22:53 +02:00
K = tf(zeros(6));
Kdvf = tf(zeros(6));
2020-04-08 22:53:43 +02:00
#+end_src
2020-04-14 17:22:53 +02:00
We identify the system for the following payload masses:
2020-04-08 22:53:43 +02:00
#+begin_src matlab
Ms = [1, 10, 50];
2020-04-14 17:22:53 +02:00
#+end_src
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
#+begin_src matlab :exports none
Gm_dvf = {zeros(length(Ms), 1)};
2020-04-08 22:53:43 +02:00
#+end_src
2020-04-14 17:22:53 +02:00
The nano-hexapod has the following leg's stiffness and damping.
2020-04-08 22:53:43 +02:00
#+begin_src matlab
initializeNanoHexapod('k', 1e5, 'c', 2e2);
#+end_src
#+begin_src matlab :exports none
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
2020-04-14 17:22:53 +02:00
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1; % Force Sensors
2020-04-08 22:53:43 +02:00
#+end_src
#+begin_src matlab :exports none
for i = 1:length(Ms)
2020-04-14 17:22:53 +02:00
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
2020-04-08 22:53:43 +02:00
%% Run the linearization
2020-04-14 17:22:53 +02:00
G_dvf = linearize(mdl, io);
G_dvf.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G_dvf.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'};
Gm_dvf(i) = {G_dvf};
2020-04-08 22:53:43 +02:00
end
#+end_src
** Controller Design
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ms)
2020-04-14 17:22:53 +02:00
plot(freqs, abs(squeeze(freqresp(Gm_dvf{i}(1, 1), freqs, 'Hz'))));
2020-04-08 22:53:43 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
2020-04-14 17:22:53 +02:00
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
2020-04-08 22:53:43 +02:00
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ms)
2020-04-14 17:22:53 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_dvf{i}(1, 1), freqs, 'Hz')))), ...
2020-04-08 22:53:43 +02:00
'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
#+end_src
Root Locus
#+begin_src matlab :exports none :post
figure;
2020-04-14 17:22:53 +02:00
gains = logspace(1, 4, 300);
2020-04-08 22:53:43 +02:00
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(real(pole(Gm_dvf{i})), imag(pole(Gm_dvf{i})), 'x', ...
2020-04-08 22:53:43 +02:00
'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(i)));
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(real(tzero(Gm_dvf{i})), imag(tzero(Gm_dvf{i})), 'o', ...
2020-04-08 22:53:43 +02:00
'HandleVisibility', 'off');
for k = 1:length(gains)
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
cl_poles = pole(feedback(Gm_dvf{i}, (gains(k)*s)*eye(6)));
2020-04-08 22:53:43 +02:00
plot(real(cl_poles), imag(cl_poles), '.', ...
'HandleVisibility', 'off');
end
end
hold off;
axis square;
xlim([-140, 10]); ylim([0, 150]);
xlabel('Real Part'); ylabel('Imaginary Part');
legend('location', 'northwest');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2020-04-14 17:22:53 +02:00
exportFig('figs/opt_stdvf_dvf_root_locus.pdf', 'width', 'wide', 'height', 'tall');
2020-04-08 22:53:43 +02:00
#+end_src
2020-04-14 17:22:53 +02:00
#+name : fig:opt_stdvf_dvf_root_locus
2020-04-08 22:53:43 +02:00
#+caption : Root Locus for the
#+RESULTS :
2020-04-14 17:22:53 +02:00
[[file:figs/opt_stdvf_dvf_root_locus.png ]]
2020-04-08 22:53:43 +02:00
Damping as function of the gain
#+begin_src matlab :exports none
c1 = [ 0 0.4470 0.7410]; % Blue
c2 = [0.8500 0.3250 0.0980]; % Orange
c3 = [0.9290 0.6940 0.1250]; % Yellow
c4 = [0.4940 0.1840 0.5560]; % Purple
c5 = [0.4660 0.6740 0.1880]; % Green
c6 = [0.3010 0.7450 0.9330]; % Light Blue
c7 = [0.6350 0.0780 0.1840]; % Red
colors = [c1; c2; c3; c4; c5; c6; c7];
figure;
2020-04-14 17:22:53 +02:00
gains = logspace(1, 4, 100);
2020-04-08 22:53:43 +02:00
hold on;
for i = 1:length(Ms)
for k = 1:length(gains)
2020-04-14 17:22:53 +02:00
cl_poles = pole(feedback(Gm_dvf{i}, (gains(k)*s)*eye(6)));
2020-04-08 22:53:43 +02:00
set(gca,'ColorOrderIndex',i);
plot(gains(k), sin(-pi/2 + angle(cl_poles)), '.', 'color', colors(i, :));
end
end
hold off;
2020-04-14 17:22:53 +02:00
xlabel('DVF Gain'); ylabel('Modal Damping');
2020-04-08 22:53:43 +02:00
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylim([0, 1]);
#+end_src
#+begin_src matlab
2020-04-14 17:22:53 +02:00
Kdvf = 5e3*s/(1+s/2/pi/1e3)*eye(6);
2020-04-08 22:53:43 +02:00
#+end_src
2020-04-14 17:22:53 +02:00
* Identification of the dynamics for the Primary controller
2020-04-08 22:53:43 +02:00
** Introduction :ignore:
2020-04-14 17:22:53 +02:00
Let's identify the dynamics from actuator forces $\bm{\tau}$ to displacement as measured by the metrology $\bm{\mathcal{X}}$:
\[ \bm{G}(s) = \frac{\bm{\mathcal{X}}}{\bm{\tau}} \]
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
Then, we compute both the transfer function from forces applied by the actuators $\bm{\mathcal{F}}$ to the measured position error in the frame of the nano-hexapod $\bm{\epsilon}_{\mathcal{X}_n}$:
\[ \bm{G}_\mathcal{X}(s) = \frac{\bm{\epsilon}_ {\mathcal{X}_n}}{\bm{\mathcal{F}}} = \bm{G}(s) \bm{J}^{-T} \]
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
and from actuator forces $\bm{\tau}$ to position error of each leg $\bm{\epsilon}_\mathcal{L}$:
\[ \bm{G}_\mathcal{L} = \frac{\bm{\epsilon}_ \mathcal{L}}{\bm{\tau}} = \bm{J} \bm{G}(s) \]
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
We identify these dynamics with and without using the DVF controller.
2020-04-08 22:53:43 +02:00
#+begin_src matlab :exports none
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror
#+end_src
2020-04-14 17:22:53 +02:00
#+begin_src matlab :exports none
load('mat/stages.mat', 'nano_hexapod');
#+end_src
** Identification of the undamped plant :ignore:
#+begin_src matlab :exports none
Kdvf_backup = Kdvf;
Kdvf = tf(zeros(6));
#+end_src
#+begin_src matlab :exports none
G_x = {zeros(length(Ms), 1)};
G_l = {zeros(length(Ms), 1)};
#+end_src
2020-04-08 22:53:43 +02:00
#+begin_src matlab :exports none
for i = 1:length(Ms)
2020-04-14 17:22:53 +02:00
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
2020-04-08 22:53:43 +02:00
%% Run the linearization
G = linearize(mdl, io);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gx = -G*inv(nano_hexapod.J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
2020-04-14 17:22:53 +02:00
G_x(i) = {Gx};
2020-04-08 22:53:43 +02:00
Gl = -nano_hexapod.J*G;
Gl.OutputName = {'E1', 'E2', 'E3', 'E4', 'E5', 'E6'};
2020-04-14 17:22:53 +02:00
G_l(i) = {Gl};
2020-04-08 22:53:43 +02:00
end
#+end_src
#+begin_src matlab :exports none
2020-04-14 17:22:53 +02:00
Kdvf = Kdvf_backup;
#+end_src
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
** Identification of the damped plant :ignore:
#+begin_src matlab :exports none
Gm_x = {zeros(length(Ms), 1)};
Gm_l = {zeros(length(Ms), 1)};
#+end_src
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
#+begin_src matlab :exports none
for i = 1:length(Ms)
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
%% Run the linearization
G = linearize(mdl, io);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
Gx = -G*inv(nano_hexapod.J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Gm_x(i) = {Gx};
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
Gl = -nano_hexapod.J*G;
Gl.OutputName = {'E1', 'E2', 'E3', 'E4', 'E5', 'E6'};
Gm_l(i) = {Gl};
2020-04-08 22:53:43 +02:00
end
#+end_src
2020-04-14 17:22:53 +02:00
** Obtained dynamics for the Undamped plant :ignore:
2020-04-08 22:53:43 +02:00
#+begin_src matlab :exports none
2020-04-14 17:22:53 +02:00
freqs = logspace(0, 3, 5000);
2020-04-08 22:53:43 +02:00
figure;
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, abs(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz'))));
2020-04-08 22:53:43 +02:00
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, abs(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz'))));
2020-04-08 22:53:43 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('$\mathcal{X}_x/\mathcal{F}_x$, $\mathcal{X}_y/ \mathcal{F}_y$')
ax2 = subplot(2, 2, 2);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, abs(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz'))));
2020-04-08 22:53:43 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('$\mathcal{X}_z/\mathcal{F}_z$')
ax3 = subplot(2, 2, 3);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz')))));
2020-04-08 22:53:43 +02:00
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz')))));
2020-04-08 22:53:43 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz')))), ...
2020-04-08 22:53:43 +02:00
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'southwest');
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
2020-04-14 17:22:53 +02:00
#+begin_src matlab :exports none
freqs = logspace(0, 3, 5000);
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
figure;
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz')))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'southwest');
linkaxes([ax1,ax2],'x');
2020-04-08 22:53:43 +02:00
#+end_src
2020-04-14 17:22:53 +02:00
* Primary Control in the task space
** Introduction :ignore:
** Plant in the task space
Let's look $\bm{G}_\mathcal{X}(s)$.
2020-04-08 22:53:43 +02:00
#+begin_src matlab :exports none
2020-04-14 17:22:53 +02:00
freqs = logspace(0, 3, 5000);
2020-04-08 22:53:43 +02:00
figure;
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(1, 1), freqs, 'Hz'))));
2020-04-08 22:53:43 +02:00
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(2, 2), freqs, 'Hz'))));
2020-04-08 22:53:43 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('$\mathcal{X}_x/\mathcal{F}_x$, $\mathcal{X}_y/ \mathcal{F}_y$')
ax2 = subplot(2, 2, 2);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(3, 3), freqs, 'Hz'))));
2020-04-08 22:53:43 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('$\mathcal{X}_z/\mathcal{F}_z$')
ax3 = subplot(2, 2, 3);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(1, 1), freqs, 'Hz')))));
2020-04-08 22:53:43 +02:00
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(2, 2), freqs, 'Hz')))));
2020-04-08 22:53:43 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(3, 3), freqs, 'Hz')))), ...
2020-04-08 22:53:43 +02:00
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'southwest');
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(4, 4), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(5, 5), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [rad/(N m)]'); set(gca, 'XTickLabel',[]);
title('$\mathcal{X}_{R_x}/\mathcal{M}_x$, $\mathcal{X}_{R_y}/ \mathcal{M}_y$')
ax2 = subplot(2, 2, 2);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(6, 6), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [rad/(N m)]'); set(gca, 'XTickLabel',[]);
title('$\mathcal{X}_{R_z}/\mathcal{M}_z$')
ax3 = subplot(2, 2, 3);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(4, 4), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(5, 5), freqs, 'Hz')))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(6, 6), freqs, 'Hz')))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'southwest');
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
2020-04-14 17:22:53 +02:00
** Control in the task space
#+begin_src matlab
Kx = tf(zeros(6));
h = 2.5;
Kx(1,1) = 3e7 * ...
1/h*(s/ (2*pi*100/h) + 1)/ (s/(2*pi*100*h) + 1) * ...
(s/2/pi/1 + 1)/ (s/2/pi/1);
Kx(2,2) = Kx(1,1);
h = 2.5;
Kx(3,3) = 3e7 * ...
1/h*(s/ (2*pi*100/h) + 1)/ (s/(2*pi*100*h) + 1) * ...
(s/2/pi/1 + 1)/ (s/2/pi/1);
#+end_src
2020-04-08 22:53:43 +02:00
#+begin_src matlab
h = 1.5;
2020-04-14 17:22:53 +02:00
Kx(4,4) = 5e5 * ...
2020-04-08 22:53:43 +02:00
1/h*(s/ (2*pi*100/h) + 1)/ (s/(2*pi*100*h) + 1) * ...
2020-04-14 17:22:53 +02:00
(s/2/pi/1 + 1)/ (s/2/pi/1);
2020-04-08 22:53:43 +02:00
Kx(5,5) = Kx(4,4);
h = 1.5;
2020-04-14 17:22:53 +02:00
Kx(6,6) = 5e4 * ...
1/h*(s/ (2*pi*30/h) + 1)/ (s/(2*pi*30*h) + 1) * ...
(s/2/pi/1 + 1)/ (s/2/pi/1);
2020-04-08 22:53:43 +02:00
#+end_src
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:length(Ms)
2020-04-14 17:22:53 +02:00
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(1, 1)*Kx(1,1), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(2, 2)*Kx(2,2), freqs, 'Hz'))));
2020-04-08 22:53:43 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
2020-04-14 17:22:53 +02:00
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
title('Loop Gain $x$ and $y$')
2020-04-08 22:53:43 +02:00
ax2 = subplot(2, 2, 2);
hold on;
for i = 1:length(Ms)
2020-04-14 17:22:53 +02:00
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(3, 3)*Kx(3,3), freqs, 'Hz'))));
2020-04-08 22:53:43 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
2020-04-14 17:22:53 +02:00
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
title('Loop Gain $z$')
2020-04-08 22:53:43 +02:00
ax3 = subplot(2, 2, 3);
hold on;
for i = 1:length(Ms)
2020-04-14 17:22:53 +02:00
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(1, 1)*Kx(1,1), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(2, 2)*Kx(2,2), freqs, 'Hz')))));
2020-04-08 22:53:43 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:length(Ms)
2020-04-14 17:22:53 +02:00
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(3, 3)*Kx(3,3), freqs, 'Hz')))), ...
2020-04-08 22:53:43 +02:00
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'southwest');
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
2020-04-14 17:22:53 +02:00
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(4, 4)*Kx(4,4), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(5, 5)*Kx(5,5), freqs, 'Hz'))));
2020-04-08 22:53:43 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
2020-04-14 17:22:53 +02:00
ylabel('Amplitude [rad/(N m)]'); set(gca, 'XTickLabel',[]);
title('$\mathcal{X}_{R_x}/\mathcal{M}_x$, $\mathcal{X}_{R_y}/ \mathcal{M}_y$')
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
ax2 = subplot(2, 2, 2);
2020-04-08 22:53:43 +02:00
hold on;
2020-04-14 17:22:53 +02:00
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(6, 6)*Kx(6,6), freqs, 'Hz'))));
2020-04-08 22:53:43 +02:00
end
hold off;
2020-04-14 17:22:53 +02:00
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [rad/(N m)]'); set(gca, 'XTickLabel',[]);
title('$\mathcal{X}_{R_z}/\mathcal{M}_z$')
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
ax3 = subplot(2, 2, 3);
2020-04-08 22:53:43 +02:00
hold on;
2020-04-14 17:22:53 +02:00
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(4, 4)*Kx(4,4), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(5, 5)*Kx(5,5), freqs, 'Hz')))));
2020-04-08 22:53:43 +02:00
end
hold off;
2020-04-14 17:22:53 +02:00
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-270, 90]);
yticks([-360:90:360]);
2020-04-08 22:53:43 +02:00
ax4 = subplot(2, 2, 4);
hold on;
2020-04-14 17:22:53 +02:00
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(6, 6)*Kx(6,6), freqs, 'Hz')))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
2020-04-08 22:53:43 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-14 17:22:53 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
legend('location', 'southwest');
2020-04-08 22:53:43 +02:00
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
2020-04-14 17:22:53 +02:00
*** Stability
#+begin_src matlab
for i = 1:length(Ms)
isstable(feedback(Gm_x{i}*Kx, eye(6), -1))
end
#+end_src
** Simulation
* Primary Control in the leg space
** Plant in the task space
2020-04-08 22:53:43 +02:00
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ms)
for j = 1:6
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_l{i}(j, j), freqs, 'Hz'))));
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('Diagonal elements of the Plant');
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ms)
for j = 1:6
set(gca,'ColorOrderIndex',i);
2020-04-14 17:22:53 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_l{i}(j, j), freqs, 'Hz')))));
2020-04-08 22:53:43 +02:00
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
2020-04-14 17:22:53 +02:00
ylim([-270, 90]);
yticks([-360:90:360]);
2020-04-08 22:53:43 +02:00
linkaxes([ax1,ax2],'x');
#+end_src
2020-04-14 17:22:53 +02:00
** Control in the leg space
2020-04-08 22:53:43 +02:00
#+begin_src matlab
h = 1.5;
2020-04-14 17:22:53 +02:00
Kl = 2e7 * eye(6) * ...
1/h*(s/ (2*pi*200/h) + 1)/ (s/(2*pi*200*h) + 1) * ...
2020-04-08 22:53:43 +02:00
1/h*(s/ (2*pi*100/h) + 1)/ (s/(2*pi*100*h) + 1) * ...
2020-04-14 17:22:53 +02:00
(s/2/pi/10 + 1)/ (s/2/pi/10) * ...
1/(1 + s/2/pi/500);
2020-04-08 22:53:43 +02:00
#+end_src
#+begin_src matlab
for i = 1:length(Ms)
isstable(feedback(Gm_l{i}(1,1)*Kl(1,1), 1, -1))
end
#+end_src
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ms)
for j = 1:6
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_l{i}(j, j)*Kl(j,j), freqs, 'Hz'))));
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ms)
for j = 1:6
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_l{i}(j, j)*Kl(j,j), freqs, 'Hz'))));
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
2020-04-14 17:22:53 +02:00
** Simulations
#+begin_src matlab
load('mat/stages.mat', 'nano_hexapod');
K = Kl*nano_hexapod.J;
#+end_src
#+begin_src matlab
initializeDisturbances('Fty_x', false, 'Fty_z', false);
initializeSimscapeConfiguration('gravity', false);
initializeLoggingConfiguration('log', 'all');
#+end_src
#+begin_src matlab
load('mat/conf_simulink.mat');
set_param(conf_simulink, 'StopTime', '2');
#+end_src
#+begin_src matlab
hac_dvf_L = {zeros(length(Ms)), 1};
for i = 1:length(Ms)
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating', 'Rz_period', Ms(i));
sim('nass_model');
hac_dvf_L(i) = {simout};
end
#+end_src
#+begin_src matlab
save('./mat/tomo_exp_hac_dvf.mat', 'hac_dvf_L');
#+end_src
** Results
#+begin_src matlab
load('./mat/experiment_tomography.mat', 'tomo_align_dist');
#+end_src
#+begin_src matlab
n_av = 4;
han_win = hanning(ceil(length(simout.Em.En.Data(:,1))/n_av));
#+end_src
#+begin_src matlab
t = simout.Em.En.Time;
Ts = t(2)-t(1);
[pxx_ol, f] = pwelch(tomo_align_dist.Em.En.Data, han_win, [], [], 1/Ts);
pxx_dvf_L = zeros(length(f), 6, length(Ms));
for i = 1:length(Ms)
[pxx, ~] = pwelch(hac_dvf_L{i}.Em.En.Data(ceil(0.2/Ts):end,:), han_win, [], [], 1/Ts);
pxx_dvf_L(:, :, i) = pxx;
end
#+end_src
2020-04-08 22:53:43 +02:00
2020-04-14 17:22:53 +02:00
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 3, 1);
hold on;
plot(f, sqrt(pxx_ol(:, 1)))
for i = 1:length(Ms)
plot(f, sqrt(pxx_dvf_L(:, 1, i)))
end
hold off;
xlabel('Frequency [Hz]');
ylabel('$\Gamma_{D_x}$ [$m/\sqrt{Hz}$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ax2 = subplot(2, 3, 2);
hold on;
plot(f, sqrt(pxx_ol(:, 2)))
for i = 1:length(Ms)
plot(f, sqrt(pxx_dvf_L(:, 2, i)))
end
hold off;
xlabel('Frequency [Hz]');
ylabel('$\Gamma_{D_y}$ [$m/\sqrt{Hz}$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ax3 = subplot(2, 3, 3);
hold on;
plot(f, sqrt(pxx_ol(:, 3)))
for i = 1:length(Ms)
plot(f, sqrt(pxx_dvf_L(:, 3, i)))
end
hold off;
xlabel('Frequency [Hz]');
ylabel('$\Gamma_{D_z}$ [$m/\sqrt{Hz}$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ax4 = subplot(2, 3, 4);
hold on;
plot(f, sqrt(pxx_ol(:, 4)))
for i = 1:length(Ms)
plot(f, sqrt(pxx_dvf_L(:, 4, i)))
end
hold off;
xlabel('Frequency [Hz]');
ylabel('$\Gamma_{R_x}$ [$rad/\sqrt{Hz}$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ax5 = subplot(2, 3, 5);
hold on;
plot(f, sqrt(pxx_ol(:, 5)))
for i = 1:length(Ms)
plot(f, sqrt(pxx_dvf_L(:, 5, i)))
end
hold off;
xlabel('Frequency [Hz]');
ylabel('$\Gamma_{R_y}$ [$rad/\sqrt{Hz}$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ax6 = subplot(2, 3, 6);
hold on;
plot(f, sqrt(pxx_ol(:, 6)), 'DisplayName', '$\mu$-Station')
for i = 1:length(Ms)
plot(f, sqrt(pxx_dvf_L(:, 6, i)), ...
'DisplayName', sprintf('HAC-DVF $m = %.0f kg$', Ms(i)))
end
hold off;
xlabel('Frequency [Hz]');
ylabel('$\Gamma_{R_z}$ [$rad/\sqrt{Hz}$]');
legend('location', 'southwest');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
xlim([f(2), f(end)])
#+end_src
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 3, 1);
hold on;
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_ol(:, 1))))))
for i = 1:length(Ms)
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_dvf_L(:, 1, i))))));
end
hold off;
xlabel('Frequency [Hz]');
ylabel('CAS $D_x$ [$m$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-11, 1e-5]);
ax2 = subplot(2, 3, 2);
hold on;
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_ol(:, 2))))))
for i = 1:length(Ms)
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_dvf_L(:, 2, i))))));
end
hold off;
xlabel('Frequency [Hz]');
ylabel('CAS $D_y$ [$m$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-11, 1e-5]);
ax3 = subplot(2, 3, 3);
hold on;
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_ol(:, 3))))))
for i = 1:length(Ms)
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_dvf_L(:, 3, i))))));
end
hold off;
xlabel('Frequency [Hz]');
ylabel('CAS $D_z$ [$m$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-11, 1e-5]);
ax4 = subplot(2, 3, 4);
hold on;
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_ol(:, 4))))))
for i = 1:length(Ms)
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_dvf_L(:, 4, i))))));
end
hold off;
xlabel('Frequency [Hz]');
ylabel('CAS $R_x$ [$rad$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-11, 1e-5]);
ax5 = subplot(2, 3, 5);
hold on;
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_ol(:, 5))))))
for i = 1:length(Ms)
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_dvf_L(:, 5, i))))));
end
hold off;
xlabel('Frequency [Hz]');
ylabel('CAS $R_y$ [$rad$]');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-11, 1e-5]);
ax6 = subplot(2, 3, 6);
hold on;
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_ol(:, 6))))), 'DisplayName', '$\mu$-Station')
for i = 1:length(Ms)
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(pxx_dvf_L(:, 6, i))))), ...
'DisplayName', sprintf('HAC-DVF $m = %.0f kg$', Ms(i)));
end
hold off;
xlabel('Frequency [Hz]');
ylabel('CAS $R_z$ [$rad$]');
legend('location', 'southwest');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-11, 1e-5]);
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
xlim([f(2), f(end)])
#+end_src
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 3, 1);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 1))
for i = 1:length(Ms)
plot(hac_dvf_L{i}.Em.En.Time, hac_dvf_L{i}.Em.En.Data(:, 1));
end
hold off;
xlabel('Time [s]');
ylabel('Dx [m]');
ax2 = subplot(2, 3, 2);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 2))
for i = 1:length(Ms)
plot(hac_dvf_L{i}.Em.En.Time, hac_dvf_L{i}.Em.En.Data(:, 2));
end
hold off;
xlabel('Time [s]');
ylabel('Dy [m]');
ax3 = subplot(2, 3, 3);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 3))
for i = 1:length(Ms)
plot(hac_dvf_L{i}.Em.En.Time, hac_dvf_L{i}.Em.En.Data(:, 3));
end
hold off;
xlabel('Time [s]');
ylabel('Dz [m]');
ax4 = subplot(2, 3, 4);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 4))
for i = 1:length(Ms)
plot(hac_dvf_L{i}.Em.En.Time, hac_dvf_L{i}.Em.En.Data(:, 4));
end
hold off;
xlabel('Time [s]');
ylabel('Rx [rad]');
ax5 = subplot(2, 3, 5);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 5))
for i = 1:length(Ms)
plot(hac_dvf_L{i}.Em.En.Time, hac_dvf_L{i}.Em.En.Data(:, 5));
end
hold off;
xlabel('Time [s]');
ylabel('Ry [rad]');
ax6 = subplot(2, 3, 6);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 6), ...
'DisplayName', '$\mu$-Station')
for i = 1:length(Ms)
plot(hac_dvf_L{i}.Em.En.Time, hac_dvf_L{i}.Em.En.Data(:, 6), ...
'DisplayName', sprintf('HAC-DVF $m = %.0f kg$', Ms(i)));
end
hold off;
xlabel('Time [s]');
ylabel('Rz [rad]');
legend();
linkaxes([ax1,ax2,ax3,ax4],'x');
xlim([0.5, inf]);
#+end_src