47 lines
1.2 KiB
Matlab
47 lines
1.2 KiB
Matlab
%% Clear Workspace and Close figures
|
|
clear; close all; clc;
|
|
|
|
%% Intialize Laplace variable
|
|
s = zpk('s');
|
|
|
|
% Load data
|
|
% We load the data of the z axis of two geophones.
|
|
|
|
d_18 = load('mat/data_018.mat', 'data'); d_18 = d_18.data;
|
|
d_19 = load('mat/data_019.mat', 'data'); d_19 = d_19.data;
|
|
|
|
% Analysis - Time Domain
|
|
|
|
figure;
|
|
hold on;
|
|
plot(d_19(:, 3), d_19(:, 1), 'DisplayName', 'Driver - Ground');
|
|
plot(d_18(:, 3), d_18(:, 1), 'DisplayName', 'Driver - Granite');
|
|
hold off;
|
|
xlabel('Time [s]'); ylabel('Voltage [V]');
|
|
xlim([0, 50]);
|
|
legend('Location', 'bestoutside');
|
|
|
|
% Analysis - Frequency Domain
|
|
|
|
dt = d_18(2, 3) - d_18(1, 3);
|
|
|
|
Fs = 1/dt;
|
|
win = hanning(ceil(10*Fs));
|
|
|
|
% Vibrations at the sample location
|
|
% First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
|
|
|
|
[px_18, f] = pwelch(d_18(:, 1), win, [], [], Fs);
|
|
[px_19, ~] = pwelch(d_19(:, 1), win, [], [], Fs);
|
|
|
|
figure;
|
|
hold on;
|
|
plot(f, sqrt(px_19), 'DisplayName', 'Driver - Ground');
|
|
plot(f, sqrt(px_18), 'DisplayName', 'Driver - Granite');
|
|
hold off;
|
|
set(gca, 'xscale', 'log');
|
|
set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
xlim([0.1, 500]);
|
|
legend('Location', 'southwest');
|