nass-simscape/docs/uniaxial.html

1673 lines
82 KiB
HTML
Raw Permalink Normal View History

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
2021-02-20 23:09:27 +01:00
<!-- 2021-02-20 sam. 23:08 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Simscape Uniaxial Model</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
2021-02-20 23:09:27 +01:00
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
<script>
MathJax = {
svg: {
scale: 1,
fontCache: "global"
},
tex: {
tags: "ams",
multlineWidth: "%MULTLINEWIDTH",
tagSide: "right",
macros: {bm: ["\\boldsymbol{#1}",1],},
tagIndent: ".8em"
}
};
</script>
<script id="MathJax-script" async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
2020-02-25 18:21:17 +01:00
<a accesskey="h" href="./index.html"> UP </a>
|
2021-02-20 23:09:27 +01:00
<a accesskey="H" href="../../index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Simscape Uniaxial Model</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
2021-02-20 23:09:27 +01:00
<li><a href="#org279f101">1. Simscape Model</a></li>
<li><a href="#orgf7b0525">2. Undamped System</a>
<ul>
2021-02-20 23:09:27 +01:00
<li><a href="#org8c0c918">2.1. Init</a></li>
<li><a href="#orgb05d3e3">2.2. Identification</a></li>
<li><a href="#orgb65c80f">2.3. Sensitivity to Disturbances</a></li>
<li><a href="#org2b03403">2.4. Noise Budget</a></li>
<li><a href="#org2a4c59a">2.5. Plant</a></li>
</ul>
</li>
2021-02-20 23:09:27 +01:00
<li><a href="#org4582efe">3. Integral Force Feedback</a>
<ul>
2021-02-20 23:09:27 +01:00
<li><a href="#org1bd1d7b">3.1. Control Design</a></li>
<li><a href="#org29b66f6">3.2. Identification</a></li>
<li><a href="#org1937ae6">3.3. Sensitivity to Disturbance</a></li>
<li><a href="#org9340e78">3.4. Damped Plant</a></li>
<li><a href="#org767511f">3.5. Conclusion</a></li>
</ul>
</li>
2021-02-20 23:09:27 +01:00
<li><a href="#orgc37d268">4. Relative Motion Control</a>
<ul>
2021-02-20 23:09:27 +01:00
<li><a href="#org85632f8">4.1. Control Design</a></li>
<li><a href="#org94bcd25">4.2. Identification</a></li>
<li><a href="#org66fd58c">4.3. Sensitivity to Disturbance</a></li>
<li><a href="#orgcefaa09">4.4. Damped Plant</a></li>
<li><a href="#org5575d52">4.5. Conclusion</a></li>
</ul>
</li>
2021-02-20 23:09:27 +01:00
<li><a href="#orgd2e652f">5. Direct Velocity Feedback</a>
<ul>
2021-02-20 23:09:27 +01:00
<li><a href="#orgf25c764">5.1. Control Design</a></li>
<li><a href="#org33c65e2">5.2. Identification</a></li>
<li><a href="#org0efcd5e">5.3. Sensitivity to Disturbance</a></li>
<li><a href="#orgd64cbe0">5.4. Damped Plant</a></li>
<li><a href="#org1815c13">5.5. Conclusion</a></li>
</ul>
</li>
2021-02-20 23:09:27 +01:00
<li><a href="#orgc4e46cd">6. With Cedrat Piezo-electric Actuators</a>
<ul>
2021-02-20 23:09:27 +01:00
<li><a href="#orgabcef1d">6.1. Identification</a></li>
<li><a href="#orgfc83707">6.2. Control Design</a></li>
<li><a href="#org310cc2a">6.3. Identification</a></li>
<li><a href="#org4bacd78">6.4. Sensitivity to Disturbance</a></li>
<li><a href="#orgeed7d37">6.5. Damped Plant</a></li>
<li><a href="#org9308ceb">6.6. Conclusion</a></li>
</ul>
</li>
2021-02-20 23:09:27 +01:00
<li><a href="#orgb4f2f53">7. Comparison of Active Damping Techniques</a>
<ul>
2021-02-20 23:09:27 +01:00
<li><a href="#orgdd804dc">7.1. Load the plants</a></li>
<li><a href="#orga6f1b82">7.2. Sensitivity to Disturbance</a></li>
<li><a href="#orgbdb91c3">7.3. Noise Budget</a></li>
<li><a href="#org0d80a1a">7.4. Damped Plant</a></li>
<li><a href="#org7b8daa3">7.5. Conclusion</a></li>
</ul>
</li>
2021-02-20 23:09:27 +01:00
<li><a href="#orgdb9e0e5">8. Voice Coil</a>
<ul>
2021-02-20 23:09:27 +01:00
<li><a href="#org0c7bce4">8.1. Init</a></li>
<li><a href="#org5dd6e8d">8.2. Identification</a></li>
<li><a href="#orgf8f1bff">8.3. Sensitivity to Disturbances</a></li>
<li><a href="#org98ab51d">8.4. Noise Budget</a></li>
<li><a href="#orgcae4469">8.5. Integral Force Feedback</a></li>
<li><a href="#org130702c">8.6. Identification of the Damped Plant</a></li>
<li><a href="#orgd002880">8.7. Noise Budget</a></li>
<li><a href="#org0adc59f">8.8. Conclusion</a></li>
</ul>
</li>
</ul>
</div>
</div>
<p>
The idea is to use the same model as the full Simscape Model but to restrict the motion only in the vertical direction.
</p>
<p>
This is done in order to more easily study the system and evaluate control techniques.
</p>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org279f101" class="outline-2">
<h2 id="org279f101"><span class="section-number-2">1</span> Simscape Model</h2>
<div class="outline-text-2" id="text-1">
<p>
2021-02-20 23:09:27 +01:00
<a id="org22ac7fa"></a>
</p>
<p>
2021-02-20 23:09:27 +01:00
A schematic of the uniaxial model used for simulations is represented in figure <a href="#orgae9337c">1</a>.
</p>
<p>
The perturbations \(w\) are:
</p>
<ul class="org-ul">
<li>\(F_s\): direct forces applied to the sample such as inertia forces and cable forces</li>
<li>\(F_{rz}\): parasitic forces due to the rotation of the spindle</li>
<li>\(F_{ty}\): parasitic forces due to scans with the translation stage</li>
<li>\(D_w\): ground motion</li>
</ul>
<p>
The quantity to \(z\) to control is:
</p>
<ul class="org-ul">
<li>\(D\): the position of the sample with respect to the granite</li>
</ul>
<p>
The measured quantities \(v\) are:
</p>
<ul class="org-ul">
<li>\(D\): the position of the sample with respect to the granite</li>
</ul>
<p>
We study the use of an additional sensor:
</p>
<ul class="org-ul">
<li>\(F_n\): a force sensor located in the nano-hexapod</li>
<li>\(v_n\): an absolute velocity sensor located on the top platform of the nano-hexapod</li>
<li>\(d_r\): a relative motion sensor located in the nano-hexapod</li>
</ul>
<p>
The control signal \(u\) is:
</p>
<ul class="org-ul">
<li>\(F\) the force applied by the nano-hexapod actuator</li>
</ul>
2021-02-20 23:09:27 +01:00
<div id="orgae9337c" class="figure">
<p><img src="figs/uniaxial-model-nass-flexible.png" alt="uniaxial-model-nass-flexible.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Schematic of the uniaxial model used</p>
</div>
<p>
Few active damping techniques will be compared in order to decide which sensor is to be included in the system.
2021-02-20 23:09:27 +01:00
Schematics of the active damping techniques are displayed in figure <a href="#orgb63a421">2</a>.
</p>
2021-02-20 23:09:27 +01:00
<div id="orgb63a421" class="figure">
<p><img src="figs/uniaxial-model-nass-flexible-active-damping.png" alt="uniaxial-model-nass-flexible-active-damping.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Comparison of used active damping techniques</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgf7b0525" class="outline-2">
<h2 id="orgf7b0525"><span class="section-number-2">2</span> Undamped System</h2>
<div class="outline-text-2" id="text-2">
<p>
2021-02-20 23:09:27 +01:00
<a id="org361fd15"></a>
</p>
<p>
Let&rsquo;s start by study the undamped system.
</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org8c0c918" class="outline-3">
<h3 id="org8c0c918"><span class="section-number-3">2.1</span> Init</h3>
<div class="outline-text-3" id="text-2-1">
<p>
We initialize all the stages with the default parameters.
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
</p>
<p>
All the controllers are set to 0 (Open Loop).
</p>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgb05d3e3" class="outline-3">
<h3 id="orgb05d3e3"><span class="section-number-3">2.2</span> Identification</h3>
<div class="outline-text-3" id="text-2-2">
<p>
We identify the dynamics of the system.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
2021-02-20 23:09:27 +01:00
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'sim_nano_station_uniaxial'</span>;
</pre>
</div>
<p>
The inputs and outputs are defined below and corresponds to the name of simulink blocks.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
io<span class="org-type">(1) </span>= linio([mdl, <span class="org-string">'/Dw'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Ground Motion</span>
io<span class="org-type">(2) </span>= linio([mdl, <span class="org-string">'/Fs'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied on the sample</span>
io<span class="org-type">(3) </span>= linio([mdl, <span class="org-string">'/Fnl'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied by the NASS</span>
io<span class="org-type">(4) </span>= linio([mdl, <span class="org-string">'/Fdty'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Ty</span>
io<span class="org-type">(5) </span>= linio([mdl, <span class="org-string">'/Fdrz'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Rz</span>
io<span class="org-type">(6) </span>= linio([mdl, <span class="org-string">'/Dsm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of the sample</span>
io<span class="org-type">(7) </span>= linio([mdl, <span class="org-string">'/Fnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Force sensor in NASS's legs</span>
io<span class="org-type">(8) </span>= linio([mdl, <span class="org-string">'/Dnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of NASS's legs</span>
io<span class="org-type">(9) </span>= linio([mdl, <span class="org-string">'/Dgm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Absolute displacement of the granite</span>
io<span class="org-type">(10) </span>= linio([mdl, <span class="org-string">'/Vlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Measured absolute velocity of the top NASS platform</span>
</pre>
</div>
<p>
Finally, we use the <code>linearize</code> Matlab function to extract a state space model from the simscape model.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span>
<span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span>
<span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span>
<span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span>
<span class="org-string">'Frz'</span>}; <span class="org-comment">% Parasitic Force Rz [N]</span>
G.OutputName = {<span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span>
<span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span>
<span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span>
<span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span>
<span class="org-string">'Vlm'</span>}; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span>
</pre>
</div>
<p>
Finally, we save the identified system dynamics for further analysis.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> save(<span class="org-string">'./mat/uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>);
</pre>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgb65c80f" class="outline-3">
<h3 id="orgb65c80f"><span class="section-number-3">2.3</span> Sensitivity to Disturbances</h3>
<div class="outline-text-3" id="text-2-3">
<p>
We show several plots representing the sensitivity to disturbances:
</p>
<ul class="org-ul">
2021-02-20 23:09:27 +01:00
<li>in figure <a href="#orga0cd515">3</a> the transfer functions from ground motion \(D_w\) to the sample position \(D\) and the transfer function from direct force on the sample \(F_s\) to the sample position \(D\) are shown</li>
<li>in figure <a href="#org2844846">4</a>, it is the effect of parasitic forces of the positioning stages (\(F_{ty}\) and \(F_{rz}\)) on the position \(D\) of the sample that are shown</li>
</ul>
2021-02-20 23:09:27 +01:00
<div id="orga0cd515" class="figure">
<p><img src="figs/uniaxial-sensitivity-disturbances.png" alt="uniaxial-sensitivity-disturbances.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Sensitivity to disturbances (<a href="./figs/uniaxial-sensitivity-disturbances.png">png</a>, <a href="./figs/uniaxial-sensitivity-disturbances.pdf">pdf</a>)</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="org2844846" class="figure">
<p><img src="figs/uniaxial-sensitivity-force-dist.png" alt="uniaxial-sensitivity-force-dist.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Sensitivity to disturbances (<a href="./figs/uniaxial-sensitivity-force-dist.png">png</a>, <a href="./figs/uniaxial-sensitivity-force-dist.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org2b03403" class="outline-3">
<h3 id="org2b03403"><span class="section-number-3">2.4</span> Noise Budget</h3>
<div class="outline-text-3" id="text-2-4">
<p>
We first load the measured PSD of the disturbance.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> load(<span class="org-string">'./mat/disturbances_dist_psd.mat'</span>, <span class="org-string">'dist_f'</span>);
</pre>
</div>
<p>
The effect of these disturbances on the distance \(D\) is computed below.
2021-02-20 23:09:27 +01:00
The PSD of the obtain distance \(D\) due to each of the perturbation is shown in figure <a href="#org100e477">5</a> and the Cumulative Amplitude Spectrum is shown in figure <a href="#org49d651e">6</a>.
</p>
<p>
2021-02-20 23:09:27 +01:00
The Root Mean Square value of the obtained displacement \(D\) is computed below and can be determined from the figure <a href="#org49d651e">6</a>.
</p>
<pre class="example">
3.3793e-06
</pre>
2021-02-20 23:09:27 +01:00
<div id="org100e477" class="figure">
<p><img src="figs/uniaxial-psd-dist.png" alt="uniaxial-psd-dist.png" />
</p>
<p><span class="figure-number">Figure 5: </span>PSD of the effect of disturbances on \(D\) (<a href="./figs/uniaxial-psd-dist.png">png</a>, <a href="./figs/uniaxial-psd-dist.pdf">pdf</a>)</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="org49d651e" class="figure">
<p><img src="figs/uniaxial-cas-dist.png" alt="uniaxial-cas-dist.png" />
</p>
<p><span class="figure-number">Figure 6: </span>CAS of the effect of disturbances on \(D\) (<a href="./figs/uniaxial-cas-dist.png">png</a>, <a href="./figs/uniaxial-cas-dist.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org2a4c59a" class="outline-3">
<h3 id="org2a4c59a"><span class="section-number-3">2.5</span> Plant</h3>
<div class="outline-text-3" id="text-2-5">
<p>
2021-02-20 23:09:27 +01:00
The transfer function from the force \(F\) applied by the nano-hexapod to the position of the sample \(D\) is shown in figure <a href="#orgaa0a47a">7</a>.
It corresponds to the plant to control.
</p>
2021-02-20 23:09:27 +01:00
<div id="orgaa0a47a" class="figure">
<p><img src="figs/uniaxial-plant.png" alt="uniaxial-plant.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Bode plot of the Plant (<a href="./figs/uniaxial-plant.png">png</a>, <a href="./figs/uniaxial-plant.pdf">pdf</a>)</p>
</div>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org4582efe" class="outline-2">
<h2 id="org4582efe"><span class="section-number-2">3</span> Integral Force Feedback</h2>
<div class="outline-text-2" id="text-3">
<p>
2021-02-20 23:09:27 +01:00
<a id="org9fef4b5"></a>
</p>
2021-02-20 23:09:27 +01:00
<div id="orgb219467" class="figure">
<p><img src="figs/uniaxial-model-nass-flexible-iff.png" alt="uniaxial-model-nass-flexible-iff.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Uniaxial IFF Control Schematic</p>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org1bd1d7b" class="outline-3">
<h3 id="org1bd1d7b"><span class="section-number-3">3.1</span> Control Design</h3>
<div class="outline-text-3" id="text-3-1">
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> load(<span class="org-string">'./mat/uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>);
</pre>
</div>
<p>
Let&rsquo;s look at the transfer function from actuator forces in the nano-hexapod to the force sensor in the nano-hexapod legs for all 6 pairs of actuator/sensor.
</p>
2021-02-20 23:09:27 +01:00
<div id="orgc3ddaae" class="figure">
<p><img src="figs/uniaxial_iff_plant.png" alt="uniaxial_iff_plant.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Transfer function from forces applied in the legs to force sensor (<a href="./figs/uniaxial_iff_plant.png">png</a>, <a href="./figs/uniaxial_iff_plant.pdf">pdf</a>)</p>
</div>
<p>
The controller for each pair of actuator/sensor is:
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> K_iff = <span class="org-type">-</span>1000<span class="org-type">/</span>s;
</pre>
</div>
2021-02-20 23:09:27 +01:00
<div id="org7bfe14f" class="figure">
<p><img src="figs/uniaxial_iff_open_loop.png" alt="uniaxial_iff_open_loop.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/uniaxial_iff_open_loop.png">png</a>, <a href="./figs/uniaxial_iff_open_loop.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org29b66f6" class="outline-3">
<h3 id="org29b66f6"><span class="section-number-3">3.2</span> Identification</h3>
<div class="outline-text-3" id="text-3-2">
<p>
Let&rsquo;s initialize the system prior to identification.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
initializeSample(<span class="org-string">'mass'</span>, 50);
</pre>
</div>
<p>
All the controllers are set to 0.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> K = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
K_iff = <span class="org-type">-</span>K_iff;
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
K_rmc = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
K_dvf = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
2021-02-20 23:09:27 +01:00
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'sim_nano_station_uniaxial'</span>;
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
io<span class="org-type">(1) </span>= linio([mdl, <span class="org-string">'/Dw'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Ground Motion</span>
io<span class="org-type">(2) </span>= linio([mdl, <span class="org-string">'/Fs'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied on the sample</span>
io<span class="org-type">(3) </span>= linio([mdl, <span class="org-string">'/Fnl'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied by the NASS</span>
io<span class="org-type">(4) </span>= linio([mdl, <span class="org-string">'/Fdty'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Ty</span>
io<span class="org-type">(5) </span>= linio([mdl, <span class="org-string">'/Fdrz'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Rz</span>
io<span class="org-type">(6) </span>= linio([mdl, <span class="org-string">'/Dsm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of the sample</span>
io<span class="org-type">(7) </span>= linio([mdl, <span class="org-string">'/Fnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Force sensor in NASS's legs</span>
io<span class="org-type">(8) </span>= linio([mdl, <span class="org-string">'/Dnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of NASS's legs</span>
io<span class="org-type">(9) </span>= linio([mdl, <span class="org-string">'/Dgm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Absolute displacement of the granite</span>
io<span class="org-type">(10) </span>= linio([mdl, <span class="org-string">'/Vlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Measured absolute velocity of the top NASS platform</span>
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G_iff = linearize(mdl, io, options);
G_iff.InputName = {<span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span>
<span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span>
<span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span>
<span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span>
<span class="org-string">'Frz'</span>}; <span class="org-comment">% Parasitic Force Rz [N]</span>
G_iff.OutputName = {<span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span>
<span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span>
<span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span>
<span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span>
<span class="org-string">'Vlm'</span>}; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span>
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> save(<span class="org-string">'./mat/uniaxial_plants.mat'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org1937ae6" class="outline-3">
<h3 id="org1937ae6"><span class="section-number-3">3.3</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-3-3">
2021-02-20 23:09:27 +01:00
<div id="org7de5bc0" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_iff.png" alt="uniaxial_sensitivity_dist_iff.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Sensitivity to disturbance once the IFF controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_iff.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_iff.pdf">pdf</a>)</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="org6419cf2" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_stages_iff.png" alt="uniaxial_sensitivity_dist_stages_iff.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Sensitivity to force disturbances in various stages when IFF is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_iff.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_iff.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org9340e78" class="outline-3">
<h3 id="org9340e78"><span class="section-number-3">3.4</span> Damped Plant</h3>
<div class="outline-text-3" id="text-3-4">
2021-02-20 23:09:27 +01:00
<div id="org76b84bd" class="figure">
<p><img src="figs/uniaxial_plant_iff_damped.png" alt="uniaxial_plant_iff_damped.png" />
</p>
<p><span class="figure-number">Figure 13: </span>Damped Plant after IFF is applied (<a href="./figs/uniaxial_plant_iff_damped.png">png</a>, <a href="./figs/uniaxial_plant_iff_damped.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org767511f" class="outline-3">
<h3 id="org767511f"><span class="section-number-3">3.5</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-5">
2021-02-20 23:09:27 +01:00
<div class="important" id="orgc354db3">
<p>
Integral Force Feedback:
</p>
</div>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgc37d268" class="outline-2">
<h2 id="orgc37d268"><span class="section-number-2">4</span> Relative Motion Control</h2>
<div class="outline-text-2" id="text-4">
<p>
2021-02-20 23:09:27 +01:00
<a id="org9900890"></a>
</p>
<p>
In the Relative Motion Control (RMC), a derivative feedback is applied between the measured actuator displacement to the actuator force input.
</p>
2021-02-20 23:09:27 +01:00
<div id="org03a9a5a" class="figure">
<p><img src="figs/uniaxial-model-nass-flexible-rmc.png" alt="uniaxial-model-nass-flexible-rmc.png" />
</p>
<p><span class="figure-number">Figure 14: </span>Uniaxial RMC Control Schematic</p>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org85632f8" class="outline-3">
<h3 id="org85632f8"><span class="section-number-3">4.1</span> Control Design</h3>
<div class="outline-text-3" id="text-4-1">
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> load(<span class="org-string">'./mat/uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>);
</pre>
</div>
<p>
Let&rsquo;s look at the transfer function from actuator forces in the nano-hexapod to the measured displacement of the actuator for all 6 pairs of actuator/sensor.
</p>
2021-02-20 23:09:27 +01:00
<div id="org1c13fb0" class="figure">
<p><img src="figs/uniaxial_rmc_plant.png" alt="uniaxial_rmc_plant.png" />
</p>
<p><span class="figure-number">Figure 15: </span>Transfer function from forces applied in the legs to leg displacement sensor (<a href="./figs/uniaxial_rmc_plant.png">png</a>, <a href="./figs/uniaxial_rmc_plant.pdf">pdf</a>)</p>
</div>
<p>
The Relative Motion Controller is defined below.
A Low pass Filter is added to make the controller transfer function proper.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> K_rmc = s<span class="org-type">*</span>50000<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10000);
</pre>
</div>
2021-02-20 23:09:27 +01:00
<div id="org185c5bb" class="figure">
<p><img src="figs/uniaxial_rmc_open_loop.png" alt="uniaxial_rmc_open_loop.png" />
</p>
<p><span class="figure-number">Figure 16: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/uniaxial_rmc_open_loop.png">png</a>, <a href="./figs/uniaxial_rmc_open_loop.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org94bcd25" class="outline-3">
<h3 id="org94bcd25"><span class="section-number-3">4.2</span> Identification</h3>
<div class="outline-text-3" id="text-4-2">
<p>
Let&rsquo;s initialize the system prior to identification.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
initializeSample(<span class="org-string">'mass'</span>, 50);
</pre>
</div>
<p>
And initialize the controllers.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> K = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
K_iff = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
K_rmc = <span class="org-type">-</span>K_rmc;
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
K_dvf = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
2021-02-20 23:09:27 +01:00
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'sim_nano_station_uniaxial'</span>;
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
io<span class="org-type">(1) </span>= linio([mdl, <span class="org-string">'/Dw'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Ground Motion</span>
io<span class="org-type">(2) </span>= linio([mdl, <span class="org-string">'/Fs'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied on the sample</span>
io<span class="org-type">(3) </span>= linio([mdl, <span class="org-string">'/Fnl'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied by the NASS</span>
io<span class="org-type">(4) </span>= linio([mdl, <span class="org-string">'/Fdty'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Ty</span>
io<span class="org-type">(5) </span>= linio([mdl, <span class="org-string">'/Fdrz'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Rz</span>
io<span class="org-type">(6) </span>= linio([mdl, <span class="org-string">'/Dsm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of the sample</span>
io<span class="org-type">(7) </span>= linio([mdl, <span class="org-string">'/Fnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Force sensor in NASS's legs</span>
io<span class="org-type">(8) </span>= linio([mdl, <span class="org-string">'/Dnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of NASS's legs</span>
io<span class="org-type">(9) </span>= linio([mdl, <span class="org-string">'/Dgm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Absolute displacement of the granite</span>
io<span class="org-type">(10) </span>= linio([mdl, <span class="org-string">'/Vlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Measured absolute velocity of the top NASS platform</span>
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G_rmc = linearize(mdl, io, options);
G_rmc.InputName = {<span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span>
<span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span>
<span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span>
<span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span>
<span class="org-string">'Frz'</span>}; <span class="org-comment">% Parasitic Force Rz [N]</span>
G_rmc.OutputName = {<span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span>
<span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span>
<span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span>
<span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span>
<span class="org-string">'Vlm'</span>}; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span>
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> save(<span class="org-string">'./mat/uniaxial_plants.mat'</span>, <span class="org-string">'G_rmc'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org66fd58c" class="outline-3">
<h3 id="org66fd58c"><span class="section-number-3">4.3</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-4-3">
2021-02-20 23:09:27 +01:00
<div id="org63acb0a" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_rmc.png" alt="uniaxial_sensitivity_dist_rmc.png" />
</p>
<p><span class="figure-number">Figure 17: </span>Sensitivity to disturbance once the RMC controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_rmc.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_rmc.pdf">pdf</a>)</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="org281dbea" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_stages_rmc.png" alt="uniaxial_sensitivity_dist_stages_rmc.png" />
</p>
<p><span class="figure-number">Figure 18: </span>Sensitivity to force disturbances in various stages when RMC is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_rmc.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_rmc.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgcefaa09" class="outline-3">
<h3 id="orgcefaa09"><span class="section-number-3">4.4</span> Damped Plant</h3>
<div class="outline-text-3" id="text-4-4">
2021-02-20 23:09:27 +01:00
<div id="org1096141" class="figure">
<p><img src="figs/uniaxial_plant_rmc_damped.png" alt="uniaxial_plant_rmc_damped.png" />
</p>
<p><span class="figure-number">Figure 19: </span>Damped Plant after RMC is applied (<a href="./figs/uniaxial_plant_rmc_damped.png">png</a>, <a href="./figs/uniaxial_plant_rmc_damped.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org5575d52" class="outline-3">
<h3 id="org5575d52"><span class="section-number-3">4.5</span> Conclusion</h3>
<div class="outline-text-3" id="text-4-5">
2021-02-20 23:09:27 +01:00
<div class="important" id="org2558429">
<p>
Relative Motion Control:
</p>
</div>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgd2e652f" class="outline-2">
<h2 id="orgd2e652f"><span class="section-number-2">5</span> Direct Velocity Feedback</h2>
<div class="outline-text-2" id="text-5">
<p>
2021-02-20 23:09:27 +01:00
<a id="org1dfd6d8"></a>
</p>
<p>
In the Relative Motion Control (RMC), a feedback is applied between the measured velocity of the platform to the actuator force input.
</p>
2021-02-20 23:09:27 +01:00
<div id="org62966b3" class="figure">
<p><img src="figs/uniaxial-model-nass-flexible-dvf.png" alt="uniaxial-model-nass-flexible-dvf.png" />
</p>
<p><span class="figure-number">Figure 20: </span>Uniaxial DVF Control Schematic</p>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgf25c764" class="outline-3">
<h3 id="orgf25c764"><span class="section-number-3">5.1</span> Control Design</h3>
<div class="outline-text-3" id="text-5-1">
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> load(<span class="org-string">'./mat/uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>);
</pre>
</div>
2021-02-20 23:09:27 +01:00
<div id="orga7e23bd" class="figure">
<p><img src="figs/uniaxial_dvf_plant.png" alt="uniaxial_dvf_plant.png" />
</p>
<p><span class="figure-number">Figure 21: </span>Transfer function from forces applied in the legs to leg velocity sensor (<a href="./figs/uniaxial_dvf_plant.png">png</a>, <a href="./figs/uniaxial_dvf_plant.pdf">pdf</a>)</p>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> K_dvf = tf(5e4);
</pre>
</div>
2021-02-20 23:09:27 +01:00
<div id="orgbfe8afa" class="figure">
<p><img src="figs/uniaxial_dvf_loop_gain.png" alt="uniaxial_dvf_loop_gain.png" />
</p>
<p><span class="figure-number">Figure 22: </span>Transfer function from forces applied in the legs to leg velocity sensor (<a href="./figs/uniaxial_dvf_loop_gain.png">png</a>, <a href="./figs/uniaxial_dvf_loop_gain.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org33c65e2" class="outline-3">
<h3 id="org33c65e2"><span class="section-number-3">5.2</span> Identification</h3>
<div class="outline-text-3" id="text-5-2">
<p>
Let&rsquo;s initialize the system prior to identification.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
initializeSample(<span class="org-string">'mass'</span>, 50);
</pre>
</div>
<p>
And initialize the controllers.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> K = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
K_iff = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
K_rmc = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
K_dvf = <span class="org-type">-</span>K_dvf;
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
2021-02-20 23:09:27 +01:00
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'sim_nano_station_uniaxial'</span>;
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
io<span class="org-type">(1) </span>= linio([mdl, <span class="org-string">'/Dw'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Ground Motion</span>
io<span class="org-type">(2) </span>= linio([mdl, <span class="org-string">'/Fs'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied on the sample</span>
io<span class="org-type">(3) </span>= linio([mdl, <span class="org-string">'/Fnl'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied by the NASS</span>
io<span class="org-type">(4) </span>= linio([mdl, <span class="org-string">'/Fdty'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Ty</span>
io<span class="org-type">(5) </span>= linio([mdl, <span class="org-string">'/Fdrz'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Rz</span>
io<span class="org-type">(6) </span>= linio([mdl, <span class="org-string">'/Dsm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of the sample</span>
io<span class="org-type">(7) </span>= linio([mdl, <span class="org-string">'/Fnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Force sensor in NASS's legs</span>
io<span class="org-type">(8) </span>= linio([mdl, <span class="org-string">'/Dnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of NASS's legs</span>
io<span class="org-type">(9) </span>= linio([mdl, <span class="org-string">'/Dgm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Absolute displacement of the granite</span>
io<span class="org-type">(10) </span>= linio([mdl, <span class="org-string">'/Vlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Measured absolute velocity of the top NASS platform</span>
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G_dvf = linearize(mdl, io, options);
G_dvf.InputName = {<span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span>
<span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span>
<span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span>
<span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span>
<span class="org-string">'Frz'</span>}; <span class="org-comment">% Parasitic Force Rz [N]</span>
G_dvf.OutputName = {<span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span>
<span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span>
<span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span>
<span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span>
<span class="org-string">'Vlm'</span>}; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span>
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> save(<span class="org-string">'./mat/uniaxial_plants.mat'</span>, <span class="org-string">'G_dvf'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org0efcd5e" class="outline-3">
<h3 id="org0efcd5e"><span class="section-number-3">5.3</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-5-3">
2021-02-20 23:09:27 +01:00
<div id="org8c8602d" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_dvf.png" alt="uniaxial_sensitivity_dist_dvf.png" />
</p>
<p><span class="figure-number">Figure 23: </span>Sensitivity to disturbance once the DVF controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_dvf.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_dvf.pdf">pdf</a>)</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="org6e6eefc" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_stages_dvf.png" alt="uniaxial_sensitivity_dist_stages_dvf.png" />
</p>
<p><span class="figure-number">Figure 24: </span>Sensitivity to force disturbances in various stages when DVF is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_dvf.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_dvf.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgd64cbe0" class="outline-3">
<h3 id="orgd64cbe0"><span class="section-number-3">5.4</span> Damped Plant</h3>
<div class="outline-text-3" id="text-5-4">
2021-02-20 23:09:27 +01:00
<div id="org378b922" class="figure">
<p><img src="figs/uniaxial_plant_dvf_damped.png" alt="uniaxial_plant_dvf_damped.png" />
</p>
<p><span class="figure-number">Figure 25: </span>Damped Plant after DVF is applied (<a href="./figs/uniaxial_plant_dvf_damped.png">png</a>, <a href="./figs/uniaxial_plant_dvf_damped.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org1815c13" class="outline-3">
<h3 id="org1815c13"><span class="section-number-3">5.5</span> Conclusion</h3>
<div class="outline-text-3" id="text-5-5">
2021-02-20 23:09:27 +01:00
<div class="important" id="orga12f388">
<p>
Direct Velocity Feedback:
</p>
</div>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgc4e46cd" class="outline-2">
<h2 id="orgc4e46cd"><span class="section-number-2">6</span> With Cedrat Piezo-electric Actuators</h2>
<div class="outline-text-2" id="text-6">
<p>
2021-02-20 23:09:27 +01:00
<a id="orga4be216"></a>
</p>
<p>
2021-02-20 23:09:27 +01:00
The model used for the Cedrat actuator is shown in figure <a href="#org789f7bf">26</a>.
</p>
2021-02-20 23:09:27 +01:00
<div id="org789f7bf" class="figure">
<p><img src="figs/cedrat-uniaxial-actuator.png" alt="cedrat-uniaxial-actuator.png" />
</p>
<p><span class="figure-number">Figure 26: </span>Schematic of the model used for the Cedrat Actuator</p>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgabcef1d" class="outline-3">
<h3 id="orgabcef1d"><span class="section-number-3">6.1</span> Identification</h3>
<div class="outline-text-3" id="text-6-1">
<p>
Let&rsquo;s initialize the system prior to identification.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
initializeCedratPiezo();
initializeSample(<span class="org-string">'mass'</span>, 50);
</pre>
</div>
<p>
And initialize the controllers.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> K = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
K_iff = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
K_rmc = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
K_dvf = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
<p>
We identify the dynamics of the system.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
2021-02-20 23:09:27 +01:00
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'sim_nano_station_uniaxial_cedrat_bis'</span>;
</pre>
</div>
<p>
The inputs and outputs are defined below and corresponds to the name of simulink blocks.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
io<span class="org-type">(1) </span>= linio([mdl, <span class="org-string">'/Dw'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Ground Motion</span>
io<span class="org-type">(2) </span>= linio([mdl, <span class="org-string">'/Fs'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied on the sample</span>
io<span class="org-type">(3) </span>= linio([mdl, <span class="org-string">'/Fnl'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied by the NASS</span>
io<span class="org-type">(4) </span>= linio([mdl, <span class="org-string">'/Fdty'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Ty</span>
io<span class="org-type">(5) </span>= linio([mdl, <span class="org-string">'/Fdrz'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Rz</span>
io<span class="org-type">(6) </span>= linio([mdl, <span class="org-string">'/Dsm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of the sample</span>
io<span class="org-type">(7) </span>= linio([mdl, <span class="org-string">'/Fnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Force sensor in NASS's legs</span>
io<span class="org-type">(8) </span>= linio([mdl, <span class="org-string">'/Dnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of NASS's legs</span>
io<span class="org-type">(9) </span>= linio([mdl, <span class="org-string">'/Dgm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Absolute displacement of the granite</span>
io<span class="org-type">(10) </span>= linio([mdl, <span class="org-string">'/Vlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Measured absolute velocity of the top NASS platform</span>
</pre>
</div>
<p>
Finally, we use the <code>linearize</code> Matlab function to extract a state space model from the simscape model.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span>
<span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span>
<span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span>
<span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span>
<span class="org-string">'Frz'</span>}; <span class="org-comment">% Parasitic Force Rz [N]</span>
G.OutputName = {<span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span>
<span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span>
<span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span>
<span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span>
<span class="org-string">'Vlm'</span>}; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span>
</pre>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgfc83707" class="outline-3">
<h3 id="orgfc83707"><span class="section-number-3">6.2</span> Control Design</h3>
<div class="outline-text-3" id="text-6-2">
<p>
Let&rsquo;s look at the transfer function from actuator forces in the nano-hexapod to the force sensor in the nano-hexapod legs for all 6 pairs of actuator/sensor.
</p>
2021-02-20 23:09:27 +01:00
<div id="orgf530b13" class="figure">
<p><img src="figs/uniaxial_cedrat_plant.png" alt="uniaxial_cedrat_plant.png" />
</p>
<p><span class="figure-number">Figure 27: </span>Transfer function from forces applied in the legs to force sensor (<a href="./figs/uniaxial_cedrat_plant.png">png</a>, <a href="./figs/uniaxial_cedrat_plant.pdf">pdf</a>)</p>
</div>
<p>
The controller for each pair of actuator/sensor is:
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> K_cedrat = <span class="org-type">-</span>5000<span class="org-type">/</span>s;
</pre>
</div>
2021-02-20 23:09:27 +01:00
<div id="org9768ead" class="figure">
<p><img src="figs/uniaxial_cedrat_open_loop.png" alt="uniaxial_cedrat_open_loop.png" />
</p>
<p><span class="figure-number">Figure 28: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/uniaxial_cedrat_open_loop.png">png</a>, <a href="./figs/uniaxial_cedrat_open_loop.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org310cc2a" class="outline-3">
<h3 id="org310cc2a"><span class="section-number-3">6.3</span> Identification</h3>
<div class="outline-text-3" id="text-6-3">
<p>
Let&rsquo;s initialize the system prior to identification.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>);
initializeCedratPiezo();
initializeSample(<span class="org-string">'mass'</span>, 50);
</pre>
</div>
<p>
All the controllers are set to 0.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> K = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
K_iff = <span class="org-type">-</span>K_cedrat;
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
K_rmc = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
K_dvf = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
2021-02-20 23:09:27 +01:00
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'sim_nano_station_uniaxial_cedrat_bis'</span>;
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
io<span class="org-type">(1) </span>= linio([mdl, <span class="org-string">'/Dw'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Ground Motion</span>
io<span class="org-type">(2) </span>= linio([mdl, <span class="org-string">'/Fs'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied on the sample</span>
io<span class="org-type">(3) </span>= linio([mdl, <span class="org-string">'/Fnl'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied by the NASS</span>
io<span class="org-type">(4) </span>= linio([mdl, <span class="org-string">'/Fdty'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Ty</span>
io<span class="org-type">(5) </span>= linio([mdl, <span class="org-string">'/Fdrz'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Rz</span>
io<span class="org-type">(6) </span>= linio([mdl, <span class="org-string">'/Dsm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of the sample</span>
io<span class="org-type">(7) </span>= linio([mdl, <span class="org-string">'/Fnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Force sensor in NASS's legs</span>
io<span class="org-type">(8) </span>= linio([mdl, <span class="org-string">'/Dnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of NASS's legs</span>
io<span class="org-type">(9) </span>= linio([mdl, <span class="org-string">'/Dgm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Absolute displacement of the granite</span>
io<span class="org-type">(10) </span>= linio([mdl, <span class="org-string">'/Vlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Measured absolute velocity of the top NASS platform</span>
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G_cedrat = linearize(mdl, io, options);
G_cedrat.InputName = {<span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span>
<span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span>
<span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span>
<span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span>
<span class="org-string">'Frz'</span>}; <span class="org-comment">% Parasitic Force Rz [N]</span>
G_cedrat.OutputName = {<span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span>
<span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span>
<span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span>
<span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span>
<span class="org-string">'Vlm'</span>}; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span>
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-comment">% save('./mat/uniaxial_plants.mat', 'G_cedrat', '-append');</span>
</pre>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org4bacd78" class="outline-3">
<h3 id="org4bacd78"><span class="section-number-3">6.4</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-6-4">
2021-02-20 23:09:27 +01:00
<div id="orgec532b5" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_cedrat.png" alt="uniaxial_sensitivity_dist_cedrat.png" />
</p>
<p><span class="figure-number">Figure 29: </span>Sensitivity to disturbance once the CEDRAT controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_cedrat.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_cedrat.pdf">pdf</a>)</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="org038f961" class="figure">
<p><img src="figs/uniaxial_sensitivity_dist_stages_cedrat.png" alt="uniaxial_sensitivity_dist_stages_cedrat.png" />
</p>
<p><span class="figure-number">Figure 30: </span>Sensitivity to force disturbances in various stages when CEDRAT is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_cedrat.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_cedrat.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgeed7d37" class="outline-3">
<h3 id="orgeed7d37"><span class="section-number-3">6.5</span> Damped Plant</h3>
<div class="outline-text-3" id="text-6-5">
2021-02-20 23:09:27 +01:00
<div id="org9898063" class="figure">
<p><img src="figs/uniaxial_plant_cedrat_damped.png" alt="uniaxial_plant_cedrat_damped.png" />
</p>
<p><span class="figure-number">Figure 31: </span>Damped Plant after CEDRAT is applied (<a href="./figs/uniaxial_plant_cedrat_damped.png">png</a>, <a href="./figs/uniaxial_plant_cedrat_damped.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org9308ceb" class="outline-3">
<h3 id="org9308ceb"><span class="section-number-3">6.6</span> Conclusion</h3>
<div class="outline-text-3" id="text-6-6">
2021-02-20 23:09:27 +01:00
<div class="important" id="org6c33fe4">
<p>
This gives similar results than with a classical force sensor.
</p>
</div>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgb4f2f53" class="outline-2">
<h2 id="orgb4f2f53"><span class="section-number-2">7</span> Comparison of Active Damping Techniques</h2>
<div class="outline-text-2" id="text-7">
<p>
2021-02-20 23:09:27 +01:00
<a id="org5701ad3"></a>
</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgdd804dc" class="outline-3">
<h3 id="orgdd804dc"><span class="section-number-3">7.1</span> Load the plants</h3>
<div class="outline-text-3" id="text-7-1">
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> load(<span class="org-string">'./mat/uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'G_rmc'</span>, <span class="org-string">'G_dvf'</span>);
</pre>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orga6f1b82" class="outline-3">
<h3 id="orga6f1b82"><span class="section-number-3">7.2</span> Sensitivity to Disturbance</h3>
<div class="outline-text-3" id="text-7-2">
2021-02-20 23:09:27 +01:00
<div id="org0865b00" class="figure">
<p><img src="figs/uniaxial_sensitivity_ground_motion.png" alt="uniaxial_sensitivity_ground_motion.png" />
</p>
<p><span class="figure-number">Figure 32: </span>Sensitivity to Ground Motion - Comparison (<a href="./figs/uniaxial_sensitivity_ground_motion.png">png</a>, <a href="./figs/uniaxial_sensitivity_ground_motion.pdf">pdf</a>)</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="org8787ded" class="figure">
<p><img src="figs/uniaxial_sensitivity_direct_force.png" alt="uniaxial_sensitivity_direct_force.png" />
</p>
<p><span class="figure-number">Figure 33: </span>Sensitivity to disturbance - Comparison (<a href="./figs/uniaxial_sensitivity_direct_force.png">png</a>, <a href="./figs/uniaxial_sensitivity_direct_force.pdf">pdf</a>)</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="org6c4e606" class="figure">
<p><img src="figs/uniaxial_sensitivity_fty.png" alt="uniaxial_sensitivity_fty.png" />
</p>
<p><span class="figure-number">Figure 34: </span>Sensitivity to force disturbances - Comparison (<a href="./figs/uniaxial_sensitivity_fty.png">png</a>, <a href="./figs/uniaxial_sensitivity_fty.pdf">pdf</a>)</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="org63b4b1b" class="figure">
<p><img src="figs/uniaxial_sensitivity_frz.png" alt="uniaxial_sensitivity_frz.png" />
</p>
<p><span class="figure-number">Figure 35: </span>Sensitivity to force disturbances - Comparison (<a href="./figs/uniaxial_sensitivity_frz.png">png</a>, <a href="./figs/uniaxial_sensitivity_frz.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgbdb91c3" class="outline-3">
<h3 id="orgbdb91c3"><span class="section-number-3">7.3</span> Noise Budget</h3>
<div class="outline-text-3" id="text-7-3">
<p>
We first load the measured PSD of the disturbance.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> load(<span class="org-string">'./mat/disturbances_dist_psd.mat'</span>, <span class="org-string">'dist_f'</span>);
</pre>
</div>
<p>
The effect of these disturbances on the distance \(D\) is computed for all active damping techniques.
2021-02-20 23:09:27 +01:00
We then compute the Cumulative Amplitude Spectrum (figure <a href="#orgb38f8a7">36</a>).
</p>
2021-02-20 23:09:27 +01:00
<div id="orgb38f8a7" class="figure">
<p><img src="figs/uniaxial-comp-cas-dist.png" alt="uniaxial-comp-cas-dist.png" />
</p>
<p><span class="figure-number">Figure 36: </span>Comparison of the Cumulative Amplitude Spectrum of \(D\) for different active damping techniques (<a href="./figs/uniaxial-comp-cas-dist.png">png</a>, <a href="./figs/uniaxial-comp-cas-dist.pdf">pdf</a>)</p>
</div>
<p>
The obtained Root Mean Square Value for each active damping technique is shown below.
</p>
2021-02-20 23:09:27 +01:00
<table id="org7251f08" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 1:</span> Obtain Root Mean Square value of \(D\) for each Active Damping Technique applied</caption>
<colgroup>
<col class="org-left" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">&#xa0;</th>
<th scope="col" class="org-right">D [m rms]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">OL</td>
<td class="org-right">3.38e-06</td>
</tr>
<tr>
<td class="org-left">IFF</td>
<td class="org-right">3.40e-06</td>
</tr>
<tr>
<td class="org-left">RMC</td>
<td class="org-right">3.37e-06</td>
</tr>
<tr>
<td class="org-left">DVF</td>
<td class="org-right">3.38e-06</td>
</tr>
</tbody>
</table>
<p>
It is important to note that the effect of direct forces applied to the sample are not taken into account here.
</p>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org0d80a1a" class="outline-3">
<h3 id="org0d80a1a"><span class="section-number-3">7.4</span> Damped Plant</h3>
<div class="outline-text-3" id="text-7-4">
2021-02-20 23:09:27 +01:00
<div id="org930d315" class="figure">
<p><img src="figs/uniaxial_plant_damped_comp.png" alt="uniaxial_plant_damped_comp.png" />
</p>
<p><span class="figure-number">Figure 37: </span>Damped Plant - Comparison (<a href="./figs/uniaxial_plant_damped_comp.png">png</a>, <a href="./figs/uniaxial_plant_damped_comp.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org7b8daa3" class="outline-3">
<h3 id="org7b8daa3"><span class="section-number-3">7.5</span> Conclusion</h3>
<div class="outline-text-3" id="text-7-5">
2021-02-20 23:09:27 +01:00
<table id="org5c958ab" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 2:</span> Comparison of proposed active damping techniques</caption>
<colgroup>
<col class="org-left" />
<col class="org-left" />
<col class="org-left" />
<col class="org-left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">&#xa0;</th>
<th scope="col" class="org-left">IFF</th>
<th scope="col" class="org-left">RMC</th>
<th scope="col" class="org-left">DVF</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">Sensor Type</td>
<td class="org-left">Force sensor</td>
<td class="org-left">Relative Motion</td>
<td class="org-left">Inertial</td>
</tr>
<tr>
<td class="org-left">Guaranteed Stability</td>
<td class="org-left">+</td>
<td class="org-left">+</td>
<td class="org-left">-</td>
</tr>
<tr>
<td class="org-left">Sensitivity (\(D_w\))</td>
<td class="org-left">-</td>
<td class="org-left">+</td>
<td class="org-left">-</td>
</tr>
<tr>
<td class="org-left">Sensitivity (\(F_s\))</td>
<td class="org-left">- (at low freq)</td>
<td class="org-left">+</td>
<td class="org-left">+</td>
</tr>
<tr>
<td class="org-left">Sensitivity (\(F_{ty,rz}\))</td>
<td class="org-left">+</td>
<td class="org-left">-</td>
<td class="org-left">+</td>
</tr>
<tr>
<td class="org-left">Overall RMS of \(D\)</td>
<td class="org-left">=</td>
<td class="org-left">=</td>
<td class="org-left">=</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgdb9e0e5" class="outline-2">
<h2 id="orgdb9e0e5"><span class="section-number-2">8</span> Voice Coil</h2>
<div class="outline-text-2" id="text-8">
<p>
2021-02-20 23:09:27 +01:00
<a id="org030260d"></a>
</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org0c7bce4" class="outline-3">
<h3 id="org0c7bce4"><span class="section-number-3">8.1</span> Init</h3>
<div class="outline-text-3" id="text-8-1">
<p>
We initialize all the stages with the default parameters.
The nano-hexapod is an hexapod with voice coils and the sample has a mass of 50kg.
</p>
<p>
All the controllers are set to 0 (Open Loop).
</p>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org5dd6e8d" class="outline-3">
<h3 id="org5dd6e8d"><span class="section-number-3">8.2</span> Identification</h3>
<div class="outline-text-3" id="text-8-2">
<p>
We identify the dynamics of the system.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
2021-02-20 23:09:27 +01:00
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'sim_nano_station_uniaxial'</span>;
</pre>
</div>
<p>
The inputs and outputs are defined below and corresponds to the name of simulink blocks.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
io<span class="org-type">(1) </span>= linio([mdl, <span class="org-string">'/Dw'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Ground Motion</span>
io<span class="org-type">(2) </span>= linio([mdl, <span class="org-string">'/Fs'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied on the sample</span>
io<span class="org-type">(3) </span>= linio([mdl, <span class="org-string">'/Fnl'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied by the NASS</span>
io<span class="org-type">(4) </span>= linio([mdl, <span class="org-string">'/Fdty'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Ty</span>
io<span class="org-type">(5) </span>= linio([mdl, <span class="org-string">'/Fdrz'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Rz</span>
io<span class="org-type">(6) </span>= linio([mdl, <span class="org-string">'/Dsm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of the sample</span>
io<span class="org-type">(7) </span>= linio([mdl, <span class="org-string">'/Fnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Force sensor in NASS's legs</span>
io<span class="org-type">(8) </span>= linio([mdl, <span class="org-string">'/Dnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of NASS's legs</span>
io<span class="org-type">(9) </span>= linio([mdl, <span class="org-string">'/Dgm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Absolute displacement of the granite</span>
io<span class="org-type">(10) </span>= linio([mdl, <span class="org-string">'/Vlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Measured absolute velocity of the top NASS platform</span>
</pre>
</div>
<p>
Finally, we use the <code>linearize</code> Matlab function to extract a state space model from the simscape model.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G_vc = linearize(mdl, io, options);
G_vc.InputName = {<span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span>
<span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span>
<span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span>
<span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span>
<span class="org-string">'Frz'</span>}; <span class="org-comment">% Parasitic Force Rz [N]</span>
G_vc.OutputName = {<span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span>
<span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span>
<span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span>
<span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span>
<span class="org-string">'Vlm'</span>}; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span>
</pre>
</div>
<p>
Finally, we save the identified system dynamics for further analysis.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> save(<span class="org-string">'./mat/uniaxial_plants.mat'</span>, <span class="org-string">'G_vc'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgf8f1bff" class="outline-3">
<h3 id="orgf8f1bff"><span class="section-number-3">8.3</span> Sensitivity to Disturbances</h3>
<div class="outline-text-3" id="text-8-3">
<p>
We load the dynamics when using a piezo-electric nano hexapod to compare the results.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> load(<span class="org-string">'./mat/uniaxial_plants.mat'</span>, <span class="org-string">'G'</span>);
</pre>
</div>
<p>
We show several plots representing the sensitivity to disturbances:
</p>
<ul class="org-ul">
2021-02-20 23:09:27 +01:00
<li>in figure <a href="#org4ad9ed0">38</a> the transfer functions from ground motion \(D_w\) to the sample position \(D\) and the transfer function from direct force on the sample \(F_s\) to the sample position \(D\) are shown</li>
<li>in figure <a href="#org2a72b74">39</a>, it is the effect of parasitic forces of the positioning stages (\(F_{ty}\) and \(F_{rz}\)) on the position \(D\) of the sample that are shown</li>
</ul>
2021-02-20 23:09:27 +01:00
<div id="org4ad9ed0" class="figure">
<p><img src="figs/uniaxial-sensitivity-vc-disturbances.png" alt="uniaxial-sensitivity-vc-disturbances.png" />
</p>
<p><span class="figure-number">Figure 38: </span>Sensitivity to disturbances (<a href="./figs/uniaxial-sensitivity-vc-disturbances.png">png</a>, <a href="./figs/uniaxial-sensitivity-vc-disturbances.pdf">pdf</a>)</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="org2a72b74" class="figure">
<p><img src="figs/uniaxial-sensitivity-vc-force-dist.png" alt="uniaxial-sensitivity-vc-force-dist.png" />
</p>
<p><span class="figure-number">Figure 39: </span>Sensitivity to disturbances (<a href="./figs/uniaxial-sensitivity-vc-force-dist.png">png</a>, <a href="./figs/uniaxial-sensitivity-vc-force-dist.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org98ab51d" class="outline-3">
<h3 id="org98ab51d"><span class="section-number-3">8.4</span> Noise Budget</h3>
<div class="outline-text-3" id="text-8-4">
<p>
We first load the measured PSD of the disturbance.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> load(<span class="org-string">'./mat/disturbances_dist_psd.mat'</span>, <span class="org-string">'dist_f'</span>);
</pre>
</div>
<p>
The effect of these disturbances on the distance \(D\) is computed below.
2021-02-20 23:09:27 +01:00
The PSD of the obtain distance \(D\) due to each of the perturbation is shown in figure <a href="#org67f34d4">40</a> and the Cumulative Amplitude Spectrum is shown in figure <a href="#org0bbabe6">41</a>.
</p>
<p>
2021-02-20 23:09:27 +01:00
The Root Mean Square value of the obtained displacement \(D\) is computed below and can be determined from the figure <a href="#org0bbabe6">41</a>.
</p>
<pre class="example">
4.8793e-06
</pre>
2021-02-20 23:09:27 +01:00
<div id="org67f34d4" class="figure">
<p><img src="figs/uniaxial-vc-psd-dist.png" alt="uniaxial-vc-psd-dist.png" />
</p>
<p><span class="figure-number">Figure 40: </span>PSD of the displacement \(D\) due to disturbances (<a href="./figs/uniaxial-vc-psd-dist.png">png</a>, <a href="./figs/uniaxial-vc-psd-dist.pdf">pdf</a>)</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="org0bbabe6" class="figure">
<p><img src="figs/uniaxial-vc-cas-dist.png" alt="uniaxial-vc-cas-dist.png" />
</p>
<p><span class="figure-number">Figure 41: </span>CAS of the displacement \(D\) due the disturbances (<a href="./figs/uniaxial-vc-cas-dist.png">png</a>, <a href="./figs/uniaxial-vc-cas-dist.pdf">pdf</a>)</p>
</div>
2021-02-20 23:09:27 +01:00
<div class="important" id="org58ae450">
<p>
Even though the RMS value of the displacement \(D\) is lower when using a piezo-electric actuator, the motion is mainly due to high frequency disturbances which are more difficult to control (an higher control bandwidth is required).
</p>
<p>
Thus, it may be desirable to use voice coil actuators.
</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgcae4469" class="outline-3">
<h3 id="orgcae4469"><span class="section-number-3">8.5</span> Integral Force Feedback</h3>
<div class="outline-text-3" id="text-8-5">
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> K_iff = <span class="org-type">-</span>20<span class="org-type">/</span>s;
</pre>
</div>
2021-02-20 23:09:27 +01:00
<div id="org6b9bcf7" class="figure">
<p><img src="figs/uniaxial_iff_vc_open_loop.png" alt="uniaxial_iff_vc_open_loop.png" />
</p>
<p><span class="figure-number">Figure 42: </span>Open Loop Transfer Function for IFF control when using a voice coil actuator (<a href="./figs/uniaxial_iff_vc_open_loop.png">png</a>, <a href="./figs/uniaxial_iff_vc_open_loop.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org130702c" class="outline-3">
<h3 id="org130702c"><span class="section-number-3">8.6</span> Identification of the Damped Plant</h3>
<div class="outline-text-3" id="text-8-6">
<p>
Let&rsquo;s initialize the system prior to identification.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'lorentz'</span>);
initializeSample(<span class="org-string">'mass'</span>, 50);
</pre>
</div>
<p>
All the controllers are set to 0.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> K = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>);
K_iff = <span class="org-type">-</span>K_iff;
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>);
K_rmc = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span>);
K_dvf = tf(0);
save(<span class="org-string">'./mat/controllers_uniaxial.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>);
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
2021-02-20 23:09:27 +01:00
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'sim_nano_station_uniaxial'</span>;
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
io<span class="org-type">(1) </span>= linio([mdl, <span class="org-string">'/Dw'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Ground Motion</span>
io<span class="org-type">(2) </span>= linio([mdl, <span class="org-string">'/Fs'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied on the sample</span>
io<span class="org-type">(3) </span>= linio([mdl, <span class="org-string">'/Fnl'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Force applied by the NASS</span>
io<span class="org-type">(4) </span>= linio([mdl, <span class="org-string">'/Fdty'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Ty</span>
io<span class="org-type">(5) </span>= linio([mdl, <span class="org-string">'/Fdrz'</span>], 1, <span class="org-string">'input'</span>); <span class="org-comment">% Parasitic force Rz</span>
io<span class="org-type">(6) </span>= linio([mdl, <span class="org-string">'/Dsm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of the sample</span>
io<span class="org-type">(7) </span>= linio([mdl, <span class="org-string">'/Fnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Force sensor in NASS's legs</span>
io<span class="org-type">(8) </span>= linio([mdl, <span class="org-string">'/Dnlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Displacement of NASS's legs</span>
io<span class="org-type">(9) </span>= linio([mdl, <span class="org-string">'/Dgm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Absolute displacement of the granite</span>
io<span class="org-type">(10) </span>= linio([mdl, <span class="org-string">'/Vlm'</span>], 1, <span class="org-string">'output'</span>); <span class="org-comment">% Measured absolute velocity of the top NASS platform</span>
</pre>
</div>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G_vc_iff = linearize(mdl, io, options);
G_vc_iff.InputName = {<span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span>
<span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span>
<span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span>
<span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span>
<span class="org-string">'Frz'</span>}; <span class="org-comment">% Parasitic Force Rz [N]</span>
G_vc_iff.OutputName = {<span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span>
<span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span>
<span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span>
<span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span>
<span class="org-string">'Vlm'</span>}; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span>
</pre>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgd002880" class="outline-3">
<h3 id="orgd002880"><span class="section-number-3">8.7</span> Noise Budget</h3>
<div class="outline-text-3" id="text-8-7">
<p>
We compute the obtain PSD of the displacement \(D\) when using IFF.
</p>
2021-02-20 23:09:27 +01:00
<div id="orgb3d6a21" class="figure">
<p><img src="figs/uniaxial-cas-iff-vc.png" alt="uniaxial-cas-iff-vc.png" />
</p>
<p><span class="figure-number">Figure 43: </span>CAS of the displacement \(D\) (<a href="./figs/uniaxial-cas-iff-vc.png">png</a>, <a href="./figs/uniaxial-cas-iff-vc.pdf">pdf</a>)</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org0adc59f" class="outline-3">
<h3 id="org0adc59f"><span class="section-number-3">8.8</span> Conclusion</h3>
<div class="outline-text-3" id="text-8-8">
2021-02-20 23:09:27 +01:00
<div class="important" id="org9c11da6">
<p>
The use of voice coil actuators would allow a better disturbance rejection for a fixed bandwidth compared with a piezo-electric hexapod.
</p>
<p>
Similarly, it would require much lower bandwidth to attain the same level of disturbance rejection for \(D\).
</p>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
2021-02-20 23:09:27 +01:00
<p class="date">Created: 2021-02-20 sam. 23:08</p>
</div>
</body>
</html>