nass-simscape/docs/centrifugal_forces.html

198 lines
6.5 KiB
HTML
Raw Permalink Normal View History

2020-05-05 11:38:27 +02:00
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
2021-02-20 23:09:27 +01:00
<!-- 2021-02-20 sam. 23:09 -->
2020-05-05 11:38:27 +02:00
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Centrifugal Forces</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
2021-02-20 23:09:27 +01:00
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
<script>
MathJax = {
svg: {
scale: 1,
fontCache: "global"
},
tex: {
tags: "ams",
multlineWidth: "%MULTLINEWIDTH",
tagSide: "right",
macros: {bm: ["\\boldsymbol{#1}",1],},
tagIndent: ".8em"
}
};
</script>
<script id="MathJax-script" async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
2020-05-05 11:38:27 +02:00
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="./index.html"> UP </a>
|
2021-02-20 23:09:27 +01:00
<a accesskey="H" href="../../index.html"> HOME </a>
2020-05-05 11:38:27 +02:00
</div><div id="content">
<h1 class="title">Centrifugal Forces</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
2021-02-20 23:09:27 +01:00
<li><a href="#org5199302">1. Parameters</a></li>
<li><a href="#orga2ea10d">2. Centrifugal forces for light and heavy sample</a></li>
<li><a href="#orgf375b50">3. Centrifugal forces as a function of the rotation speed</a></li>
<li><a href="#orge7fb13d">4. Maximum rotation speed as a function of the mass</a></li>
2020-05-05 11:38:27 +02:00
</ul>
</div>
</div>
<p>
In this document, we wish to estimate the centrifugal forces due to the spindle&rsquo;s rotation when the sample&rsquo;s center of mass is off-centered with respect to the rotation axis.
</p>
<p>
This is the case then the sample is moved by the micro-hexapod.
</p>
<p>
2021-02-20 23:09:27 +01:00
The centrifugal forces are defined as represented Figure <a href="#org91ed599">1</a> where:
2020-05-05 11:38:27 +02:00
</p>
<ul class="org-ul">
<li>\(M\) is the total mass of the rotating elements in \([kg]\)</li>
<li>\(\omega\) is the rotation speed in \([rad/s]\)</li>
<li>\(r\) is the distance to the rotation axis in \([m]\)</li>
</ul>
2021-02-20 23:09:27 +01:00
<div id="org91ed599" class="figure">
2020-05-05 11:38:27 +02:00
<p><img src="./figs/centrifugal.png" alt="centrifugal.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Centrifugal forces</p>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-org5199302" class="outline-2">
<h2 id="org5199302"><span class="section-number-2">1</span> Parameters</h2>
2020-05-05 11:38:27 +02:00
<div class="outline-text-2" id="text-1">
<p>
We define some parameters for the computation.
</p>
<p>
The mass of the sample can vary from \(1\,kg\) to \(50\,kg\) to which is added to mass of the metrology reflector and the nano-hexapod&rsquo;s top platform (here set to \(15\,kg\)).
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> M_light = 16; <span class="org-comment">% mass of excentred parts mooving [kg]</span>
M_heavy = 65; <span class="org-comment">% [kg]</span>
2020-05-05 11:38:27 +02:00
</pre>
</div>
<p>
For the light mass, the rotation speed is 60rpm whereas for the heavy mass, it is equal to 1rpm.
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> w_light = 2<span class="org-type">*</span><span class="org-constant">pi</span>; <span class="org-comment">% rotational speed [rad/s]</span>
w_heavy = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">/</span>60; <span class="org-comment">% rotational speed [rad/s]</span>
2020-05-05 11:38:27 +02:00
</pre>
</div>
<p>
Finally, we consider a mass eccentricity of \(10\,mm\).
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> R = 0.01; <span class="org-comment">% Excentricity [m]</span>
2020-05-05 11:38:27 +02:00
</pre>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orga2ea10d" class="outline-2">
<h2 id="orga2ea10d"><span class="section-number-2">2</span> Centrifugal forces for light and heavy sample</h2>
2020-05-05 11:38:27 +02:00
<div class="outline-text-2" id="text-2">
<p>
From the formula \(F_c = m \omega^2 r\), we obtain the values shown below.
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">&#xa0;</th>
<th scope="col" class="org-right">Force [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">light</td>
<td class="org-right">6.32</td>
2020-05-05 11:38:27 +02:00
</tr>
<tr>
<td class="org-left">heavy</td>
<td class="org-right">0.01</td>
2020-05-05 11:38:27 +02:00
</tr>
</tbody>
</table>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orgf375b50" class="outline-2">
<h2 id="orgf375b50"><span class="section-number-2">3</span> Centrifugal forces as a function of the rotation speed</h2>
2020-05-05 11:38:27 +02:00
<div class="outline-text-2" id="text-3">
<p>
2021-02-20 23:09:27 +01:00
The centrifugal forces as a function of the rotation speed for light and heavy sample is shown on Figure <a href="#org87b7644">2</a>.
2020-05-05 11:38:27 +02:00
</p>
2021-02-20 23:09:27 +01:00
<div id="org87b7644" class="figure">
2020-05-05 11:38:27 +02:00
<p><img src="figs/centrifugal_forces_rpm.png" alt="centrifugal_forces_rpm.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Centrifugal forces function of the rotation speed</p>
</div>
</div>
</div>
2021-02-20 23:09:27 +01:00
<div id="outline-container-orge7fb13d" class="outline-2">
<h2 id="orge7fb13d"><span class="section-number-2">4</span> Maximum rotation speed as a function of the mass</h2>
2020-05-05 11:38:27 +02:00
<div class="outline-text-2" id="text-4">
<p>
2021-02-20 23:09:27 +01:00
We plot the maximum rotation speed as a function of the mass for different maximum force that we can use to counteract the centrifugal forces (Figure <a href="#org8fe6a07">3</a>).
2020-05-05 11:38:27 +02:00
</p>
<p>
2021-02-20 23:09:27 +01:00
From a specified maximum allowed centrifugal force (here set to \(10\,[N]\)), the maximum rotation speed as a function of the sample&rsquo;s mass is shown in Figure <a href="#org8fe6a07">3</a>.
2020-05-05 11:38:27 +02:00
</p>
<div class="org-src-container">
2021-02-20 23:09:27 +01:00
<pre class="src src-matlab"> F_max = 10; <span class="org-comment">% Maximum accepted centrifugal forces [N]</span>
2020-05-05 11:38:27 +02:00
2021-02-20 23:09:27 +01:00
R = 0.01;
2020-05-05 11:38:27 +02:00
2021-02-20 23:09:27 +01:00
M_sample = 0<span class="org-type">:</span>1<span class="org-type">:</span>100;
M_reflector = 15;
2020-05-05 11:38:27 +02:00
</pre>
</div>
2021-02-20 23:09:27 +01:00
<div id="org8fe6a07" class="figure">
2020-05-05 11:38:27 +02:00
<p><img src="figs/max_force_rpm.png" alt="max_force_rpm.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Maximum rotation speed as a function of the sample mass for an allowed centrifugal force of \(100\,[N]\)</p>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
2021-02-20 23:09:27 +01:00
<p class="date">Created: 2021-02-20 sam. 23:09</p>
2020-05-05 11:38:27 +02:00
</div>
</body>
</html>