2020-03-23 10:04:20 +01:00
#+TITLE : HAC-LAC applied on the Simscape Model
2020-04-17 10:25:44 +02:00
#+SETUPFILE : ./setup/org-setup-file.org
2020-03-23 10:04:20 +01:00
* Introduction :ignore:
The position $\bm{\mathcal{X}}$ of the Sample with respect to the granite is measured.
It is then compare to the wanted position of the Sample $\bm{r}_\mathcal{X}$ in order to obtain the position error $\bm{\epsilon}_ \mathcal{X}$ of the Sample with respect to a frame attached to the Stewart top platform.
#+begin_src latex :file hac_lac_control_schematic.pdf
\begin{tikzpicture}
\node[block={3.0cm}{3.0cm}] (G) {Plant};
% Input and outputs coordinates
\coordinate[] (outputX) at ($(G.south east)!0.25!(G.north east)$);
\coordinate[] (outputL) at ($(G.south east)!0.75!(G.north east)$);
\draw[->] (outputX) -- ++(1.8, 0) node[above left]{$\bm{\mathcal{X}}$};
\draw[->] (outputL) -- ++(1.8, 0) node[above left]{$\bm{\mathcal{L}}$};
% Blocs
\node[addb, left= of G] (addF) {};
\node[block, left=1.2 of addF] (Kx) {$\bm{K}_\mathcal{X}$};
\node[block={2cm}{2cm}, align=center, left=1.2 of Kx] (subx) {Computes\\Position\\Error};
\node[block, above= of addF] (Kl) {$\bm{K}_\mathcal{L}$};
\node[addb={+}{}{}{-}{}, above= of Kl] (subl) {};
\node[block, align=center, left=0.8 of subl] (invK) {Inverse\\Kinematics};
% Connections and labels
\draw[<-] (subx.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-0.8, 0);
\draw[->] ($(subx.east) + (0.2, 0)$)node[branch]{} |- (invK.west);
\draw[->] (invK.east) -- (subl.west) node[above left]{$\bm{r}_\mathcal{L}$};
\draw[->] (subl.south) -- (Kl.north) node[above right]{$\bm{\epsilon}_\mathcal{L}$};
\draw[->] (Kl.south) -- (addF.north);
\draw[->] (subx.east) -- (Kx.west) node[above left]{$\bm{\epsilon}_\mathcal{X}$};
2020-03-25 19:23:22 +01:00
\draw[->] (Kx.east) node[above right]{$\bm{\tau}^\prime$} -- (addF.west);
2020-03-23 10:04:20 +01:00
\draw[->] (addF.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] ($(outputL.east) + (0.4, 0)$)node[branch](L){} |- (subl.east);
\draw[->] ($(outputX.east) + (1.2, 0)$)node[branch]{} -- + +(0, -1.6) -| (subx.south);
\begin{scope}[on background layer]
\node[fit={(G.south-|Kl.west) (L|-subl.north)}, fill=black!20!white, draw, dashed, inner sep=8pt] (Ktot) {};
\end{scope}
\end{tikzpicture}
#+end_src
#+name : fig:hac_lac_control_schematic
#+caption : HAC-LAC Control Architecture used for the Control of the NASS
#+RESULTS :
[[file:figs/hac_lac_control_schematic.png ]]
* Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir >>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init >>
#+end_src
#+begin_src matlab :tangle no
simulinkproject('../');
#+end_src
#+begin_src matlab
open('nass_model.slx')
#+end_src
* Initialization
We initialize all the stages with the default parameters.
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
#+end_src
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
#+begin_src matlab
initializeNanoHexapod('actuator', 'piezo');
initializeSample('mass', 1);
#+end_src
We set the references that corresponds to a tomography experiment.
#+begin_src matlab
initializeReferences('Rz_type', 'rotating', 'Rz_period', 1);
#+end_src
#+begin_src matlab
initializeDisturbances();
#+end_src
Open Loop.
#+begin_src matlab
initializeController('type', 'open-loop');
#+end_src
And we put some gravity.
#+begin_src matlab
initializeSimscapeConfiguration('gravity', true);
#+end_src
We log the signals.
#+begin_src matlab
initializeLoggingConfiguration('log', 'all');
#+end_src
* Low Authority Control - Direct Velocity Feedback $\bm{K}_\mathcal{L}$
** Introduction :ignore:
The first loop closed corresponds to a direct velocity feedback loop.
The design of the associated decentralized controller is explained in [[file:control_active_damping.org ][this ]] file.
** Identification
#+begin_src matlab
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1; % Relative Motion Outputs
%% Run the linearization
G_dvf = linearize(mdl, io, 0);
G_dvf.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G_dvf.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'};
#+end_src
** Plant
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G_dvf(i, i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('Diagonal elements of the Plant');
ax2 = subplot(2, 2, 3);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$d\\mathcal{L}_%i/ \\tau_%i$', i, i));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northwest');
ax3 = subplot(2, 2, 2);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(G_dvf(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G_dvf(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('Off-Diagonal elements of the Plant');
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
** Root Locus
#+begin_src matlab :exports none
gains = logspace(0, 5, 500);
figure;
hold on;
plot(real(pole(G_dvf)), imag(pole(G_dvf)), 'x');
set(gca,'ColorOrderIndex',1);
plot(real(tzero(G_dvf)), imag(tzero(G_dvf)), 'o');
for i = 1:length(gains)
set(gca,'ColorOrderIndex',1);
cl_poles = pole(feedback(G_dvf, (gains(i)*s)*eye(6)));
plot(real(cl_poles), imag(cl_poles), '.');
end
ylim([0, 2*pi*500]);
xlim([-2*pi*500,0]);
xlabel('Real Part')
ylabel('Imaginary Part')
axis square
#+end_src
** Controller and Loop Gain
#+begin_src matlab
K_dvf = s*15000/(1 + s/2/pi/10000);
#+end_src
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(K_dvf*G_dvf(i,i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(K_dvf*G_dvf(i,i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab
K_dvf = -K_dvf*eye(6);
#+end_src
2020-03-25 19:23:22 +01:00
* Uncertainty Improvements thanks to the LAC control
#+begin_src matlab
K_dvf_backup = K_dvf;
initializeController('type', 'hac-dvf');
#+end_src
#+begin_src matlab
masses = [1, 10, 50]; % [kg]
#+end_src
#+begin_src matlab
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror
#+end_src
#+begin_src matlab :exports none
Gm = {zeros(length(masses))};
K_dvf = tf(zeros(6));
Kx = tf(zeros(6));
for i = 1:length(masses)
initializeSample('mass', masses(i));
%% Run the linearization
G = linearize(mdl, io, 0);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gm(i) = {G};
end
#+end_src
#+begin_src matlab :exports none
Gm_iff = {zeros(length(masses))};
K_dvf = K_dvf_backup;
Kx = tf(zeros(6));
for i = 1:length(masses)
initializeSample('mass', masses(i));
%% Run the linearization
G = linearize(mdl, io, 0);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gm_iff(i) = {G};
end
#+end_src
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Gm_iff)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm{i}(1, 1), freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_iff{i}(1, 1), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Gm_iff)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm{i}(1, 1), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$M = %.0f$ [kg]', masses(i)));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_iff{i}(1, 1), freqs, 'Hz'))), '--', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'southwest');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
2020-03-23 10:04:20 +01:00
* High Authority Control - $\bm{K}_\mathcal{X}$
** Identification of the damped plant
#+begin_src matlab
Kx = tf(zeros(6));
#+end_src
#+begin_src matlab
initializeController('type', 'hac-dvf');
#+end_src
#+begin_src matlab
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror
%% Run the linearization
G = linearize(mdl, io, 0);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
#+end_src
The minus sine is put here because there is already a minus sign included due to the computation of the position error.
#+begin_src matlab
load('mat/stages.mat', 'nano_hexapod');
Gx = -G*inv(nano_hexapod.J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
#+end_src
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
labels = {'$D_x/\mathcal{F}_x$', '$D_y/ \mathcal{F}_y$', '$D_z/\mathcal{F}_z$', '$R_x/ \mathcal{M}_x$', '$R_y/\mathcal{M}_y$', '$R_z/ \mathcal{M}_z$'};
figure;
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('Diagonal elements of the Plant');
ax2 = subplot(2, 2, 3);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))), 'DisplayName', labels{i});
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend();
ax3 = subplot(2, 2, 2);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('Off-Diagonal elements of the Plant');
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
** Controller Design
The controller consists of:
- A pure integrator
- A Second integrator up to half the wanted bandwidth
- A Lead around the cross-over frequency
- A low pass filter with a cut-off equal to two times the wanted bandwidth
#+begin_src matlab
wc = 2*pi*15; % Bandwidth Bandwidth [rad/s]
h = 1.5; % Lead parameter
Kx = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * wc/s * ((s/wc*2 + 1)/ (s/wc*2)) * (1/ (1 + s/wc/2));
% Normalization of the gain of have a loop gain of 1 at frequency wc
Kx = Kx.*diag(1./diag(abs(freqresp(Gx*Kx, wc))));
#+end_src
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
labels = {'$L_x$', '$L_y$', '$L_z$', '$L_ {R_x}$', '$L_ {R_y}$', '$L_ {R_z}$'};
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(Gx(i, i)*Kx(i,i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('Diagonal elements of the Plant');
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, i)*Kx(i,i), freqs, 'Hz'))), 'DisplayName', labels{i});
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend();
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab
isstable(feedback(Gx*Kx, eye(6), -1))
#+end_src
#+begin_src matlab
Kx = inv(nano_hexapod.J')*Kx;
#+end_src
#+begin_src matlab
isstable(feedback(G*Kx, eye(6), 1))
#+end_src
* Simulation
#+begin_src matlab
load('mat/conf_simulink.mat');
set_param(conf_simulink, 'StopTime', '2');
#+end_src
And we simulate the system.
#+begin_src matlab
sim('nass_model');
#+end_src
#+begin_src matlab
hac_dvf = simout;
save('./mat/tomo_exp_hac_lac.mat', 'hac_dvf');
#+end_src
* Results
Let's load the simulation when no control is applied.
#+begin_src matlab
load('./mat/experiment_tomography.mat', 'tomo_align_dist');
load('./mat/tomo_exp_hac_lac.mat', 'hac_dvf');
#+end_src
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 3, 1);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 1))
plot(hac_dvf.Em.En.Time, hac_dvf.Em.En.Data(:, 1))
hold off;
xlabel('Time [s]');
ylabel('Dx [m]');
ax2 = subplot(2, 3, 2);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 2))
plot(hac_dvf.Em.En.Time, hac_dvf.Em.En.Data(:, 2))
hold off;
xlabel('Time [s]');
ylabel('Dy [m]');
ax3 = subplot(2, 3, 3);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 3))
plot(hac_dvf.Em.En.Time, hac_dvf.Em.En.Data(:, 3))
hold off;
xlabel('Time [s]');
ylabel('Dz [m]');
ax4 = subplot(2, 3, 4);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 4))
plot(hac_dvf.Em.En.Time, hac_dvf.Em.En.Data(:, 4))
hold off;
xlabel('Time [s]');
ylabel('Rx [rad]');
ax5 = subplot(2, 3, 5);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 5))
plot(hac_dvf.Em.En.Time, hac_dvf.Em.En.Data(:, 5))
hold off;
xlabel('Time [s]');
ylabel('Ry [rad]');
ax6 = subplot(2, 3, 6);
hold on;
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 6), 'DisplayName', '$\mu$-Station')
plot(hac_dvf.Em.En.Time, hac_dvf.Em.En.Data(:, 6), 'DisplayName', 'HAC-DVF')
hold off;
xlabel('Time [s]');
ylabel('Rz [rad]');
legend();
linkaxes([ax1,ax2,ax3,ax4],'x');
xlim([0.5, inf]);
#+end_src